Gradient-based Editing David Capel

These slides borrow from Bill Freeman and Frédo Durand's PPT:

<u>http://groups.csail.mit.edu/graphics/classes/</u> <u>CompPhoto06/html/lecturenotes/10_Gradient.ppt</u>

And images from

Perez et al. "Poisson Image Editing" SIGGRAPH 2003

Goal: Splice together parts from several images

cloning

sources/destinations

Naive cut-and-paste leaves nasty seams!

- Human eye is very sensitive to edges and contrast
- Edges contain much of the "salient" structure in an image
- Image gradients capture edge structure quite well

- Human eye is very sensitive to edges and contrast
- Edges contain much of the "salient" structure in an image
- Image gradients capture edge structure quite well

Idea!

- Do blending or splicing of the image gradients
- Then reconstruct image from the blended gradients

sources/destinations

pasted color gradients

seamless cloning

Formulation as a minimization problem ...

 Compute image f that is consistent with pasted gradient vector field v in least-squares sense

$$\min_{f} \iint_{\Omega} \|\nabla f - \mathbf{v}\|^{2} \quad \text{with} \quad f|_{\partial\Omega} = f^{*}|_{\partial\Omega}$$
(color equality at region boundary)

Aside for the mathematically inclined

Minimization of this energy functional ...

$$\begin{cases} \min \int_{\Omega} \|\nabla f - \mathbf{v}\|^2 \\ f|_{\partial \Omega} = f^*|_{\partial \Omega} \end{cases}$$

... corresponds to Poisson's equation with Dirichlet boundary conditions:

$$\begin{cases} \nabla^2 f = \nabla \cdot \mathbf{v} \\ f |_{\partial \Omega} = f^* |_{\partial \Omega} \end{cases}$$

PDE for steady-state wave and heat problems

Hence the name : Poisson Blending

for
$$\forall p \in \Omega$$
, $|N_p| f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$

where N_p = neighbors of pixel p

A large, sparse quadratic problem (5 non-zeros per row)

- Can just solve RGB channels as 3 separate problems
- Easy to solve in Matlab
 - Conjugate gradients f = pcg(A,b)
 - Backslash operator $f = A \setminus b$

Poisson Blending Results

source/destination

cloning

seamless cloning

"Clone brushing" from within the same image

Figure 2: **Concealment**. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable artifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

Creating tileable textures

- Call original tile g
- Boundary conditions
 - $f_{north}^* = f_{north}^* = 0.5(g_{north} + g_{south})$
 - $f_{east}^* = f_{west}^* = 0.5(g_{east} + g_{west})$

Beyond cut-and-paste: mixing gradients

Idea: At each pixel, choose stronger of source or destination image gradient

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})| \\ \nabla g(\mathbf{x}) & \text{otherwise.} \end{cases}$

Discretized version:

$$v_{pq} = \begin{cases} f_p^* - f_q^* \\ g_p - g_q \end{cases}$$

if
$$|f_p^* - f_q^*| > |g_p - g_q|$$

otherwise,

Mixed gradient results

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

Figure 6: **Inserting objects with holes**. (a) The classic method, color-based selection and alpha masking might be time consuming and often leaves an undesirable halo; (b-c) seamless cloning, even averaged with the original image, is not effective; (d) mixed seamless cloning based on a loose selection proves effective.

source/destination

seamless cloning

mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless cloning, an object in the destination image touching the selected region Ω bleeds into it. Bleeding is inhibited by using mixed gradients as the guidance field.

Figure 7: **Inserting transparent objects**. Mixed seamless cloning facilitates the transfer of partly transparent objects, such as the rainbow in this example. The non-linear mixing of gradient fields picks out whichever of source or destination structure is the more salient at each location.

Image flattening - nice "cartoon" effect Idea: Eliminate gradients below a threshold

 $v_{pq} = \begin{cases} f_p - f_q & \text{if an edge lies between } p \text{ and } q \\ 0 & \text{otherwise,} \end{cases}$

Texture transfer

Idea: Paste *luminance* gradients from one object onto another

swapped textures

"Gradient-Domain High Dynamic Range Compression" Fattal et al. SIGGRAPH 2002

Idea: Attenuate strong gradients, reconstruct image

Attenuation factors

