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These slides borrow from Bill Freeman and 
Frédo Durand’s PPT:

http://groups.csail.mit.edu/graphics/classes/
CompPhoto06/html/lecturenotes/10_Gradient.ppt

And images from

Perez et al. “Poisson Image Editing” 
SIGGRAPH 2003
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Goal: Splice together parts from several images

Naive cut-and-paste leaves nasty seams!



Human eye is very sensitive to edges and contrast

Edges contain much of the “salient” structure in an image

Image gradients capture edge structure quite well
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Human eye is very sensitive to edges and contrast

Edges contain much of the “salient” structure in an image

Image gradients capture edge structure quite well

Do blending or splicing of the image gradients

Then reconstruct image from the blended gradients 

Idea!
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pasted color gradients



Compute image f that is consistent with pasted 
gradient vector field v in least-squares sense

Formulation as a minimization problem ...

Pasted gradients Mask

Unknown
region

Background

with

(color equality at region boundary)
}



Aside for the mathematically inclined

Minimization of this energy functional ...

... corresponds to Poisson’s equation with 
Dirichlet boundary conditions:

PDE for steady-state 
wave and heat 

problems

Hence the name : Poisson Blending



Discretization

p q

Differentiate and rearrange ...

where Np = neighbors of pixel p

Discrete gradient Desired gradient Boundary constraint

with



Solving for the image f
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A large, sparse quadratic problem (5 non-zeros per row)

Can just solve RGB channels as 3 separate problems
Easy to solve in Matlab

Conjugate gradients   f = pcg(A,b)
Backslash operator    f = A\b



Poisson Blending Results





“Clone brushing” from within the same image



Creating tileable textures

Call original tile g

Boundary conditions
f*north = f*north = 0.5(gnorth + gsouth)
f*east = f*west = 0.5(geast + gwest)



Beyond cut-and-paste: mixing gradients

Idea: At each pixel, choose stronger of 
source or destination image gradient

Discretized version:



Mixed gradient results







Idea: Eliminate gradients below a threshold

Image flattening - nice “cartoon” effect



Texture transfer
Idea: Paste luminance gradients from one 
object onto another



“Gradient-Domain High Dynamic Range Compression”
Fattal et al. SIGGRAPH 2002

Idea: Attenuate strong gradients, reconstruct image



(a) (b) (c) (d) (e) (f)

Figure 3: (a) An HDR scanline with dynamic range of 2415:1. (b) H(x) = log(scanline). (c) The derivativesH′(x). (d) Attenuated derivatives
G(x); (e) Reconstructed signal I(x) (as defined in eq. 1); (f) An LDR scanline exp(I(x)): the new dynamic range is 7.5:1. Note that each plot
uses a different scale for its vertical axis in order to show details, except (c) and (d) that use the same vertical axis scaling in order to show
the amount of attenuation applied on the derivatives.

We can now reconstruct a reduced dynamic range function I (up
to an additive constantC) by integrating the compressed derivatives:

I(x) =C+
∫ x

0
G(t) dt. (1)

Finally, we exponentiate in order to return to luminances. The entire
process is illustrated in Figure 3.
In order to extend the above approach to 2D HDR functions

H(x,y) we manipulate the gradients ∇H, instead of the derivatives.
Again, in order to avoid introducing spatial distortions into the im-
age, we change only the magnitudes of the gradients, while keeping
their directions unchanged. Thus, similarly to the 1D case, we com-
pute

G(x,y) = ∇H(x,y) Φ(x,y).

Unlike the 1D case we cannot simply obtain a compressed dynamic
range image by integrating G, since it is not necessarily integrable.
In other words, there might not exist an image I such that G = ∇I!
In fact, the gradient of a potential function (such as a 2D image)
must be a conservative field [Harris and Stocker 1998]. In other
words, the gradient ∇I = (∂ I/∂x,∂ I/∂y) must satisfy

∂ 2I
∂x∂y =

∂ 2I
∂y∂x ,

which is rarely the case for our G.
One possible solution to this problem is to orthogonally project

G onto a finite set of orthonormal basis functions spanning the set of
integrable vector fields, such as the Fourier basis functions [Frankot
and Chellappa 1988]. In our method we employ a more direct and
more efficient approach: search the space of all 2D potential func-
tions for a function I whose gradient is the closest to G in the least-
squares sense. In other words, I should minimize the integral

∫∫
F(∇I,G) dx dy, (2)

where F(∇I,G) = ‖∇I−G‖2 =
(

∂ I
∂x −Gx

)2
+

(
∂ I
∂y −Gy

)2
.

According to the Variational Principle, a function I that mini-
mizes the integral in (2) must satisfy the Euler-Lagrange equation

∂F
∂ I − d

dx

∂F
∂ Ix

− d

dy

∂F
∂ Iy

= 0,

which is a partial differential equation in I. Substituting F we obtain
the following equation:

2

(
∂ 2I
∂x2

− ∂Gx
∂x

)
+2

(
∂ 2I
∂y2

−
∂Gy
∂y

)
= 0.

Dividing by 2 and rearranging terms, we obtain the well-known
Poisson equation

∇2I = divG (3)

Figure 4: Gradient attenuation factors used to compress the Bel-
gium House HDR radiance map (Figure 2). Darker shades indicate
smaller scale factors (stronger attenuation).

where ∇2 is the Laplacian operator ∇2I = ∂ 2I
∂x2 + ∂ 2I

∂y2 and divG is the

divergence of the vector fieldG, defined as divG= ∂Gx

∂x + ∂Gy

∂y . This
is a linear partial differential equation, whose numerical solution is
described in Section 5.

4 Gradient attenuation function

As explained in the previous section, our method achieves HDR
compression by attenuating the magnitudes of the HDR image gra-
dients by a factor of Φ(x,y) at each pixel. We would like the at-
tenuation to be progressive, shrinking gradients of large magnitude
more than small ones.
Real-world images contain edges at multiple scales. Conse-

quently, in order to reliably detect all of the significant inten-
sity transitions we must employ a multi-resolution edge detection
scheme. However, we cannot simply attenuate each gradient at the
resolution where it was detected. This could result in halo artifacts
around strong edges, as mentioned in Section 2. Our solution is to
propagate the desired attenuation from the level it was detected at
to the full resolution image. Thus, all gradient manipulations occur
at a single resolution level, and no halo artifacts arise.
We begin by constructing a Gaussian pyramid H0,H1, . . . ,Hd ,

where H0 is the full resolution HDR image and Hd is the coarsest
level in the pyramid. d is chosen such that the width and the height
of H

d
are at least 32. At each level k we compute the gradients

using central differences:

∇H
k
=

(
H
k
(x+1,y)−H

k
(x−1,y)

2k+1
,
H
k
(x,y+1)−H

k
(x,y−1)

2k+1

)
.

At each level k a scaling factor ϕ
k
(x,y) is determined for each pixel
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G(x); (e) Reconstructed signal I(x) (as defined in eq. 1); (f) An LDR scanline exp(I(x)): the new dynamic range is 7.5:1. Note that each plot
uses a different scale for its vertical axis in order to show details, except (c) and (d) that use the same vertical axis scaling in order to show
the amount of attenuation applied on the derivatives.
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compression by attenuating the magnitudes of the HDR image gra-
dients by a factor of Φ(x,y) at each pixel. We would like the at-
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quently, in order to reliably detect all of the significant inten-
sity transitions we must employ a multi-resolution edge detection
scheme. However, we cannot simply attenuate each gradient at the
resolution where it was detected. This could result in halo artifacts
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Figure 2: Belgium House: An HDR radiance map of a lobby com-
pressed for display by our method (top), the method ofWard Larson
et al. (middle) and the LCIS method (bottom).

and spatial vision for realistic tone reproduction. Their model en-
ables display of HDR scenes on conventional display devices, but
the dynamic range compression is performed by applying different
gain-control factors to each bandpass, which also results in halos
around strong edges. In fact, DiCarlo and Wandell [2001], as well
as Tumblin and Turk [1999] demonstrate that this is a fundamental
problem with any multi-resolution operator that compresses each
resolution band differently.

In order to eradicate the notorious halo artifacts Tumblin and
Turk [1999] introduce the low curvature image simplifier (LCIS) hi-
erarchical decomposition of an image. Each level in this hierarchy
is generated by solving a partial differential equation inspired by
anisotropic diffusion [Perona and Malik 1990] with a different dif-
fusion coefficient. The hierarchy levels are progressively smoother
versions of the original image, but the smooth (low-curvature) re-
gions are separated from each other by sharp boundaries. Dynamic
range compression is achieved by scaling down the smoothest ver-
sion, and then adding back the differences between successive lev-
els in the hierarchy, which contain details removed by the simpli-
fication process. This technique is able to drastically compress the
dynamic range, while preserving the fine details in the image. How-
ever, the results are not entirely free of artifacts. Tumblin and Turk
note that weak halo artifacts may still remain around certain edges
in strongly compressed images. In our experience, this technique
sometimes tends to overemphasize fine details. For example, in the
bottom image of Figure 2, generated using this technique, certain
features (door, plant leaves) are surrounded by thin bright outlines.
In addition, the method is controlled by no less than 8 parameters,
so achieving an optimal result occasionally requires quite a bit of
trial-and-error. Finally, the LCIS hierarchy construction is compu-
tationally intensive, so compressing a high-resolution image takes
a substantial amount of time.

3 Gradient domain HDR compression

Informally, our approach relies on the widely accepted assumptions
[DiCarlo and Wandell 2001] that the human visual system is not
very sensitive to absolute luminances reaching the retina, but rather
responds to local intensity ratio changes and reduces the effect of
large global differences, which may be associated with illumination
differences.
Our algorithm is based on the rather simple observation that any

drastic change in the luminance across a high dynamic range im-
age must give rise to large magnitude luminance gradients at some
scale. Fine details, such as texture, on the other hand, correspond
to gradients of much smaller magnitude. Our idea is then to iden-
tify large gradients at various scales, and attenuate their magnitudes
while keeping their direction unaltered. The attenuation must be
progressive, penalizing larger gradients more heavily than smaller
ones, thus compressing drastic luminance changes, while preserv-
ing fine details. A reduced high dynamic range image is then re-
constructed from the attenuated gradient field.
It should be noted that all of our computations are done on the

logarithm of the luminances, rather than on the luminances them-
selves. This is also the case with most of the previous methods
reviewed in the previous section. The reason for working in the log
domain is twofold: (a) the logarithm of the luminance is a (crude)
approximation to the perceived brightness, and (b) gradients in the
log domain correspond to ratios (local contrasts) in the luminance
domain.
We begin by explaining the idea in 1D. Consider a high dynamic

range 1D function. We denote the logarithm of this function by
H(x). As explained above, our goal is to compress large magnitude
changes in H, while preserving local changes of small magnitude,
as much as possible. This goal is achieved by applying an appro-
priate spatially variant attenuating mapping Φ to the magnitudes of
the derivatives H ′(x). More specifically, we compute:

G(x) = H ′(x) Φ(x).

Note that G has the same sign as the original derivative H ′ every-
where, but the magnitude of the original derivatives has been al-
tered by a factor determined by Φ, which is designed to attenuate
large derivatives more than smaller ones. Actually, as explained in
Section 4, Φ accounts for the magnitudes of derivatives at different
scales.

Attenuation factors

Input
scanline

Log Gradient Attenuate Reconstruct
scanline

De-log
(linearize)



Figure 5: The top two rows compare results produced by our method (middle column) to those of Ward Larson et al.(left column) and those of
Tumblin and Turk (right column). The differences are discussed in Section 6. The bottom row shows three more examples of results produced
by our method (the thumbnails next to each image show some of the LDR images from which the HDR radiance map was constructed).


