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What is Tracking?

typical idea: tracking a single target in isolation.
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What is Tracking?
Multi-target tracking....

ant behavior, courtesy of
Georgia Tech biotracking

“targets” can be corners, and
tracking gives us optic flow.
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What is Tracking?
articulated objects having 
multiple, coordinated parts
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What is Tracking?

Active tracking involves moving the sensor in response to 
motion of the target.  Needs to be real-time!
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Lecture Outline

• Brief Intro to Tracking
• Appearance-based Tracking
• Online Adaptation (learning)
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State Space Approach
Two vectors of interest:

1) State vector:  vector of variables xk representing
what we want to know about the target object
examples: [x,y];   [x,y,dx,dy];   [x,y,,scale]      

2) Measurement vector:  noisy observations zk 
related to the state vector. 
examples: image intensity/color; motion blobs

Because our observations will be noisy, estimating the state vector 
will be a statistical estimation problem.
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What is Tracking ?
What distinguishes tracking from “typical” statistical estimation 
(or machine learning) problems?

• We typically have a strong temporal component involved.

• estimating quantities that are expected to change over time
(thus expectations of the dynamics play a role)

• interested in current state St for a given time step t

• usually assume can only compute St from information seen 
at previous times steps 1,2,...,(t-1).   [can’t see the future]

• usually want to be as efficient as possible, even “real-time”. 

These concerns lead naturally to recursive estimators.
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Bayesian Filtering
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Rigorous general framework for tracking.  Estimates the values 
of a state vector based on a time series of uncertain observations.

Key idea: use a recursive estimator to construct the posterior 
density function (pdf) of the state vector at each time t based on 
all available data up to time t. 

Bayesian hypothesis: All quantities of interest, such as MAP or 
marginal estimates, can be computed from the posterior pdf.



Filtering Framework

We want to recursively estimate the current target state vector
each time a new observation is received.

Two step approach:

1) prediction: propagate current state forward in time,
taking process noise into account (translate, deform, and 
spread the pdf)

2) update: use Bayes theorem to modify prediction pdf based 
on current observation
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Tracking as a Graphical Model
Graphical Model:

hidden nodes

observed nodes

Markov assumptions

Factored joint probability distribution
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Recursive Bayes Filter
Motion Prediction Step:

Data Correction Step (Bayes rule):

previous estimated statestate transitionpredicted current state

predicted current statemeasurement
estimated current state

normalization term
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Problem
Except in special cases, these integrals are intractable.

Motion Prediction Step:

Data Correction Step (Bayes rule):
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Practical Note
Often the two types of probabilities P(xk|xk-1) and P(zk|xk) 
are not explicitly given to you.  Instead, two functions are 
given:

and you have to be able to propagate distributions through 
these equations, which can be very difficult analytically. 

1) System model - how current state is related to previous
state (specifies evolution of state with time)

xk = fk (xk-1, vk-1)     v is process noise

2) Measurement model - how noisy measurements are
related to the current state

zk = hk (xk, nk)       n is measurement noise
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Special Case 1: Kalman Filter
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With suitable assumptions, we can derive Kalman filtering and 
particle filtering from the recursive Bayes filter equations.

For example, if:
- Next state is a linear function of current state 

plus zero-mean Gaussian noise (process noise)
- Observation is linear function of current state

plus zero-mean Gaussian noise (measurement noise)
- Initial prior distribution of first state is Gaussian

Then:
All distributions remain Gaussian, and we can solve the integrals 
analytically.   The Kalman filter equations specify how to update 
the Gaussian mean and covariance parameters over time.



Special Case 2: Particle Filter
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Nonparametric representation of distributions with a discrete 
set of weighted samples (particles).



Why Does This Help?
If we can represent a distribution P(x) by random samples xi
(particles), then we can compute marginal distributions and 
expected values by summation, rather than integration.

That is, we can approximate:

by first generating N i.i.d. samples from P(x) and then forming 
the empirical estimate:
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Why Does This Help?
For example, the integral in the denominator of Bayes rule goes 
away for free, as a consequence of representing distributions by a 
weighted set of samples.  Since we have only a finite number of 
samples, we can easily compute the normalization constant by 
summing the weights!

Data Correction Step (Bayes rule):
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Condensation (Isard&Blake)
time t-1

draw samples and 
apply motion predict

add noise (diffusion)

weight each sample 
by the likelihood

renormalize to get 
new set of  samples

normalized set of 
weighted samples

time t
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Condensation (Isard&Blake)
time t-1

draw samples and 
apply motion predict

add noise (diffusion)

weight each sample 
by the likelihood

renormalize to get 
new set of  samples

normalized set of 
weighted samples

time t

Motion Prediction

Data Correction
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Back to our Filtering Framework

Let’s say we want to recursively estimate the current state
at every time that a measurement is received.

Two step approach:

1) prediction: propagate state pdf forward in time,
taking process noise into account (translate, deform, and 
spread the pdf)

2) update: use Bayes theorem to modify prediction pdf based 
on current measurement

But which observation
should we update with?
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Filtering, Gating, Association

Add Gating and Data Association

1) prediction: propagate state pdf forward in time,
taking process noise into account (translate, deform, and 
spread the pdf)

1b) Gating to determine possible matching observations

1c) Data association to determine best match

2)  update: use Bayes theorem to modify prediction pdf based on 
current measurement
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Data Association
Occurs naturally in multi-frame matching tasks (matching 
observations in a new frame to a set of tracked trajectories)

observations

?track 1

track 2

How to determine which observations 
to add to which track?
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Track Matching

observations

?track 1

track 2

How to determine which observations 
to add to which track?

Intuition: predict next position along each track.
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Track Matching

observations

?track 1

track 2

How to determine which observations 
to add to which track?

d1

d2

d3

d4

d5

Intuition: predict next position along each track.
Intuition: match should be close to predicted position.
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Track Matching
Intuition: predict next position along each track.

observations

?track 1

track 2

How to determine which observations 
to add to which track?

Intuition: match should be close to predicted position.

d1

d2

d3

Intuition: some matches are highly unlikely.
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Gating
A method for pruning matches that are geometrically unlikely 
from the start.  Allows us to decompose matching into smaller 
subproblems.

observations

?
track 1

track 2

How to determine which observations 
to add to which track?

?

gating
region 2

gating
region 1
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Simple Prediction/Gating
Constant position + bound on maximum interframe motion

rr constant position
prediction

Three-frame constant velocity prediction

pk-1 pk

(pk-pk-1)
pk + (pk-pk-1)

prediction

typically, gating
region can be smaller
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Kalman Filter Prediction/Gating

ellipsoidal gating region
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Global Nearest Neighbor (GNN)
Evaluate each observation in track gating region.  Choose 
“best” one to incorporate into track.

track1

a1j = score for matching observation j to track 1

o1
o2

o3

o4

Could be based on Euclidean or Mahalanobis distance to 
predicted location (e.g. exp{-d2}).  Could be based on similarity 
of appearance (e.g. appearance template correlation score)

1     3.0
2     5.0
3     6.0
4     9.0

ai1
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Global Nearest Neighbor (GNN)
Evaluate each observation in track gating region.  Choose 
“best” one to incorporate into track.

track1

ai1 = score for matching observation i to track 1

o1
o2

o3

o4

Choose best match am1 = max{a11, a21,a31,a41}

1 3.0
2     5.0
3     6.0
4     9.0

ai1

max
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Global Nearest Neighbor (GNN)
Problem: if do independently for each track, could end up with 
contention for the same observations.

track1

o1
o2

o3

o4

1 3.0 
2     5.0
3     6.0      1.0
4 9.0      8.0
5 3.0

ai1

o5

track2

ai2

both try to claim
observation o4
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Greedy (Best First) Strategy
Assign observations to trajectories in decreasing order of 
goodness, making sure to not reuse an observation twice.

track1

o1
o2

o3

o4

1 3.0 
2     5.0
3     6.0      1.0
4 9.0      8.0
5 3.0

ai1

o5

track2

ai2

NON-OPTIMAL
SOLUTON!
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Assignment Problem
Mathematical definition.  Given an NxN array of benefits {Xai}, 
determine an NxN permutation matrix Mai that maximizes the 
total score:

E = 
N N

The permutation matrix ensures that we can only choose one
number from each row and from each column.  (like assigning
one worker to each job)

maximize:

subject to:

constraints that say
M is a permutation matrix

SU-VLPR’09, Beijing 35Collins, PSU



Hungarian Algorithm

hence the name
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Result From Hungarian Algorithm
Each track is now forced to claim a different observation.

And we get the optimal assigment in this case.

track1

o1
o2

o3

o4

1 3.0 
2     5.0
3     6.0      1.0
4 9.0      8.0
5 3.0

ai1

o5

track2

ai2
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Handling Missing Matches
Typically, there will be a different number of tracks than observations.  Some 
observations may not match any track.  Some tracks may not have observations.
That’s OK.  Most implementations of Hungarian Algorithm allow you to use a 
rectangular matrix, rather than a square matrix.  See for example:
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If Square Matrix is Required...

1 3.0       0
2     5.0       0
3     6.0      1.0
4 9.0      8.0
5 0       3.0

tra
ck

1
tra

ck
2

5x3 

pad with array of small 
random numbers to get a 
square score matrix.

1 0        0
2      0        0
3      1        0
4 0        1
5 0        0

5x3 
tra

ck
1

tra
ck

2
ignore whatever
happens in here

Square-matrix
assignment
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More Sophisticated DA Approaches 
(that we won’t be covering)

• Probabilistic Data Association (PDAF)
• Joint Probabilistic Data Assoc (JPDAF)
• Multi-Hypothesis Tracking (MHT)
• Markov Chain Monte Carlo DA (MCMCDA)
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Lecture Outline

• Brief Intro to Tracking
• Appearance-based Tracking
• Online Adaptation (learning)
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Appearance-Based Tracking
current frame +
previous location

Mode-Seeking
(e.g. mean-shift; Lucas-Kanade; 
particle filtering)

Response map
(confidence map; likelihood image) current location

appearance model
(e.g. image template, or

color; intensity; edge histograms)
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Relation to Bayesian Filtering
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In appearance-based tracking, data association tends to be 
reduced to gradient ascent (hill-climbing) on an appearance 
similarity response function.

Motion prediction model tends to be simplified to assume 
constant position + noise (so assumes previous bounding box 
significantly overlaps object in the new frame).



Appearance Models
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want to be invariant, or at least resilient, to changes in
photometry (e.g. brightness; color shifts)
geometry (e.g. distance; viewpoint; object deformation)

Simple Examples:
histograms or parzen estimators. 

photometry 
coarsening of bins in histogram 
widening of kernel in parzen estimator    

geometry 
invariant to rigid and nonrigid deformations; 
resilient to blur, resolution.
invariant to arbitrary permutation of pixels!   (drawback)



Appearance Models
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Simple Examples (continued):
Intensity Templates

photometry
normalization (e.g. NCC)
use gradients instead of raw intensities

geometry
couple with estimation of geometric warp parameters

Other “flexible” representations are possible, e.g. spatial 
constellations of templates or color patches.

Actually, any representation used for object detection can be 
adapted for tracking.   Run time is important, though.



Template Methods
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Simplest example is correlation-based template tracking.

Assumptions:

- a cropped image of the object from the first frame can be

used to describe appearance

- object will look nearly identical in each new image (note: 

we can use normalized cross correlation to add some 

resilience to lighting changes.

- movement is nearly pure 2D translation



Normalized Correlation, Fixed Template

Failure mode: Unmodeled Appearance Change

Fixed template Current tracked location
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Naive Approach to Handle Change

• One approach to handle changing appearance over 
time is adaptive template update

• One you find location of object in a new frame, just 
extract a new template, centered at that location

• What is the potential problem?
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Normalized Correlation, Adaptive Template

The result is even worse than before!

Current template Current tracked location
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Drift is a Universal Problem!
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1 hour

Example courtesy of Horst Bischof.  Green: online boosting tracker; yellow: drift-avoiding 
“semisupervised boosting” tracker (we will discuss it later today).  



Template Drift

• If your estimate of template location is slightly off, you 
are now looking for a matching position that is similarly 
off center.

• Over time, this offset error builds up until the template 
starts to “slide” off the object.

• The problem of drift is a major issue with  methods that 
adapt to changing object appearance.
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Lucas-Kanade Tracking
The Lucas-Kanade algorithm is a template tracker that works 
by gradient ascent (hill-climbing).

Originally developed to compute translation of small image 
patches (e.g. 5x5) to measure optical flow.

KLT algorithm is a good
(and free) implementation
for tracking corner features.

Over short time periods 
(a few frames), drift isn’t
really an issue.
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Lucas-Kanade Tracking
Assumption of constant flow (pure translation) for all pixels 
in a large template is unreasonable.

However, the Lucas-Kanade approach easily generalizes to 
other 2D parametric motion models (like affine or projective).

See a series of papers called “Lucas-Kanade 20 Years On”, by 
Baker and Matthews.
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Lucas-Kanade Tracking
As with correlation tracking, if you use fixed appearance 
templates or naïvely update them, you run into problems.

Matthews, Ishikawa and Baker, The Template Update 
Problem, PAMI 2004, propose a template update scheme.

Fixed template Naïve update Their update
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Template Update with Drift Correction
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Anchoring Avoids Drift
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This is an example of a general 
strategy for drift avoidance 
that we’ll call “anchoring”.

The key idea is to make sure 
you don’t stray too far from 
your initial appearance model.

Potential drawbacks?
[answer: You cannot accommodate 
very LARGE changes in appearance.]



Histogram Appearance Models 

• Motivation – to track non-rigid objects, (like a walking 
person), it is hard to specify an explicit 2D parametric 
motion model.

• Appearances of non-rigid objects can sometimes be 
modeled with color distributions

• NOT limited to only color. Could also use edge 
orientations, texture, motion...
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Appearance via Color Histograms

Color distribution (1D  histogram 
normalized to have unit weight)

R’

G’
B’

discretize

R’ = R << (8 - nbits)
G’ = G << (8 - nbits)
B’ = B << (8-nbits)

Total histogram size is   (2^(8-nbits))^3

example, 4-bit encoding of R,G and B channels
yields a histogram of size 16*16*16 = 4096.

SU-VLPR’09, Beijing 58Collins, PSU



Smaller Color Histograms

R’
G’

B’

discretize

R’ = R << (8 - nbits)
G’ = G << (8 - nbits)
B’ = B << (8-nbits)

Total histogram size is   3*(2^(8-nbits))

example, 4-bit encoding of R,G and B channels
yields a histogram of size 3*16 = 48.

Histogram information can be much much smaller if we 
are willing to accept a loss in color resolvability.

Marginal R distribution

Marginal G distribution

Marginal B distribution
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Normalized Color

(r,g,b) (r’,g’,b’) =  (r,g,b) / (r+g+b)

Normalized color divides out pixel luminance (brightness), 
leaving behind only chromaticity (color) information.  The 
result is less sensitive to variations due to illumination/shading.
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Mean-Shift

Mean-shift is a hill-climbing algorithm that seeks modes of 
a nonparametric density represented by samples and a 
kernel function.

It is often used for tracking when a histogram-based 
appearance model is used.  But it could be used just as 
well to search for modes in a template correlation surface.
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Intuitive Description

Distribution of identical billiard balls

Region of
interest

Center of
mass

Mean Shift
vector

Objective : Find the densest region

Ukrainitz&Sarel, Weizmann
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Mean-Shift Tracking

Two predominant approaches:

1) Weight images: Create a response map with pixels
weighted by “likelihood” that they belong to the 
object being tracked.  Perform mean-shift on it.

2) Histogram comparison: Weight image is implicitly 
defined by a similarity measure (e.g. Bhattacharyya 
coefficient) comparing the model distribution with a 
histogram computed inside the current estimated 
bounding box. [Comaniciu, Ramesh and Meer]
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Mean-shift on Weight Images

Ideally, we want an indicator function that returns 1 for pixels
on the object we are tracking, and 0 for all other pixels

In practice, we compute response maps where the value at a 
pixel is roughly proportional to the likelihood that the pixel 
comes from the object we are tracking.

Computation of likelihood can be based on
• color
• texture
• shape (boundary)
• predicted location
• classifier outputs 
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Mean-Shift on Weight Images
The pixels form a uniform grid of data points, each with a weight 
(pixel value).  Perform standard mean-shift algorithm using this 
weighted set of points.

x = a K(a-x) w(a) (a-x)

a K(a-x) w(a)

K is a smoothing kernel 
(e.g. uniform or Gaussian)
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Nice Property
Running mean-shift with kernel K on weight image w is 
equivalent to performing gradient ascent in a (virtual) image 
formed by convolving w with some “shadow” kernel H.

The algorithm is performing hill-climbing on an implicit density
function determined by Parzen estimation with kernel H. 
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Mean-Shift Tracking
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Some examples.

Gary Bradski, CAMSHIFT Comaniciu, Ramesh and 
Meer, CVPR 2000 
(Best paper award)



Mean-Shift Tracking
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Using mean-shift in real-time to control a pan/tilt camera.

Collins, Amidi and Kanade, An Active Camera System for 
Acquiring Multi-View Video, ICIP 2002.



Constellations of Patches

• Goal is to retain more spatial information than 
histograms, while remaining more flexible 
than single templates. 
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Y

Time

X



Example: Corner Patch Model
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Yin and Collins, “On-the-fly object modeling while tracking,” CVPR 2007.



Example: Attentional Regions
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Yang, Yuan, and Wu, “Spatial Selection for Attentional Visual 
Tracking,” CVPR 2007.

ARs are patch features that are sensitive to motion 
(a generalization of corner features).  AR matches in 
new frames collectively vote for object location.



Example: Attentional Regions
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Discriminative ARs are chosen on-the-fly as those that best 
discriminate current object motion from background motion.

Drift is unlikely, since no on-line updates of ARs, and no 
new features are chosen after initialization in first frame. (but 
adaptation to extreme appearance change is this also limited)



Example: Attentional Regions
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Movies courtesy of Ying Wu



Tracking as MRF Inference

• Each patch becomes a node in a graphical 
model.

• Patches that influence each other (e.g. spatial 
neighbors) are connected by edges

• Infer hidden variables (e.g. location) of each 
node by Belief Propagation
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MRF Model Tracking
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x1 x2 x3

x4 x5 x6

x7
x8 x9

MRF
nodes

Image
patches

Pairwise compatibility

Joint compatibility

Constraints



Mean-Shift Belief Propagation
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Efficient inference in MRF models with particular applications
to tracking.

Park, Brocklehurst, Collins and Liu, “Deformed Lattice Detection in Real-
World Images Using Mean-Shift Belief Propagation”, to appear, PAMI 2009.

General idea: Iteratively compute a belief surface B(xi) for each 
node xi and perform mean-shift on B(xi). 

B(xi)



• Loose-limbed body model. Each body part is represented by a node of an
acyclic graph and the hidden variables we want to infer are 3 dimensional xi
(x,y,θ), representing 2 dimensional translation (x,y) and in-plane rotation θ

Example: Articulated Body Tracking
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Articulated Body Tracking

Limitations.  If the viewpoint changes too much, this 2D graph tracker will fail.  But the idea is that 
we also are running the body pose detector at the same time.  The detector can this “guide” the 
tracker, and also reinitialize the tracker after failure.
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Example: Auxiliary Objects

SU-VLPR’09, Beijing Collins, PSU 85

Yang, Wu and Lao, “Intelligent Collaborative Tracking by 
Mining Auxiliary Objects,” CVPR 2006.

Look for auxiliary regions in the image that:
• frequently co-occur with the target
• have correlated motion with the target
• are easy to track

Star topology
random field



Example: Formations of People
MSBP tracker can also track arbitrary graph-structured groups of 
people (including graphs that contain cycles).

examples of tracking the 
Penn State Blue Band
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Lecture Outline

• Brief Intro to Tracking
• Appearance-based Tracking
• Online Adaptation (learning)
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Motivation for Online Adaptation

First of all, we want succeed at persistent, long-term tracking!

The more invariant your appearance model is to variations in 
lighting and geometry, the less specific it is in representing a
particular object.  There is then a danger of getting confused with 
other objects or background clutter.

Online adaptation of the appearance model or the features used 
allows the representation to have retain good specificity at each 
time frame while evolving to have overall generality to large 
variations in object/background/lighting appearance.
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Tracking as Classification

Idea first introduced by Collins and Liu, “Online Selection of 
Discriminative Tracking Features”, ICCV 2003

• Target tracking can be treated as a binary classification 
problem that discriminates foreground object from scene 
background. 

• This point of view opens up a wide range of classification and 
feature selection techniques that can be adapted for use in 
tracking.
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Overview:

foreground

background

Foreground 
samples

Background
samples

Classifier

New frameResponse mapEstimated location

New 
samples
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Observation

Explicitly seek features that best discriminate between object 
and background samples.

Continuously adapt feature used to deal with changing  background, 
changes in object appearance, and changes in lighting conditions.

Tracking success/failure is highly correlated with our
ability to distinguish object appearance from background.  

Suggestion:

Collins and Liu, “Online Selection of 
Discriminative Tracking Features”, ICCV 2003
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Feature Selection Prior Work

Feature Selection: choose M features from N candidates (M << N) 

Traditional Feature Selection Strategies
•Forward Selection
•Backward Selection
•Branch and Bound

Viola and Jones, Cascaded Feature Selection for Classification

Bottom Line: slow, off-line process
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Evaluation of Feature Discriminability

Likelihood Histograms

ObjectBackground

Feature Histograms

Object Background

Object

Log Likelihood Ratio

0
+

_

Variance Ratio
(feature score)

Note: this example also explains why we don’t just use LDA

Can think of this as
nonlinear,“tuned”
feature, generated 
from a linear seed 
feature

SU-VLPR’09, Beijing 93Collins, PSU

Var between classes
Var within classes



Example: 1D Color Feature Spaces

(a R + b G + c B)
(|a|+|b|+|c|)

+ offset
where a,b,c are {-2,-1,0,1,2} and
offset is chosen to bring result 
back to 0,…,255.

Color features: integer linear combinations of R,G,B

The 49 color feature candidates roughly uniformly 
sample the space of 1D marginal distributions of RGB.
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Example
training frame test frame

sorted variance ratio

foreground background
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Example: Feature Ranking

Best

Worst
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Overview of Tracking Algorithm

Note: since log likelihood images contain negative
values, must use modified mean-shift algorithm as 
described in Collins, CVPR’03

Log Likelihood Images
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Avoiding Model Drift
Drift:  background pixels mistakenly incorporated into the object model 
pull the model off the correct location, leading to more misclassified 
background pixels, and so on.

Our solution: force foreground object distribution to be a combination
of current appearance and original appearance (anchor distribution)

anchor distribution = object appearance histogram from first frame
model distribution = (current distribution + anchor distribution) / 2

Note: this solves the drift problem, but limits the ability of the 
appearance model to adapt to large color changes
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Examples: Tracking Hard-to-See Objects

Trace of selected features
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Examples: Changing Illumination / Background

Trace of selected features
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Examples: Minimizing Distractions

Top 3 weight (log likelihood) images

Current location Feature scores
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More Detail

top 3 weight (log likelihood) images
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On-line Boosting for Feat Select
Grabner, Grabner, and Bischof, “Real-time tracking via on-line 
boosting.” BMVC  2006.

Use boosting to select and maintain the best discriminative 
features from a pool of feature candidates.

• Haar Wavelets

• Integral Orientation Histograms

• Simplified Version of Local Binary Patterns
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Boosting

– general method for improving the accuracy of any learning algorithm
– combine (weak) classifier (weighted vote of weak classifiers)

AdaBoost (adaptive boosting)
– instead of sampling, re-weight (Y. Freund and R. Schapire)

• training error:  decreases exponentially
• generalization error: SVM – maximizes the margin

– widely used
• text recognition, routing, learning problems in natural language processing,...
• image retrieval, generic object detection and recognition, active shape model,...

Horst Bischof
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OFF-line Boosting for Feature Selection
– Each weak classifier corresponds to a feature
– train all weak classifiers - choose best at each boosting iteration
– add one feature in each iteration
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labeled
training samples

weight distribution over all training 
samples

train each feature in the feature pool
chose the best one (lowest error)

and calculate voting weight

train each feature in the feature pool
chose the best one (lowest error)

and calculate voting weight

update weight distribution

strong classifier

train each feature in the feature pool
chose the best one (lowest error)

and calculate voting weight

update weight distribution

iterations

Horst Bischof



h1,1

one
traning 
sample

h1,2

h1,M

h2,1

h2,2

h2,M

h2,m

hN,1

hN,2

hN,M

hN,m

estimate 
importance 

estimate 
importance 

.

.

.

inital 
importance 

update update update 

current strong classifier hStrong

repeat for each 
trainingsample

.

.

.

.

.

.

.

.

.

hSelector1 hSelector2 hSelectorN

On-line Version…
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Horst Bischof

+ -
Samples are
patches



Tracking Examples
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Ensemble Tracking

SU-VLPR’09, Beijing Collins, PSU 108

Avidan, “Ensemble Tracking,” PAMI 2007

Use online boosting to select and maintain a set of weak 
classifiers (rather than single features), weighted to form a 
strong classifier.   Samples are pixels.

Classification is performed at each pixel, resulting in a dense 
confidence map for mean-shift tracking.

Each weak classifier is a linear 
hyperplane in an 11D feature space 
composed of R,G,B color and a 
histogram of gradient orientations.



Ensemble Tracking
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During online updating:

• Perform mean-shift, and extract new pos/neg samples

• Remove worst performing classifier (highest error rate)

• Re-weight remaining classifiers and samples using AdaBoost 

• Train a new classifier via AdaBoost and add it to the ensemble 

Drift avoidance: paper suggests keeping some “prior” classifiers 
that can never be removed.  (Anchor strategy).



Semi-supervised Boosting
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Grabner, Leistner and Bischof, “Semi-Supervised On-line 
Boosting for Robust Tracking,” ECCV 2008.

Designed specifically to address the drift problem.  It is 
another example of the Anchor Strategy.

Basic ideas:

• Combine 2 classifiers

Prior (offline trained) Hoff and online trained Hon

Classifier Hoff + Hon  cannot deviate too much from Hoff

• Semi-supervised learning framework



Supervised learning

+ -

+ -

Maximum margin

Horst Bischof
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Can Unlabeled Data Help?

-?

-
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low density
around
decision

boundary 

Horst Bischof
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?
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Drift Avoidance Key idea: samples from new frame
are only used as unlabeled data!!!

Labeled data
comes from 
first frame

Combined 
classifier

Horst Bischof
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++ + ?

-
?
?

?

?

?

?? ?

?-

Drift Avoidance Key idea: samples from new frame
are only used as unlabeled data!!!

Labeled data
comes from 
first frame

Combined 
classifier

FIXED DYNAMIC

STABLE

Horst Bischof
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Horst Bischof

Examples

SU-VLPR’09, Beijing

Green: online boosting
Yellow: semi-supervised

115Collins, PSU



Bag of Patches Model
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Lu and Hager, “A Nonparametric Treatment for Location 
Segmentation based Visual Tracking,” CVPR 2007.

Key Idea: rather than try to maintain a set of features or set of 
classifiers, appearance of foreground and background is 
modeled directly by maintaining a set of sample patches.

KNN then 
determines the 
classification of 
new patches.



Drift Avoidance (keep patch model clean)
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Given new patch samples to add to foreground and background:

• Remove ambiguous patches (that match both fg and bg)

• Trim fg and bg patches based on sorted knn distances.  
Remove those with small distances (redundant) as well as large 
distances (outliers).

• Add clean patches to existing bag of patches.

• Resample patches, with probability of survival proportional to 
distance of a patch from any patch in current image (tends to 
keep patches that are currently relevant).



Sample Results
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Extension to video segmentation.  
See paper for the details.



Segmentation-based Tracking
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This brings up a second general scheme for drift avoidance 
besides anchoring, which is to perform fg/bg segmentation.

In principle, it is could be a better solution, because your model is 
not constrained to stay near one spot, and can therefore handle 
arbitrarily large appearance change.

Simple examples of this strategy use motion segmentation 
(change detection) and data association.



Segmentation-based Tracking
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Yin and Collins. “Belief propagation in a 3d spatio-temporal MRF for 
moving object detection.” CVPR 2007.

Yin and Collins. “Online figure-ground segmentation with edge pixel 
classification.” BMVC 2008.



Segmentation-based Tracking
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Yin and Collins. “Shape constrained figure-ground segmentation and 
tracking.” CVPR 2009.



Tracking and Object Detection
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Another way to avoid drift is to couple an object detector 
with the tracker.

Particularly for face tracking or pedestrian tracking, a 
detector is sometimes included in the tracking loop 
e.g. Yuan Li’s Cascade Particle Filter (CVPR 2007) 
or    K.Okuma’s Boosted Particle Filter (ECCV 2004).

• If detector produces binary detections (I see three faces: 
here, and here, and here), use these as input to a data 
association algorithm.

• If detector produces a continuous response map, use that as 
input to a mean-shift tracker.

.



Summary
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Tracking is still an active research topic.  

Topics of particular current interest include:

• Multi-object tracking (including multiple patches on one object)

• Synergies between 

Classification and Tracking
Segmentation and Tracking
Detection and Tracking

All are aimed at achieving long-term persistent tracking in 
ever-changing environments.


