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Peun State Automated Video Surveillance

Primary goal is situation awareness: fusing information from multiple sensors
into a coherent model of actors, actions and events to help a remote user to
understand what is happening (e.g. who 1s where; who 1s doing what to whom).
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Motivation

SURVEILLANCE AND THE CITY

Manhattan now has more than 15,000 surveillance cameras. Several groups chart
them, including the Surveillance Camera Players, who offer walking tours and maps
such as the one this chart is based on showing 554 cameras near Times Square.
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Penn State Example: Crowd Analysis

Automated video analysis of crowds 1n public
spaces using computer vision tools

* Real-time monitoring
e situation awareness

e notification / alarms

e After-action review

* trend analysis
 analyze abnormal events

SU-VLPR 2010
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remsae Measuring Crowd Flow/Density
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Penn State M()tivati()n - Assisted Living

- “Smart Spaces”

Alzheimer’s ward of
a nursing home

J.Gao, R.Collins, A.Hauptmann and H.Wactler,
"Articulated Motion Modeling for Activity Analysis,"
IEEE Workshop on Articulated and NonRigid Motion, in
SU-VLPR 2010 conjunction with CVPR'04, Washington, DC, 2004.
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Penn State OverVieW

Part 1: Change/Motion Detection
Basics: BG subtraction; Frame Difference
Classification-based methods
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Penn State OverVieW

Part 2: From Pixels to 2D Blobs
Detection via RIMCMC
Classifier Grids
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Penn State OverVieW

Part 3: Data Association

Linear Assignment Problem
Murty K-best; PDAF; JPDAF
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Penn State OverVieW

Part 4: Persistent Tracking
Adaptive Tracking
Tracking as Classification
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Penn State Partl : Change Detection

Goal: Learn methods for pixel-level motion / change detection
Understand pros and cons of basic approaches

SU-VLPR 2010
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Penn State BaSiCS Of VideO

camera

Real-Time

Offline

Frames come in 30 times per second. This 1s not much time to process
each image. Real-time algorithms therefore tend to be very simple.

One of the main features of video imagery is the temporal consistency
from frame to frame. Not much changes during 1/30 of a second!

SU-VLPR 2010
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Pean Stat Detecting Moving Objects

Assumption: objects that move are important (e.g. people and vehicles)

Basic approach: maintain a model of the static background. Compare the
current frame with the background to locate moving foreground objects.

Current ChE}nges
frame (objects)

Background
model

Background
maintenance
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rensee Simple Background Subtraction

» Background model is a static image (assumed to have no objects present).
* Pixels are labeled as object (1) or not object (0) based on thresholding the
absolute intensity difference between current frame and background.

M(1)
B = I(0);
loop time t
I(t) = next frame;
diff = abs[B - I(t)];
M(t) = threshold(diff,\);

end

SU-VLPR 2010
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rmsae Background Subtraction Results

Simple Background

Subtraction

movie
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Penn State BG Observations

Background subtraction does a reasonable job of extracting
the shape of an object, provided the object intensity/color is
sufficiently different from the background.

SU-VLPR 2010
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Penn State BG Observations

Objects that enter the scene and stop continue to
be detected, making it difficult to detect new objects
that pass in front of them.

If part of the assumed static background starts
moving, both the object and its negative ghost
(the revealed background) are detected

SU-VLPR 2010
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Penn State BG Observations

Background subtraction is sensitive to changing
illumination and unimportant movement of the
background (for example, trees blowing in the
wind, reflections of sunlight off of cars or water).

Background subtraction cannot handle movement
of the camera.
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Penn State Simple Frame Differencing

» Background model is replaced with the previous image.

M(t)

loop time t

I(t) = next frame;
diff = abs[B(t-1) - I(t)];
M(t) = threshold(diff,A);
*(_delay B(t) = I(t);
end

SU-VLPR 2010
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Penn State Frame Differencing Results

Simple Frame

Differencing

movie
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Penn State FD Observations

Frame differencing is very quick to adapt to changes in
lighting or camera motion.

Objects that stop are no longer detected. Objects that
start up do not leave behind ghosts.

However, frame differencing only detects the leading

and trailing edge of a uniformly colored object. As a result
very few pixels on the object are labeled, and it is very hard
to detect an object moving towards or away from the camera.

SU-VLPR 2010
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rmsee PDifferencing and Temporal Scale

Note what happens when we adjust the temporal scale (frame rate)
at which we perform two-frame differencing ...

Define D(N) = || I(t) - I(t+N) ||

k| k| &M

1(t) D(-1) D(-3) D(-5) D(-9) D(-15)

more complete object silhouette, but two copies
(one where object used to be, one where it i1s now).

SU-VLPR 2010
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Penn State Three_Frame DifferEHCing

The previous observation is the motivation behind three-frame differencing

D(-15)

where object was,
and where it is now

where object is now!

D(+15)

where object is now,
and where it will be

SU-VLPR 2010
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Penn State Three_Frame DifferEHCing

Choice of good frame-rate for three-frame differencing
depends on the size and speed of the object

# frames
skipped

1

This worked well
for the person — 15

25

SU-VLPR 2010
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rensee - Adaptive Background Subtraction

 Current image is “blended” into the background model with parameter o
* oo = 0 yields simple background subtraction, a. = 1 yields frame differencing

loop time t

I(t) = next frame;
B(t) M(t) = threshold(diff,A);
o I(t) + (1-o)B(t-1 dB(t) = aI(t)+(l-a)B(t-1);
en

a
SU-VLPR 2010
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remsee - Adaptive BG Subtraction Results

Adaptive Background

Subtraction

movie
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Penn State Adaptive BG Observations

Adaptive background subtraction is more responsive
to changes in 1llumination and camera motion.

Fast small moving objects are well segmented, but
they leave behind short “trails” of pixels.

Objects that stop, and ghosts left behind by objects
that start, gradually fade into the background.

The centers of large slow moving objects start to
fade into the background too! This can be “fixed”
by decreasing the blend parameter A, but then it
takes longer for stopped/ghost objects to disappear.

SU-VLPR 2010
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Pemn State Persistent Frame Differencing

* Motion images are combined with a linear decay term
* also known as motion history images (Davis and Bobick)

; A
[ v g® 4* i
1o [ B (a1
. Jﬁﬁﬁ

M(t) 255

B(0) = I(0);

H(O0) = 0;

loop time t
I(t) = next frame;
diff = abs[B(t-1) - I(t)];
M(t) = threshold(diff,\);
tmp = max[H(t-1)-y,0)1;
H(t) = max[255*M(t),tmp) ],

B(t) = I(t);
SU-VLPR 2010 end
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Penn State Persistant FD Results

Persistent Frame

Differencing

movie
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Penn State Persistant FD Observations

Persistant frame differencing is also responsive
to changes in illumination and camera motion,
and stopped objects / ghosts also fade away.

Objects leave behind gradually fading trails of
pixels. The gradient of this trail indicates the
apparent direction of object motion in the image.

Although the centers of uniformly colored objects

are still not detected, the leading and trailing edges

are make wider by the linear decay, so that perceptually
(to a person) it 1s easier to see the whole object.

SU-VLPR 2010
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Penn State Comp arisons
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Penn State Comp arisons
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Penn State Comp arisons
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Penn State Comp arisons
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Penn Sate Interpreting Bg Subtraction

* What is a good statistical model of the value of a
pixel in the unchanging background?
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Penn Sate Interpreting Bg Subtraction

 What is a good statistical model of the value of a
pixel in the unchanging background?
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Penn Siate Interpreting Bg Subtraction

* Gaussian at each pixel. Adaptive mean
(recursive estimator), constant variance.

* Detect outlier observations as foreground.

SU-VLPR 2010
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Penn Siate Interpreting Bg Subtraction

 Interpret change detection as two-class
classification

* On the board: Work out the math of simple
bg subtraction as classification.

» Basic 1deas: background model 1s Gaussian
with adaptive mean and constant variance.
Foreground model 1s uniform distribution

(or Gaussian with large variance).

SU-VLPR 2010



Generative vs. Discriminative
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Generative vs. Discriminative Models

« Generative approach: separately model class-
conditional densities and priors

p(xlck;): p(ck)

« then evaluate posterior probabilities using Bayes’
theorem

p(Cplx) = p(x|Cr)p(Cy)

225 p(x[C;)p(C5)
« Discriminative approach: directly model posterior
probabilities
p(Clx)

Credit: C. Bishop, ICPR 2004

SU-VLPR 2010
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Penn Sate Interpreting Bg Subtraction

* Recursively estimating mean of Gaussian model of
background appearance at each pixel (independently)

« Adaptive update of background values automatically
takes care of slow appearance changes (e.g. lighting)
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remsute Limitation of Gaussian Assumption

e There 1s a problem with multimodal pixels

« Examples: trees in the wind; rippling water

25

20 +

q40 160 180 200 220 240
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remnsue Tdea: Use a Mixture of Gaussians!

 [.1near combination of Gaussians

K

p(x) = ) mpN(x|pg, Xk)
k=1

* Normalization and positivity requirements

Zwkz O m <1

4

SU-VLPR 2010 0 0.5 1
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s Statistical Background Modeling

Mixture of Gaussians in RGB space for background modeling.

Chris Stauffer and Eric Grimson, “Learning Patterns of Activity using Real-time
Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 22(8),
August 2000, pp. 747-757.

Recent (improved) code available from Zivkovic.

http://staff.science.uva.nl/~zivkovic/DOWNLOAD.html

SU-VLPR 2010



rnsc Statistical Background Modeling

Nonparametric statistical model using kernel density estimation (KDE)

Ahmed Elgammal, David Harwood, Larry Davis “Non-parametric Model for Background
Subtraction”, 6th European Conference on Computer Vision. Dublin, Ireland, June 2000.

3 i A - =Y \ 7 L. =7

(R T~ 1 B T R % R
A - 0 3

SU-VLPR 2010 http://www.cs.rutgers.edu/~elgammal/Research/BGS/research_bgs.htm



Robert Collins

Penn State Sheikh and Shah

Model background AND foreground using kernel density estimator
on 5-dimensional space of joint spatial-range data (x,y,r,g,b).

Example of Foreground Model

SU-VLPR 2010
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Penn St Sheikh and Shah
* Model background AND foreground appearance

P(x|ty) =n " Z CH (x - )’;)= KDE

P(x|vf) =ay+ (1 —a)m ™! Z PH (x - z;) Uniform+KDE
i=1

 C(lassification uses likelihood ratio

: nl Y en (x - yf)
= — 11 " .
P(x|vy) ay+(l—a)m 1) 7" vn (x — z,.-)

Thus, the classifier § is,

. . P(xn,) )
5(x) = 1 1f‘ In Pxur) > K
1 otherwise,

SU-VLPR 2010
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Penn State Other Feature Spaces

Some examples include:

Optic flow. Robert Pless, Spatio-temporal background models for
outdoor surveillance. Journal on Applied Signal. Processing, 14:2281
—2291, 2005

Texture measures (local binary patterns). Heikkild, M. and
Pietikdinen, M. (2006), A Texture-Based Method for Modeling the
Background and Detecting Moving Objects. IEEE Trans. Pattern Analysis
and Machine Intelligence 28(4):657-662.

Detector confidence scores. Stalder et.al. “Cascaded
Confidence Filtering for Improved Tracking-by-Detection,” to appear,
ECCV 2010.

SU-VLPR 2010
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Penn State Other Feature Spaces

Example: Detector Confidence Scores

)

From M Hebert at CMU

SU-VLPR 2010
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penn Stae Stabilizing Camera Motion

=

i

Video in Reference view Warped video Subtraction

Apparent motion of a panning/tilting camera can be removed by warping images
into alignment with a collection of background reference views.

Tends not to work well for background subtraction. The background changes
while you are not looking at it, causing a false positive detection when you do
finally look.

Stabilization works better for frame differencing.
Frank Dellaert and Robert Collins,

“Fast Image-Based Tracking by

Selective Pixel Integration,” ICCV

Workshop on Frame-Rate Vision,
SU-VLPR 2010 Corfu, Greece, Sept 1999.
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remsee Understanding Frame Differencing

Recall the brightness constancy equation for computing optic flow

olde OIdy @ OI

| -2 =0
ox dt Oy dt ot
o1 , 2 ~ (spatial derivatives)
oxr Oy
dr dy
) =(u,v)  (optical flow; motion vector)
dt dt
o1

- (temporal derivative = frame differencel)
ot

SU-VLPR 2010
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remsee Understanding Frame Differencing

Recall the brightness constancy equation for computing optic flow

olde OIdy @ OI

| | =0
Or dt = Oy dt Ot

Observations:

If there 1s no optical flow (motionless pixels), then frame difference should be zero (or
very small due to random noise).

Conversely, if frame difference is large enough magnitude, then that implies motion at
that pixel. [changing brightness breaks this implication]

If no spatial gradient at a pixel (uniform region) then frame difference will be zero
even if there IS motion... so motion state 1s undefined in those areas.

If brightness constancy does not hold, frame differencing can fail.

SU-VLPR 2010
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Penn State Our Work in this Area

Basic Idea: Generalize persistent frame differencing to include both spatial and
temporal smoothing, and to use temporal information from frames both
forwards and backwards in time from the current frame.

*Z.Yin and R.Collins, “Belief Propagation in a 3D Spatio-temporal MRF for
Moving Object Detection, IEEE Computer Vision and Pattern Recognition

(CVPR), 2007.

*Z.Yin and R.Collins, “Moving Object Localization in Thermal Imagery by
Forward-Backwards MHI, IEEE Workshop on Object Tracking and Classification
in and Beyond the Visible Spectrum (OTCBVS), 2006.

*Z.Yin and R.Collins, paper in preparation on Spatially Tuned Message Passing.

SU-VLPR 2010
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penn State MRF-based Motion Detection

./ -

» time

consider a spatio-temporal
sequence of video frames

Filtering Smoothing

> ) ¢=m

compute motion based compute motion based on
on previous frames previous and future frames
(recursive) (sliding window — fixed lag)

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

Consider grid where each pixel has is 6-connected
(4 spatial neighbors, 2 temporal neighbors)

frame(t-1)

frame(t)
frame(t+1)

SU-VLPR 2010
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Pemn State MRF-based Motion Detection

These nodes will be our “hidden” states
representing motion / no-motion.

Each hidden state is also connected to an observed
state (in our case a pixel difference)

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

This setup has only pairwise cliques.
spatial cliques

temporal cliques

%

]

—

d

ol

'

—
<l 3

We define a simple compatibility function on each
clique via the “Potts model” (each pixel encouraged
to have same state value as its neighbors).

'l&

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

observed

hidden
states

» time

Consider temporal cliques, processing one pixel through time.

Note, this graphical model looks like a HMM. To compute
optimal state value (or distribution over state values) at any
node, we can do message passing.

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

observed

hidden
states

» time

Message passing for filtering (Forward only)

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

observed

hidden
states

» time

Message passing for smoothing (fixed-lag smoothing).
Forward-Backward message passing.

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

observed

hidden
states

Specific instantiation.
Binary state: (no-motion , motion)

Each hidden node contains distribution v = (a, 1-a).

Compatibility represented by Potts model P = [lp l'lﬂ
P P

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

observed

hidden
states

Messages specify what distribution each node thinks
its neighbor should have.

SU-VLPR 2010



Robert Collins

Pean Stats MREF-based Motion Detection

Mdz ‘
Data messages:
If temporal difference magnitude at pixel is over threshold:

[0, 1] confident of motion
otherwise

[.5,.5] equally uncertain about motion / no motion

(alternatively could choose to use [1, 0])

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

MdZ ‘
M12 M23

Internal message passing:
compute “belief” at node from incoming messages
bvector = (M, .* M,,) / dotprod(M,,M;,)
marginalize pairwise compatibility wrt belief
M,, = bvector * P

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

My, ‘
M, M,, . ‘ ‘

Example:
[b, 1-b] Potts model

q /
Mout = [a b ’ (l'a)(l'b)] * P l-p
I-p p
a b+(1-a)(1-b)

[a ’ l'a]

SU-VLPR 2010
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Penn Sate MRF-based Motion Detection

Forward only temporal filtering

Showing MMSE at each pixel.
This is expected value of the
belief at each pixel.

SU-VLPR 2010
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Penn Sate MRF-based Motion Detection

Forward only temporal filtering

Note: this looks a *lot* like
motion history image (MHI)
processing. In fact, you can
show it *is* an MHI, with an

exponential decay function.
SU-VLPR 2010
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Penn Sate MRF-based Motion Detection

Backward only temporal filtering

MHI in the opposite direction.

SU-VLPR 2010
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Penn Sate MRF-based Motion Detection

observed

hidden
states

Forward/Backward

Better delineation. No ““trails”.
Reduced noise.

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

So far we only looked at temporal cliques.

Must also consider spatial ones. S—
spatial cliques

temporal cliques

%

]

—

d

ol

'

—
<l 3

We use the same Potts model compatibility function
(each pixel encouraged to be in same state as neighbors).

'l&

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

Consider message passing on the spatial grid...

SU-VLPR 2010
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Pean Stats MREF-based Motion Detection

Consider message passing on the spatial grid...

Problem, there are loops (cycles) in the graph.
Message passing is not strictly correct when used
on loopy graphs (may not even converge).

SU-VLPR 2010
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Pemn State MRF-based Motion Detection

Solution:

Go ahead and use message passing anyways!
(also called loopy belief propagation)

It often works very well in practice.

There is a lot of work going on currently to
characterize when and why this works.

SU-VLPR 2010
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Penn State Accelerated Message Passing
rightward downward
Combine | | |

HE

SU-VLPR 2010 upward leftward
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Penn State Current State of the Art

Yin and Collins: Add directional message passing based on considering the aperture
problem (what components of “flow” are observable).

Qualitative evaluation

Frame bpénCV Dense
SU-VLPR 2filem ours differencing  adaptive bg optical flow

Red masks Ours
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Penn State Current State of the Art

Yin and Collins Results

Video demos

SU-VLPR 2010



Robert Collins

Penn State Current State of the Art

1. Motion segmentation

A4 GO [90 [ Input with mask overlaid  Inter-frame difference [DURIROHOR Bl AD

SU-VLPR 2010
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Penn State Current State of the Art

Yin and Collins results
Video demos

SU-VLPR 2010
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Penn State NeXt Step

Group foreground pixels into “blobs” that we can count or track.

P

¥

= el
s B i Y L
\!_‘_; \'\‘.“'.\"N i
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Penn State

Overview

Part 2: From Pixels to 2D Blobs
Detection via RIMCMC

> _ et Y . WRLIDN I
UIGDDIIIUI Ul'1IJUo
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Penn State

The Story so Far...

We can classify foreground pixels based on
background subtraction or frame differencing.

SU-VLPR 2010
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Penn State N e Xt Ta S k

Grouping pixels... into blobs

SU-VLPR 2010
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Penn State

Can we use Connected Components?

Connected
dllate components

Bounding box = smallest
rectangle containing all
pixels on the object.

SU-VLPR 2010
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Penn State

Simple Surveillance Results

50
100 £ 100

150 | 150

200 p 200

50 100 150 200 250 300

movie
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= Problem: Blob Merge/Split

merie occlusion

split

occlusion

A 3

When two objects pass close to each other, they are grouped
as a single blob. Often, one object will become occluded by
the other one. One of the challenging problems is to maintain
correct labeling of each object after they split again.

SU-VLPR 2010
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Robert Co D|ff ICU Ity

‘g?l.vﬂ mnﬂ

Each of these gets harder as the crowd gets denser!

« Background subtraction
« Connected components to get blobs
e Data association to get trajectories

SU-VLPR 2010
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Penn State

Bayesian Marked Point Process
- the prior models expected size/shape of people, indexed by location
- the likelihood measures how well a proposed configuration explains the data
- MAP estimate of number/configuration of people is found using RJ-MCMC

*Weina Ge and R.Collins, “Marked Point Processes for Crowd Counting,”

IEEE Computer Vision and Pattern Recognition, Miami, FL, June 2009.
SU-VLPR 2010
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Penn State

Foreground Object Detection

Bayesian
Approaches

Pixel-wise MRF models
[Sheikh035]

Non-Bayesian

Dalal05; Rabaud06
3 A W‘? ;.;A-_

Object-level models

Gibbs Point Process
[Ortner08]

SU-VLPR 2010
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Penn State

Marked Point Process

e Spatial Point Process

— Distribution of a set of points in a bounded space

* Marked Point Process (MPP)

— A spatial point process + a “mark” process

 Examples

— Spatial process could model tree locations in a forest and the
mark could be tree height

— Spatial process could model cell locations on a microscope
slide and the mark could be a polygonal representation of
the cell boundary [Rue and Hurn, 1999]

SU-VLPR 2010
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Penn State

Simplified Problem Statement

Given a foreground image, find a configuration of bounding boxes*
that cover a majority of foreground pixels while leaving a majority of
background pixels uncovered.

foreground
image

person-sized
bounding box

As an MPP:
*Spatial process models number and (x,y) locations of bounding boxes
*Mark process models (height,width,orientation) of each bounding box.

*Footnote: We will add more realistic “shape” models in a moment
SU-VLPR 2010
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Penn State

Likelihood Score

To measure how “good” a proposed configuration is, we generate a
foreground image from it and compare with the observed foreground
image to get a likelihood score.

Conflg = {{X1 ,y1 ’W1 ,h'] ,theta1},{X2,y2,W2, hz,thetaz},{X3,y3,W3, h3’theta3}}

generated foreground image observed foreground image

compare

Likelihood Score

SU-VLPR 2010
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Penn Stat

Bernoulli distribution

model
Poo

Po1
P10
P11

co0 =
Co1
€10
C11

likelihood

L(¥[X) = [Lp(yilx)
i=1

p(yi=0lx; =0)
P(}’l =0lxi=1)
P(}’l = 1|x; =0)
p(}’l =l|x;=1)

Likelihood Score

generated foreground image observed foreground image

compare

Likelihood Score

prob of observing background given a label of background
prob of observing background given a label of foreground
prob of observing foreground given a label of background
prob of observing foreground given a label of foreground

count of pixels where observation is background and label is background
count of pixels where observation is background and label is foreground
count of pixels where observation is foreground and label is background
count of pixels where observation is foreground and label is foreground

simplify, by assuming

log likelihood

SU-VLPR 2010

Poo = P11 =M

logL(Y|X) =

and

oo

= poo™ po1”! pr1o“"° p11 "

po1r=pio=1—pu

Number of pixels
that disagree!
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Prior Model

We use a prior to model our expectations about
bounding box configurations in the image

m(0;) = m(pi)m(wi, hi, 0i|p;)

Prior for Prior on location  Prior on bounding box
bounding (center point) height, width and orientation,
box i conditioned on center location.

SU-VLPR 2010
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Estimating Priors

Example: learning height distribution as a function of image row

350
300 |
250

mean

200
150 F
100 -

50

A0 F
-100

half height of person in pixels

-150 -

160 2EIIEI 3EIIEI 4IIIIEI 5EIIIJ SEIIEI ?EIIIJ
row number
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Estimating Priors

Example: learning orientation as a function of image location

sample frame extracted blobs / axes
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Estimating Priors

estimated vanishing point Scaled, oriented rectangles

Bottom line: it is not difficult to estimates priors on location,
size and orientation of people as seen from a specific viewpoint.
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Searching for the Max

The space of configurations is very large. We can’t exhaustively
search for the max likelihood configuration. We can’t even really
uniformly sample the space to a reasonable degree of accuracy.

config, = {{x4,y1,W4,h ,theta,},{x,,y,,w,,h,,theta,},...,{X.,y., W, htheta,}}

Let N = number of possible locations for (x;y;) in a k-person
configuration.

Size of config, = Nk
And we don’t even know how many people there are...

Size of config space = N0 + N1+ N2+ N3 + .

If we also wanted to search for width, height and orientation, this
space would be even more huge.
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Searching for the Max

* Local Search Approach

— Given a current configuration, propose a small
change to it

— Compare likelihood of proposed config with
likelihood of the current config

— Decide whether to accept the change

SU-VLPR 2010
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Proposals

* Add a rectangle (birth)

=)

current configuration proposed configuration

SU-VLPR 2010
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Proposals

 Remove a rectangle (death)

=

current configuration proposed configuration

SU-VLPR 2010
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Proposals

* Move a rectangle

=)

current configuration proposed configuration

SU-VLPR 2010
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Searching for the Max

* Nalve Acceptance

— Accept proposed configuration if it has a larger
likelihood score, i.e.
Compute a = L(proposed)

L(current)
Accept ifa > 1

— Problem: leads to hill-climbing behavior that gets
stuck in local maxima
ﬁ But we really want
to be over here!

Brings us
here

@ Likelihood

SU-VLPR 2010
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Searching for the Max
e The MCMC approach

— Generate random configurations from a
distribution proportional to the likelihood!

Generates many high
likelihood configurations \\_)

Likelihood
(—\

Generates few low likelihood ones. f

SU-VLPR 2010
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Searching for the Max
e The MCMC approach

— Generate random configurations from a
distribution proportional to the likelihood!

Generates many high

likelihood configurations \ %
08 0
, Q >

& 0,

/ /, __ Likelihood
xGenerates few low likelihood ones.

— This searches the space of configurations in an
efficient way.

— Now just remember the generated configuration with
the highest likelihood.

SU-VLPR 2010
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" Sounds good, but how to do it?

* Think of configurations as nodes in a graph.

 Put alink between nodes if you can get from one
config to the other in one step (birth, death, move)

birth \ y config C /
death
“ config A

\’ﬂ/ move
move % move

death

config B
% config E
move \ /
move death y
irth
config D move b
death

SU-VLPR 2010 Note links come in pairs: birth/death; move/move
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Recall: Markov Chains

Markov Chain:
* A sequence of random variables X;,X,,X,,...
« Each variable is a distribution over a set of states (a,b,c...)

 Transition probability of going to next state only depends
on the current state. e.g. P(X,; =a| X, =Db)

Q@gl @O

transition probs can be arranged
in an NxN table of elements
k;; = P(Xn+1=0 | X, =)

where the rows sum to one

SU-VLPR 2010
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A simple Markov chain

K=1

0.1 0.5 06
0.6 0.2 0.3
0.3 03 0.1
]

K= transpose of transition prob

table {k ;} (columns sum to one.

We do this for computational
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu convenience.
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Question:

Assume you start in some state, and then run the simulation
for a large number of time steps. What percentage of time
do you spend at X1, X2 and X3?

0.1 0.5 0.6
0.6 0.2 0.3
0.3 0.3 0.1

SU-VLPR 2010
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Experimental Approach

0.1
/\ Start in some state, and then run
Xl

ANV the simulation for some number of
0.6 . .
time steps. After you have run it
| “long enough” start keeping track of
WA G S the states you visit.
{x, (%, s

e

0.6 -
0.3/40.5

;_.—" i A
0.1 03 0.2

{... X1 X2 X1 X3 X3 X2 X1 X2X1X1X3X3X2...}

These are samples from the distribution you want, so you
can now compute any expected values with respect to that
distribution empirically.
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Penn State

four

(100]

all eventually end up with same distribution
SU-VLPR 2010

possible in
[0 10]

tial distributions
(00 1]

Analytic Approach

[.33 .33 .33]

Bl 9
i g ,
o CEZqu:qu() ]
I ;=K q, =K*q, =K’ q,
[

[

[

[

[

B g0 Kqgy=... K!%q

initial distribution

— K q() distribution after one time step

-- this is the stationary distribution!
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Eigen-analysis

01000 0.5000 0.6000 B in matlab:
0.6000  0.2000 0.3000 KE=ED [E,D] = eigs(K)

0.3000 0.3000 0.1000
Eigenvalue v, always 1

E -
0.6396 07071 -0.2673
06396 07071 0018 Stationary distribution
04264 0.0000 -0.5345 T = el/ sum(el)
Le. Km=m
D=
10000 0 0
0 -04000 0
0 0 -0.2000
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu October 2005
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o

.

www.yahoo.com ‘

The PageRank of a webpage as used by Google is defined by a Markov chain. It is the
probability to be at page i in the stationary distribution on the following Markov chain on
all (known) webpages. If N is the number of known webpages, and a page i has ki links
then it has transition probability (1-q)/ki + /N for all pages that are linked to and q/N for
all pages that are not linked to. The parameter q is taken to be about 0.15.

SU-VLPR 2010
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Google Pagerank

Pagerank == First Eigenvector of the Web Graph |

—_—

/{;—_ s yahoo . com

Computation assumes a 15% "random restart" probability

Sergey Brin and Lawrence Page , The anatomy of a large-scale hypertextual
{Web} search engine, Computer Networks and ISDN Systems, 1998

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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But How to Design a Chain?

Assume you want to spend a particular percentage of time
at X1, X2 and X3. What should the transition probabilities
be?

P
X X
WN -
~— — ~—
LI I |
W iN

K=[? ? ?
? 2?2 7
?2 2?2 7]

~~
X

SU-VLPR 2010
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Detailed Balance

* Consider a pair of configuration nodesr,s

 Want to generate them with frequency relative to their
likelihoods L(r) and L(s)

e Let q(r,s) be relative frequency of proposing configuration s
when the current state is r (and vice versa)

A sufficient condition to generate P q(r.s)
r,s with the desired frequency is L) (o
L(r) a(r.s) = L(s) a(s.r) )
s | L(s)

“detailed balance”
q(s.r)

SU-VLPR 2010
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Detailed Balance

* Typically, your proposal frequencies do NOT satisfy detailed
balance (unless you are extremely lucky).

* To “fix this”, we introduce a computational fudge factor a

Detailed balance:

a* L(r) q(r;s) =L(s)a(s,r) ) a”q(rs)
Solve for a: L(r) L r
a = L(s)q(s,r) s | L(s)
L(r) q(r,s) .‘
qa(s,r)

SU-VLPR 2010
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MCMC Sampling

* Metropolis Hastings algorithm

Propose a new configuration

Compute a = L(proposed)/ q(proposed,current)
L(current) | qg(current,proposed)

Acceptifa > 1

Else accept anyways with probability a

Difference from
Naive algorithm

SU-VLPR 2010
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Trans-dimensional MCMC

* Green’s reversible-jump approach (RIMCMC) gives a
general template for exploring and comparing states
of differing dimension (diff numbers of rectangles in
our case).

* Proposals come in reversible pairs: birth/death and
move/move.

 We should add another term to the acceptance ratio

for pairs that jump across dimensions. However,
that term is 1 for our simple proposals.

SU-VLPR 2010
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Penn State MCMC |n ACt'On

Sequence of proposed configurations Sequence of “best” configurations

movies

SU-VLPR 2010
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Penn State MCMC |n ACt'On

MAP configuration Looking good!

num objects: 4 etime: 1.7 sec num objects: 4 penalty 0.10 itr: 1500

1 s -'J- L8

SU-VLPR 2010
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Examples

SU-V9Lii ax cvav
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Example: Nov 22, Curtin Road

count 94

SU-VLPR 20 .
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Example: Sep 6, Gate A

count 37

SU-VLPR 2
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Penn State Adding S

P

hape to the

A

Estimation

A
5

video
frame

estimated

d] u\ %0

library of
candidate
shapes

SU-VLPR 2010
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“Intrinsic vs Extrinsic Shape

| Intrinsic shapes:
(silhouettes, aligned
‘ and normalized)

Extrinsic shape
(how bounding box of
silhouette maps into
the image)

SU-VLPR 2010
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Revised Prior Model

m(0;) = w(pi)m(wi, hi, 0;|pi)m(si)

J

I i

Prior for Prior on extrinsic shape Prior on intrinsic
object i (location + bounding box shape selection
height, width and orientation)

SU-VLPR 2010
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Learning Intrinsic Shapes

Silhoutte shape represented as a Bernoulli mixture model
K
p(x|p, ) =3y 1 mip(x| 12y

Training shapes
(foreground masks)

A

Learned Bernoulli
mixture model
(“soft” silhouettes)

SU-VLPR 2010
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Learning Intrinsic Shapes

“standard” EM

t|

ﬁ?'""""'

———
S e
50

!

Provides automatic selection of

number of mixture components

SU-VLPR 2010
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" Adding Shape to the Estimation

MCMC iterations
' |

movie

MCMC proposes changes to current configuration
«add/remove a person
*shift location of person
-change their shape

SU-VLPR 2010
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Evaluation run on every 10th frame
VSP ETS SO CCe r D ata S Et green contours: true positives
red boxes: false negatives
pink contours: false positives

s

g1 count=4 count=4 count=4 count=4 count=3 count=4 count=4
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“Caviar Dataset

evaluatlon on six sequences

1

0.9 ‘ | Detect ion |:| False F’ost ive |
0.8+

0.7+

0.6+

0.5+

0.4

0.3f

0.2¢

0.1}

o ! |
eeeeee
Dataset | Total # People | Detection Rate | False Positive Rate

CAVIAR 1258 .84 .06
SOCCER 3728 .92 .02

Learned shapes

average detection rate: 0.90
average false positive rate: 0.00

SU-VLPR 2010
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Contributions

 We introduce a Marked Point Process framework for
detecting people in crowds

Conditional mark process models known correlations
between bounding box size/orientation and image
location

e Extrinsic and intrinsic shape models are learned
automatically from training data

* Bayesian EM is used to automatically determine the
number of components in the mixture of Bernoulli
model for intrinsic shape

SU-VLPR 2010
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Research Directions

ldea: might be good to try other human shapes (activities)

or other animals/objects.
; f\mw “wv

Er l Groom

o ! .
= —rr——— Head raise Sit

S ey Peaad “ u

Stretched attend

SU-VLPR 2010 !
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Overview

Part 3: Data Association

Linear Assignment Problem
Murty K-best; PDAF; JPDAF

SU-VLPR 2010
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Data Association Scenario

Two-frame Matching (Correspondence Problem)

Match up detected blobs across video frames

SU-VLPR 2010
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Data Association Scenario

Two-frame Matching (Correspondence Problem)

SU-VLPR 2010

Matching features across frames

e.g. corners,
Sift keys,
image patches
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Data Association Scenarios

In general, data association of blobs in video is
easier than general correspondence problem
associating features across two image frames.

Why? Because of temporal coherence of object

motion, which spatially constrains candidate
matches.

SU-VLPR 2010
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Penn State Outlin e

» Track Prediction and Gating

* Global Nearest Neighbor (GNN)

* Linear Assignment Problem

* Murthy’s k-best Assignments Algorithm
* Probabilistic Data Association (PDAF)
 Joint Probabilistic Data Assoc (JPDAF)
« Multi-Hypothesis Tracking (MHT)

SU-VLPR 2010
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e e Track Matching

How do we match observations in a new frame to a
set of tracked trajectories?

®

A
track 1 \A Pl ?
®

track 2 7

observations

SU-VLPR 2010
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Track Matching

First, predict next target position along each track.

A
\

track 1

track 2

SU-VLPR 2010
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e e Track Matching

Form a “gating” region around each predicted target location
to filter out unlikely matches that are too far away.

gating
A . region 2 ‘)
\ I o & '
track 1 A -7
~ /s
/
A -/
A A °
/ - = {X_ -0 A ‘)
// gating |®
. 2 , region 1
/ [
trac : observations

-

Note, this decomposes the full N? problem into

a sparse set of smaller subproblems.
SU-VLPR 2010
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Simple Prediction/Gating

Constant position + bound on maximum interframe motion

r constant position
&----- prediction

Three-frame constant velocity prediction

Pi.1 P prediction
= = 8 ) Pt (PePrt)
(PxPk-1) « kel
typically, gating

region can be smaller

SU-VLPR 2010
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e Kalman Filter Prediction/Gating

X
.\‘
u
v

SU-VLPR 2010

(1010]
1 000
P 0101 H -
0010 0100
0001
H+*F * X1
H*xp_
75 'y<G
e = = = 7 - ’ ’
- - - -
e ellipsoidal gating region
/
5{;;“‘,_1 = Fkik—uk—l (predicted state)
Pk b—] = FFcPk—1|k—1Fg + Q.!. (predicted estimate covariance)

Vi = 2, — ij{lclk—l (innovation or measurement residual)

S = HkPklk—le + R, (innovation (or residual) covariance)

10
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e e Track Matching

For each candidate match (a track-to-data pairing),
compute match score based on likelihood of the data
given the track.

Qe 4, y
A __5_§j )

- N
-

track 1 \A P 2

track 2 /

SU-VLPR 2010



Robert Collins

e e Track Matching

For each candidate match (a track-to-data pairing),
compute match score based on likelihood of the data
given the track.

A ded
track1 Sl s
rac P 2
A\A P
, . T NS
/ 4 ail  ai2
/
track 2 / 1 130
_--" 2 | 5.0
Scores: 3 | 6.0
4 8.0
5 3.0

SU-VLPR 2010
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Association Likelihood Score

Determining the correspondence of blobs across frames 1s based
on feature similarity between blobs.

Sample features: location, size / shape, velocity, appearance

For example: location, size and shape similarity can be measured
based on bounding box overlap:

2 * area(A and B)
score =
area(A) + area(B)

B

A = predicted bounding box
B = observed bounding box

SU-VLPR 2010
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Association Likelihood Score

It 1s common to assume that objects move with constant velocity

X(t-1)

O

X(t)

» O

A 4

V(t)

X(t+1)

»O

—

—

—

B

V(t+1)

Score =

constant velocity
assumes V(t) = V(t+1)

2 * area(A and B)

area(A) + area(B)

A = bounding box at time t, adjusted by velocity V(t)

B = bounding box at time t+1

SU-VLPR 2010
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Using Appearance Scores

Correlation of 1mage templates is an obvious choice (between frames)

Extract motion blobs

For object in previous frame,
compute correlation score

with all blobs in current frame.
Pick one with highest score
(suboptimal strategy).

(b)

Update appearance
template of blobs

(¢)

However, cross correlation is computationally expensive.

SU-VLPR 2010
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Appearance via Color Histograms

. G’. Color distribution (1D histogram
discretize normalized to have unit weight)
R’ =R << (8 - nbits) Total histogram size is (2”(8-nbits))"3
G’ = G << (8 - nbits)
B’ = B << (8-nbits) example, 4-bit encoding of R,G and B channels

yields a histogram of size 16*16*16 = 4096.

SU-VLPR 2010
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Smaller Color Histograms

Histogram information can be much much smaller if we
are willing to accept a loss 1n color resolvability.

Penn State
—
R9
G’
y 4 y 4
—
117

B’
—

discretize

R’ = R << (8 - nbits)
>= G << (8 - nbits)
B’ = B << (8-nbits)

1.
r's

Marginal R distribution

Marginal G distribution

Marginal B distribution

Total histogram size is 3*(2”(8-nbits))

example, 4-bit encoding of R,G and B channels

yields a histogram of size 3*16 = 48.

SU-VLPR 2010
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Color Histogram Example

Could measure similarity using chi-square,
histogram intersection, EMD, etc.

SU-VLPR 2010
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e e Track Matching

Determine best match and extend the trajectory.

A

- N
-—

track 1 \x .- d,

ail

ai2

track 2 /

Scores:

N & W N -

3.0
5.0

6.0]

SU-VLPR 2010
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e e Track Matching

Determine best match and extend the trajectory.
(e.g. using these observations in a Kalman filter update)

A
track 1 \A -

— — -
-

ail

ai2

track 2 7

3.0
3.0

Scores:

6.0

N & W N -

SU-VLPR 2010
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rmsae (Global Nearest Neighbor (GNN)

Evaluate each observation in track gating region. Choose
“best” one to incorporate into track.

ail

1 3.0

2 | 5.0

trackl JF-" 3 16.0
-7 4 9.0

/ L
Y4
/

a,; = score for matching observation j to track 1

Could be based on Euclidean or Mahalanobis distance to predicted location
(e.g. exp{-d?}). Could be based on similarity of appearance (e.g.
appearance template correlation score)

SU-VLPR 2010

21



Robert Collins

rmsae (Global Nearest Neighbor (GNN)

Evaluate each observation in track gating region. Choose
“best” one to incorporate into track.

ail

3.0
5.0
6.0

9.0 | max

trackl JFE-"70

= W N -

/ L
Y4
/

a., = score for matching observation i to track 1

Choose best match a_; = max{a,;, a,;,a3;,84;}

SU-VLPR 2010 22
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rmsae (Global Nearest Neighbor (GNN)

Problem: 1f we do that independently for each track, we could
end up with contention for the same observations.

ail ai2
1 (3.0
2 |50
trackl 3 (6.0 | 1.0
4 1/9.0 | 8.0\
//' 5 3.0
/
Ay both try to claim
track2 observation o,

SU-VLPR 2010 23
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Penn State Greedy (Best First) Strategy

Assign observations to trajectories in decreasing order of
goodness, making sure to not reuse an observation twice.

311 ai2

1 |3.

215
trackl 316 1.0
% —5-5-
, ’ 5 3.0 \

X NON-OPTIMAL
track?2 SOLUTON!

SU-VLPR 2010 24
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Penn State Linear Assignment Problem

We have N objects in previous frame and M objects 1n
current frame. We can build a table of match scores
m(1,)) for 1=1...N and j=1...M. For now, assume M=N.

1 2 3 4 S

095 0.76 0.62 0.41 0.06
0.23 0.46 0.79 0.94 0.35
0.61 0.02 0.92 0.92 0.81
049 0.82 0.74 0.41 0.01
0.89 0.44 0.18 0.89 0.14

abbowON -

problem: choose a 1-1 correspondence that
maximizes sum of match scores.

SU-VLPR 2010
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Example:

5x5 matrix of match scores

095 0.76 0.62 0.41 0.06
0.23 0.46 0.79 0.94 0.35
0.61 0.02 0.92 0.92 0.81
049 082 0.74 0.41 0.01
0.89 0.44 0.18 0.89 0.14

working from left to right, choose one number from each
column, making sure you don’t choose a number from a
row that already has a number chosen 1n it.

How many ways can we do this?

5x4x3x2x1=120 (N factorial)

SU-VLPR 2010
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SU-VLPR 2010

0.95

0.76 0.62

0.23
0.61
0.49
0.89

0.95

0.23

0.61
0.49
0.89

0.95
0.23
0.61

0.46| 0.79
0.02 [0.92

Examples

0.41 0.06
0.94 0.35
0.92 0.81

0.82 0.74
0.44 0.18

0.76 0.62
0.46 0.79

0.02 10.92

0.82] 0.74

0.44 0.18

0.76] 0.62

0.46 0.79
0.02 0.92
0.82 |0.74
0.44 0.18

0.41],0.01

0.89 10.14

0.41] 0.06

0.94 0.35
0.92 0.81
0.41

0.89 10,14

0.41 0.06

0.941 0.35

0.92 |0.81

0.41 0.01
0.89 0.14

score: 2.88

score: 2.52

score: 4.14
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Choose largest value and mark it

For1=1 to N-1

A Greedy Strategy

Choose next largest remaining value that isn’t in a row/col already marked

End

0.95] 0.76
0.23 0.46
0.61 0.02

0.62
0.79

0.41

0.92

0.94

0.49 10.82

0.89 0.44

0.74
0.18

0.92
0.41
0.89

0.06
0.35
0.81

|O.14

not as good as our current best guess!

0.95 |0.76

0.23 0.46
0.61 0.02
0.82
0.44

SU-VLPR 2010

0.62
0.79
0.92

0.41

0.94

0.06
0.35

0.74

0.18

0.92
0.41
0.89

0.81

0.01
0.14

score: 3.77

score: 4.14

Is this the best we can do?
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Assignment Problem

Mathematical definition. Given an NxN array of benefits {X,;},
determine an NxN permutation matrix M, that maximizes the

total score:

N N
maximize: E = Z Z M a :5\:3:7

a=1 ;=1
\

subject to: /4 Z ‘[m — 1

a=1
Va Z,f:] My =
M € {0,1}

J

constraints that say
> M is a permutation matrix

The permutation matrix ensures that we can only choose one
number from each row and from each column. (like assigning

one worker to each job)

SU-VLPR 2010
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Linear Programming

N N
maximize: E = Z Z M a 5.\ ai
a=1 ;=1

subject to: s 21_1 ‘[m — 1
Va 27:] My =
Mgy € {0, 1}

This has the form of a 0-1 integer linear program. Could
solve using the simplex method. However, bad (exponential)
worst-case complexity (0-1 integer programming 1s NP-hard)

SU-VLPR 2010
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Penn State More Efficient Solution

Can also be viewed as a maximal matching in a weighted bipartite
graph, which in turn can be characterized as a max-flow problem.

Possible solution methods:
Hungarian algorithm
Ford-Fulkerson algorithm

Polynomial time algorithms available!

Source

weighted
links

SU-VLPR 2010
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Penn State Hungarian Algorithm

Hungarian algorithm

From Wikipedia, the free encyclopedia

The Hungarian algorithm is a combinatorial optimization algorithm which solves assignment problems in

polynomial time (O(n3)). The first version, known as the Hungarian method, was invented and published by
Harold Kuhn in 1955. This was revised by James Munkres in 1957, and has been known since as the Hungarian
algorithm, the Munkres assignment algorithm, or the Kuhn-Munkres algorithm. In 2006, it was discovered
that Carl Gustav Jacobi had solved the assignment problem in the early 19th century, and published

posthumously in 1890 in the Latin language.[']
The algorithm developed by Kuhn was largely based on the earlier works of two Hungarian mathematicians:

Dénes Konig and Jend Egervary. The great advantage of Kuhn’'s method is thaffit is strongly polynomial (see
Computational complexity theory for details). The main innovation of the algoritifm was to combine two separate

parts in Egervary’s proof into one.

hence the name
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Penn State Handling Missing Matches

Typically, there will be a different number of tracks than observations. Some
observations may not match any track. Some tracks may not have observations.

That’s OK. Most implementations of Hungarian Algorithm allow you to use a
rectangular matrix, rather than a square matrix. See for example:

’4\ http: ffwww . mathworks, comfmatlabcentral/fileexchange/6543 V‘ 9| X ’
View Favorites Tools Help
\v algorithm mathworks % (Go o &2 E% v €% Bookmarksw ShS2blocked 7 Check v ' Lookfor Map v : |e# Sendtov 4 [E] hungarian [€] algorithm 2>
#\ MATLAB Central - File detail - Functions for the rectan... i ’ - B F!;'J M Lﬁ}" Page

EECIfe Bl MATLAB Central v _

S MATLAB CENTRAL

An open exchange for the MATLAB and Simulink user community
Create Account | Login

| FileExchange | Newsgroup Link Exchange Blogs Contest 4\ MathWorks.com

Files

—on Functions for the

Ta ['@C'(E\HC]UIEH' E{SSiC; nment 4.7 13ratings
as = = _
Rate this file

problem

Authors
by Markus Buehren 284 downloads (last 30

Comments and Ratings 14 Dec 2004 (Updated 30 Jan 2008) days)
File Size: 14.89 KB

.’E”l Submit a File ; This package provides m- and mex-functions for solving File ID: #6543

the rectangular assignment problem.

(*) Download Now
™ Watch this File
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If Square Matrix is Required...

N
S

¢ &
; 3; '?} ?) pad with array of small
3 leo | 1.0 5x3 random numbers to get a
4 190 | 8.0 square score matrix.
S| 0 | 3.0

'C@‘ '&b

5x3

Square-matrix &
assignment

ignore whatever
happens in here

N £ W N -
= R
=
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e Result From Hungarian Algorithm

Each track i1s now forced to claim a different observation.
And we get the optimal assignment.

ail ai2

3.0

[60] 14
9.0 |[ 8.0]

trackl

N A W -

/‘
7/
/

track2
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heta =100

55
0s 1 15 2 25 3 35 4 45 5 55

permutation matrix computed
by Hungarian algorithm

0.95

0.23
0.61
0.49
0.89

K-Best Assignment

0.76 0.62 0.41 0.06
0.46 0.94 0.
0.02 092 0.92

0.82] 0.74 0.41 0.01

0.44 0.18 10.89] 0.14

score: 4.26

So far we know how to find the best assignment (max sum
scores). But what if we also want to know the second best?
Or maybe the top 10 best assignments?
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Penn Stat Murty’s K-Best Assignments

General Idea.
Start with best assignment.

Start methodically “tweaking” it by toggling
matches 1n and out of the assignment

Maintain a sorted list of best assignments so far

During each iterative “sweep”, toggle the matches
in the next best assignment

The K best assignments are found 1n decreasing
order, one per sweep
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0.95 0.76 0.62 0.41 0.06 .
0.23 0.46 0.79 0.94 0.35 solution: (191)(492)9(2,3)7(5’4)9(395)

0.61 0.02 092 092 0.81 constraints: none
049 0.82 0.74 0.41 0.01

0.89 044 0.18 0.89 0.14
constraints / \

N(lal) (191)(492)9~(293)
0.95 0.76 0.62 0.41 0.06 a,1),~(4,2) 005 076 0.62 041 006 (1,1)(4,2),(2,3),~(5,4)
0.23 0.46 0.79 0.94 0.35 0.23 046 0.79 0.94 0.35

0.61 0.02 0.92 092 0.81 095 0.76 0.62 041 0.06 061 002 092 092 081 0.95 0.76 0.62 0.41 0.06
0.49 0.82 0.74 041 0.01 023 046 079 0.94 035 (049 082 074 041 001 023 046 0.79 0.94 0.35
0.61 0.02 0.92 0.92 0.81 0.61 0.02 0.92 0.92 0.81
0.89 0.44 0.18 0.89 0.14 851 9.92
= 0.49 0.82 0.74 041 001 089 044 018 089 014 19 585 074 041 0.01

0.89 0.44 0.18 0.89 0.14 0.89 0.44 0.18 0.89 0.14
5,1)(1,2),(4,3),2,4),3,5) (1,1)(4,2),3,3),(5,4),(2,5)
score 4.14 (1,1)(5,2),(4:3),2,4),3,5) score 3.93 (1,1)(4,2),(2,3),3,4),5,5)
VAV score 3.88 score 3.62
0
DVQ

second best solution
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0.95 0.76 0.62 0.41 0.06 .
0.23 0.46 0.79 0.94 0.35 solution: (591)(192)9(4,3)7(2’4)9(395)

0.61 0.02 0.92 0.92 0.81 constraints: ~(1,1)
0.49 0.82 0.74 0.41 0.01

0.89 044 0.18 0.89 0.14
constraints / \

~(191)9~(591) N(lal)(591)9(192)9~(493)

095 076 062 041 006 MUDGEDA2) | e 0oal EDED12),43)~2.4)

0.23 046 0.79 0.94 0.35 0.23 046 0.79 0.94 0.35
0.61 0.02 092 092 0.81 095 0.76 0.62 041 0.06 061 0.02 092 092 0.81 095 0.76 0.62 0.41 0.06

0.49 082 0.74 0.41 0.01 0.23 046 0.79 0.94 035 049 0.82 0.74 0.41 0.01 023 046 0.79 0.94 0.35
0.61 0.02 0.92 0.92 0.81 0.61 0.02 0.92 0.92 0.81

0.89 0.44 0.18 0.89 0.14 — —_==

- 0.49 0.82 0.74 0.41 0.01 0.89 044 018 089 0.4 0.49 0.82 0.74 0.41 0.01

0.89 0.44 0.18 0.89 0.14 0.89 044 0.18 0.89 0.14

@,1)(1,2),(2,3),(5:4),(3.5) (5,1)(1,2),(2,3),(4:4),(3.5)
score 3.74 (5,1)(4,2),(1,3),(2,4),(3.5) score 3.66 (5,1)(1,2),(4,3),3,:4),(2,5)
score 4.08 score 3.66
vAg
B >
L v Q

third best solution
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Penn State 1st scan, different order

0.95 0.76 0.62 0.41 0.06 .
0.23 0.46 0.79 0.94 0.35 solution: (191)(492)9(2,3)7(5’4)9(395)

0.61 0.02 092 092 0.81 constraints: none
049 0.82 0.74 0.41 0.01

0.89 044 0.18 0.89 0.14
constraints / \

~(395) (395)(594)9~(293)
0.95 0.76 062 0.41 0.06 (3,5),~(5,4) 095 076 0.62 041 005 LODSH(2H)~42)
0.23 046 0.79 0.94 0.35 0.23 0.46 0.79 0.94 0.35

0.61 0.02 0.92 0.92 0.81 095 0.76 0.62 041 0.06 061 002 092 092 0.81 095 0.76 0.62 041 0.06
0.49 0.82 0.74 041 0.01 023 046 079 0.94 035 (049 082 0.74 041 001 023 046 0.79 0.94 0.35
0.89 044 0.18 0.89 0.14 061 0.02 092 0.92 0.81 0.61 0.02 0.92 0.92 0.81
089 044 018 089 014 449 082 0.74 0.41 0.01

0.89 0.44 0.18 0.89 0.14

0.49 0.82 0.74 0.41 0.01
0.89 0.44 0.18 0.89 0.14

(1,1)(4,2),3,3),(5:4),(2,5) (1,1)(2,2),(4,3),(5:4),(3.5)
score 3.93 (5,1)(1,2),(4,3),(2:4),(3.5) score 3.85 @,1)(1,2),(2,3),(5:4),(3.5)
score 4.14 score 3.74
A
\V_X4
<19Cv>&>

second best solution is found again.
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e Recall: Global Nearest Neighbor

Evaluate each observation in track gating region.

Choose “best” one to incorporate into track.
ail

3.0
5.0
6.0

9.0 | max

trackl JFE-"70

= W N -

/ L
Y4
/

a., = score for matching observation i to track 1

Choose best match a_; = max{a,;, a,;,a3;,84;}
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Probabilistic Data Association Filter
Updating single track based on new observations.

General 1dea: Instead of matching a single best
observation to the track, we update based on all

observations (in gating window), weighted by their
likelihoods.
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Penn State PD AF

Consider all points in gating window. Also consider
the additional possibility that no observations match.

\ ail

1.0
3.0
5.0
6.0
9.0

trackl JFE-"70

W=D

/ L
Y4
/

p;; = “probability” of matching observation i to track 1
dj

1
Ei_() il

Pi1 =

SU-VLPR 2010
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Penn State PD AF

The best matching “observation” 1s now computed as
a weighted combination of the predicted locations
and all candidate observations...

ail

0| 1.0

1|3.0

trackl JF-" 2 5.0
- 3 16.0

, ’ 4 | 9.0

Y4

New location = 1/24 * predicted location +
3/24 * 01 +5/24 * 02 + 6/24 * 03 + 9/24 * 04

Can also compute a measure of uncertainty
SU-VLPR 2010 from the spread of the candidate observations.
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Penn State PD AF

Kalman filter update is based on residual vector (diff
between predicted location and observed location)

When using single best observation

Vk = Onu— Hj ~fk|k—1

PDAF uses weighted combination of observations

1
Yk = 21)11(01— H; XA-|A-—1)
i—1

note: if we weren’t consider the possibility of no match, this would exactly
be the diff between the weighted center of mass of observations and the

predicted location
SU-VLPR 2010
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Penn State PD AF

Computation of Kalman posterior covariance must change too,
to incorporate weighted matches and possibility of no match.

Typical computation when single match 1s used:
Prr = (I — K;Hy )Pyt

PDAF computation:
P e =— Pol P k|k—1 no match, no update

+ (1 — Pol1 ) [[ — Kka]Pk k—1 update if any match

A /

+ K C()V((),‘ — Hy Xp— l) K/\. correction term to
reflect uncertain
association (spread
of possible matches

or no match)
SU-VLPR 2010
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Problem

When gating regions overlap, the same observations
can contribute to updating both trajectories.

ail ai2

11]3.0

2 | 5.0
trackl 3160 | 1.0
4 9.0 | 8.0
ne 5 3.0

/7

track? The shared observations

introduce a coupling into

the decision process.
SU-VLPR 2010
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Penn State JPD AF

Joint Probabilistic Data Association Filter

If maintaining multiple tracks, doing PDAF on each
one independently 1s nonoptimal, since observations
in overlapping gate regions will be counted more
than once (contribute to more than one track).

JPDAF reasons over possible combinations of
matches, 1n a principled way.
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Penn State JPDAF

Example (from Blackman and Popol).

/Track gates

01, 02, 03 = Observation positions
P1, P2 = Predicted target position

SU-VLPR 2010
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Penn State JPD AF

/Track gates i
Candidates:
trackl1: 0123
tl‘ackZ: O 2 3 01, 02, 03 = Observation positions + Qo = no match

P1, P2 = Predicted target position

Possible assignments: (i,j) = assign i to trackl, j to track2
0,0) 1, 0) (2,0) (3, 0)
0,2) (1,2)£2;2) (3,2) |don’t assign same
0, 3) (1, 3) (2, 3) (3;73) | observation twice
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Penn State JPD AF

Each possible (non-conflicting) assignment becomes
a hypothesis with an associated probability.

Table 6.8
Hypothesis Matrix for Example of Figure 6.3

Likelihood

Track Hypothesis (Normalized
Hypothesis  Number Likelihood Probability)
Number 1 2 p(H;) for Example
' 0 0 (1= Pp)2p? 2.4 1075 (0.011)
2 10 gn Po(1 — Po)p:  1.82 % 10~ (0.086)
3 2.0 G Po(1 — Po)p?r 111 % 1075 (0.053)
4 30 GuPo(l — Pt 4.1x10°%(0.019)
9 0 2 dn Po(1— Po)pe 8.6 1075 (0.041)
6 12 0 G PP 6.47 % 105 (0.306)
! 3 2 G139 PP 1.44 % 10-% (0.068)
8 0 3 g Po(1 — Po)B? 6.7 x 108 (0.032)
J 13 gn g Po B 5.04 % 10-5(0.239)
10 2 3 912923(&15 3.06.‘»\'105(0.143)’J

These likelihoods are based on appearance,
SU-VLPR 2010 prob of detection, prob of false alarm
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Penn State JPD AF

Now compute probability p;; that each observation 1 should be
assigned to track j, by adding probabilities of assignments
where that 1s so. Example: p,; = prob that observation should

be assigned to track 1. .68
Hypothesis Matrix for Example of Figure 6.3

Likelihood

Track Hypothesis (Normalized
Hypothesis  Number Likelihood Probability)
Number 1 2 p(H;) for Example
[ 0 0 (1= Py)2p® 2.4 % 10°5(0.011)
2 10 gu Po(l— Po)B? 1.82 » 10~ (0.086) 086
3 2 0 G Po(1 — Po)? 111 107° (0.053)
4 3 0 T3 Pl]“ _ P[))/f) 4110 6 (00]9]
5 0 2 g Po(1 — Po)p? 8.6 x10°5(0.041)
6 12 0 g PLB 6.47 105 (0.306) + .306
7 3 2 i3 022 Py 1.44 % 107 (0.068)
8 0 3 g Po(1 — Po)p? 6.7 % 10°%(0.032)
J 1 3 .(111923/302/{ 5.04 % 10-%(0.239) + 0239
10 2 3 G122 P B 3.06 x 109 (0.145)

.631
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Penn State JPDAF

/Track gates

Combined probabilities

Trackl: Track2:
p10 = '084 pZO — .169
py;=.631 p,;=.0

01, 02, 03 = Observation positions
P1, P2 = Predicted target position

SU-VLPR 2010
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Penn State JPD AF

Continuing the example:

Track 1 probabilities Track 2 probabilities

Po; = -084 Po, = -169
Py = -631 P, = 0.0
P, =.198 P,, = .415
P3; = .087 P;, = .416
PDATF filter PDATF filter
for track 1 for track 2

Note: running PDAF filters on each track independently is now OK
because any inconsistency (double counting) has been removed.
SU-VLPR 2010
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Hypothesis Likelihoods

Table 6.8

Hypothesis Matrix for Example of Figure 6.3

Likelihood
Hypothesis (Normalized
Likelihoad Probability)
p(H;) for Example
(1= Py)tp? 2.4 10" (0.011)

gn Po(1 — Py)p?
g2 Po(1 — Po)p?
Gig Po(1 — Py
g2 Po(1 — Po) i
Qng?_?.Plf/"
Q3G PEP
g Po(1 — FPo)p?
gn g Po B
gi2 023 P3 B

1.82 % 10" (0.086)
1.11 % 10°% (0.053)
4.1%105¢0.019
8.6 % 10°9(0.041)
6.47 % 10" (0.306)
1.44 % 1079 (0.068)
6.7 % 109 (0.032)
5.04 % 10-° (0.239)
3.06 x 1077 (0.145)

—

Track

Hypothesis  Number
Number 1 2
I 0 0
2 10
3 2 0
4 3 0
5 0 2
6 1 2
7 3 2
8 0 3
9 1 3
10 23

P(H) =

P, 1s prob of detect

B 1s prob of false alarm

g;; likelihood of observe
given track 1

TT gii Pp TT (1-Pp) TT B

Track i assigned
to observation j

SU-VLPR 2010
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Multi-Hypothesis Tracking

Basic 1dea: instead of collapsing the 10 hypotheses
from the last example into two trajectory updates,
maintain and propagate a subset of them, as each 1s a
possible explanation for the current state of the world.

This 1s a delayed decision approach. The hope is that
future data will disambiguate difficult decisions at
this time step.

SU-VLPR 2010
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Multi-Hypothesis Tracking

N .
Frame t > 6 detections
- =
(>

SU-VLPR 2010



Robert Collins
Penn State

Multi-Hypothesis Tracking

-
- -
Frame t-1 o 5 detections
- -
- |
Framet - 6 detections
-
£ S

Frame t+1 N - 6 detections
>

SU-VLPR 2010
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Frame t-1

Multi-Hypothesis Tracking

e gy

tl?

t2
Frame t / L
2
tS

hypothesis =
assign each detection

in each frame a target
number or 0 (FA)

Frame t+1

SU-VLPR 2010
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Multi-Hypothesis Tracking

MHT maintains a set of such hypotheses. Each 1s
one possible set of assignments of observations to
targets or false alarms.
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Combinatorial Explosion

Rough order of magnitude on number of hypotheses:

Let’s say we have an upper bound N on number of targets
and we can associate each contact in each scan a number
from 1 to N. (we are ignoring false alarms at the moment)

N! . N! . _N
(N-4)! (N-5)! (N-3)!

SU-VLPR 2010
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Mitigation Strategies

SU-VLPR 2010
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Mitigation Strategies

Clustering: can analyze each cluster
independently (e.g. on a separate processor)

cluster?

%

clusterl

SU-VLPR 2010
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Mitigation Strategies

Track Merging

merge similar trajectories (because this might allow
you to merge hypotheses)

common observation history
(e.g two tracks having the last N observations in common)

esimilar current state estimates
(e.g same location and velocity in Kalman Filter)

SU-VLPR 2010
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Mitigation Strategies
Pruning: Discard low probability hypotheses

For example, one hypothesis that is always available 1s
that every contact ever observed has been a false
alarm! However, that 1s typically a very low
probability event.

One of the most principled approaches to this 1s by Cox
and Hingorani (PAMI’96). They combine MHT with
Murty’s k-best assignment algorithm to maintain a
fixed set of k best hypotheses at each scan.

SU-VLPR 2010
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Penn Sate MHT with Murty’s k-best

One way to avoid combinatorial explosion 1s to fix the
number of hypotheses maintained at each frame, and
use Murty’s method for k-best assignments to find the k
best hypotheses.

Example: let’s say we want 5 hypotheses at each stage:

Given the 5 old hypotheses from time t-1, perform
Hungarian algorithm to find best assignment of the
observations in the current frame to each of them,
forming new hypotheses at time t. Rank order them by

hypothesis likelihood and put them 1n a priority queue:
{H1,H2,H3,H4 H5}.

SU-VLPR 2010
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Penn Sate MHT with Murty’s k-best

Now perform Murty’s method using H1, to find the k highest
variants of H1. Let’s say k=3, and those variants are H,;, H,,,
H13o

By insertion sort, put them in with the original list of hypotheses,
bumping out any hypotheses as necessary to keep a total list
length of 3.

For example, we might now have {H1,H,,,H2,H3,H,,},
where H4, HS and H; have been discarded

Now perform Murty’s method on the next item 1n the list, which 1s
H,,, and so on. If H,, had been less than H2 in score, then
Murty’s would have been performed on H2 instead.

SU-VLPR 2010
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Penn State MCMCD A

Idea: use Markov Chain Monte Carlo (MCMC) to

sample from / explore the huge combinatorial space
of hypotheses.

S. Oh, S. Russell, and S. Sastry, 2004. Markov Chain Monte Carlo data
association for general multiple-target tracking problems. In Proc. IEEE Int.
Conf. on Decision and Control, pages 735-742, 2004.

Yu, G. Medioni, and I. Cohen, 2007. Multiple target tracking using spatio
—-temporal Markov Chain Monte Carlo data association. In Proc. IEEE Int. Conf.
on Computer Vision and Pattern Recognition, pages 1-8, 2007.

A, W.Ge and R.Collins, 2008, "Multi-target Data Association by Tracklets with
“@" Unsupervised Parameter Estimation," British Machine Vision Conference
(BMVC'08), University of Leeds, September 2008, pp. 935-944.
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Penn State M C M C D A

Rather than use detections in each frame, first extract a set of

“tracklets” by tracking detections through short subsequences of
the original video.

For example, detection “seeds”
at every 10th frame are tracked
through the next 30 frames

(1 second) of video.

Why? raw tracklets

tracklets provide more spatial/temporal context than raw detections
short tracklets can be generated by simple (fast) trackers
eless prone to drift/occlusion than longer tracks

SU-VLPR 2010
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Penn State M C M C D A

Problem we are trying to solve: Find a partition of the set of
overlapping tracklets such that tracklets belonging to the same
object are grouped together. They could obviously be merged
after that by a postprocessing stage.

estimated tracklet partition

SU-VLPR 2010
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Penn State MCM CD A

Recall that MCMC stochastically explores the search space (of
tracklet partitions, in this example) by proposing a set of “moves”
from the current state to a new state.

1121314 'bil‘lll.1234 112 31415 ‘mer.ge’12345
death | split

1ls _extensionJ12456 1]2][a]s] [7]8
41516 reduction

switch

MCMC moves

SU-VLPR 2010
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Penn State MCMCDA

MCMC then decides whether or not to accept the proposal based,
in part, on the ratio of likelihoods of the current state and the

proposed state. Z=observed tracklets
w=partition into trajectories

Bayes’ rule

®" = argmax(p(w|Z)) il argmax (p(Z|w)p(w))
) 0) —— ——

likelihood prior

The likelihood and prior are calculated as functions of 8 features:

Likelihood features Prior features
Color Appearance False Alarm Rate
Object Size Trajectory Length
Spatial Proximity Merge Pair (encourage merging rather than starting new tracks)
Velocity Coherence Spatial Overlap (iscourage overiaps between ditr racks)

SU-VLPR 2010 we actually solved a harder problem of also inferring hyperparameters from the data
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Putting 1t all together:

estimated tracklet partition

SU-VLPR 2010

MCMCDA

M, ... M

Color Appearance
Object Size

Spatial Proximity
Velocity Colerence
False Alarms
Trajectory Length
Merge Pair

Spatial Overlap

/4

feature extraction

P(Al®)

plwlY

p(Z|w.A)

Bayvesian modeling

4

bt [ ] werse |(7][ETATE)
EEE
BBy e )| | CEEDCE) |, | EEED
i EREEED EECEE

MCMC moves
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Penn State MC MC DA

input tracklets hypothesized tracks (at some time)

B —
™

-

SU-VLPR 2010
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Application: Crowd Analysis

* Recall we had a method for blob/person
detection 1n each frame.

209 pendlty U.oU ’
1,

Good for low-resolution / wide-angle views.

Relies on foreground/background segmentation.

Not appropriate for very high crowd density or stationary people.
SU-VLPR 2010
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rmsee Detections, Nov 22, Curtin Road

count 94

SU-VLPR 20 .
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Crowd Behavior

* In areas of bidirectional motion, people tend to
follow others to minimize collisions (maximize

Green: leftward moving. Red: rightward moving,

SU-VLPR 2010



Fingering Effect
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<-- Leftward Rightward --> Density by image row
Green (leftward); Red (rightward)
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Penn Stat Detections, Sep 6, Gate A

count 21

SU-VLPR 20
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Crowd Flow/Density

Keep 1in mind this scene structure (as depicted by red lines)
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Crowd Flow/Density

30 minute period

SU-VLPR 2010
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Crowd Flow/Density

movie

/
/,///
e
_/

Time Lapse. Integrated over spatial/temporal windows.

SU-VLPR 2010
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Pemn Statc GateA Path Counts

movie
£100: 1 Y\

- —

»

Maintain a running count of number of people whose
trajectories cross a set of user-specified lines (color-coded).

SU-VLPR 2010
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Collective Locomotion

* Find small groups traveling together

— Sociological hypothesis: validating that the majority of
people in the crowd cluster in small groups

— Public safety: improving situation awareness and
emergency response during public disturbances

SU-VLPR 2010
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movie

Evaluation reveals substantial agreement between computer-generated
groupings and those found by human coders (ground truth)

# of individuals

180
160 |
140 |
120 |
100 |
80
60
40 |+
20 |

0

» composite measure

m computer prediction

2 3 or more
group size

— /)
note: computer only sees this view!
match rate | y“(4,248) | Cohen’s
trichotomous 85% 219.98 .69
dichotomous 89% 138.26 75
p<.001
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Sample Grouping Results
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Sample Grouping Results

movie [0

Arts Festival, PSU campus
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Research Directions

« Validation; improve algorithm robustness.
« Detection of stationary people

« Tackle the HARD problems. Primarily high-density
‘rows

N _\“: >

.

SU-VLPR 2010
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Aside: Camera Motion

Hypothesis: constant velocity target motion model 1s
adequate provided we first compensate for effects of
any background camera motion.

---------- | dcbsewej = d:arner.-—;"' dtarget

d camera

dt.arg»:'l

Figure 3: Decomposition of observed displacement of a target
between two video frames into terms based only on motion of
the camera and motion of the target.
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Camera Motion Estimation
Approach:

Estimate sparse optic flow using Lucas-Kanade algorithm (KLT)
Estimate parameteric model (affine) of scene image motion

Note: this offers a low computational cost alternative to image
warping and frame differencing approaches.

used for motion prediction, and zoom detection

SU-VLPR 2010
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Parameteric Camera Motion Model

Apparent motion of stationary scene pixels in the image is a
function of camera motion (R,T) and scene structure (depth at
each pixel).

Assumption: for small field of view aerial camera, viewing a

target on the ground, apparent scene motion in a subsequence

can be modeled as low-parameter, global image transformation
e.g. 6 parameter affine or 8 parameter projective

(note: this assumption has been demonstrated to be good based

on the success of Sarnoff’s image stabilization work. Main difference:
they are estimating over each pixel to do explicit image warping. We
will estimate from a sparse flow field, and do NOT do any warping).

To estimate a set of global flow parameters from possibly noisy flow

vectors, we can use a robust sampling estimation method such as
RANSAC or least median-of-squares.

SU-VLPR 2010
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Samples of Affine Flow Fitting

original flow

compensated flow
SU-VLPR 2010
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Samples of Affine Flow Fitting
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Target Motion Estimation

Approach: Constant velocity estimate, after

compensating for camera motion

t 2

'\T /'1;//

SU-VLPR 2010
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penn State Validation

o =¥ Al i . L 1 3 b4 4 F L - =% =, r e . T
no motion compensation 1 camera motion onhy camer a motion + constant velocity

P y 28 3 i 3 25 2 A% 4 48 a o8 1 1§ 2 4 & 0 "

Figure 5: Validation of camera motion compensation and
constant velocity location prediction. Units in the plots are
centroid displacement / sqrt(pixels on target). Each plot is
overlaid with a circle of unit radius. These plots result from
13,852 motion prediction tests.

Now back to data association...
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Overview

Part 4: Persistent Tracking
Adaptive Tracking
Tracking as Classification

SU-VLPR 2010
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What is Tracking?

typical 1dea: tracking a single target in isolation.

SU-VLPR 2010
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What is Tracking?

Multi-target tracking....

ant behavior, courtesy of
Georgia Tech biotracking

“targets’” can be corners, and
tracking gives us optic flow.

SU-VLPR 2010



Robert Collins

"“‘“S““eWhat IS Trackmg?

flarge 3D 4
motion

SU-VLPR 2010

L= large 3D !
- motion

=]

[
—

articulated objects having
mult1ple coordinated parts

MSBP2
4867640
—BP2 486*640
8 R “ % Frame
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What is Tracking?

Active tracking involves moving the sensor in response to
motion of the target. Needs to be real-time!

SU-VLPR 2010
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Appearance-Based Tracking

current frame +
previous location

Response map _
(confidence map; likelihood image) current Iocat|0n

N -

Mode-Seeking

(e.g. mean-shift; Lucas-Kanade;
particle filtering)

SU-VLPR 2010
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Relation to Data Association

In appearance-based tracking, data association tends to be
reduced to gradient ascent (hill-climbing) on an appearance
similarity response function.

Motion prediction model tends to be simplified to assume

constant position + noise (so assumes previous bounding box
significantly overlaps object in the new frame).

SU-VLPR 2010



Robert Collins
Penn State

Appearance Models

want to be invariant, or at least resilient, to changes in
photometry (e.g. brightness; color shifts)
geometry (e.g. distance; viewpoint; object deformation)

Simple Examples:
histograms or parzen estimators.
photometry
coarsening of bins in histogram
widening of kernel in parzen estimator
geometry
invariant to rigid and nonrigid deformations;
resilient to blur, resolution.
invariant to arbitrary permutation of pixels! (drawback)

SU-VLPR 2010
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Appearance Models

Simple Examples (continued):
Intensity Templates
photometry
normalization (e.g. NCC)
use gradients instead of raw intensities
geometry
couple with estimation of geometric warp parameters

Other “flexible” representations are possible, e.g. spatial
constellations of templates or color patches.

Actually, any representation used for object detection can be
adapted for tracking. Run time is important, though.

SU-VLPR 2010
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Template Methods

Simplest example 1s correlation-based template tracking.

Assumptions:
- a cropped 1mage of the object from the first frame can be
used to describe appearance
- object will look nearly identical in each new image (note:
we can use normalized cross correlation to add some
resilience to lighting changes.

- movement 1s nearly pure 2D translation

SU-VLPR 2010
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Normalized Correlation, Fixed Template

Current tracked location Fixed template

Failure mode: Unmodeled Appearance Change

SU-VLPR 2010
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Naive Approach to Handle Change

* One approach to handle changing appearance over
time 1s adaptive template update

* One you find location of object in a new frame, just
extract a new template, centered at that location

* What 1s the potential problem?

SU-VLPR 2010
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Normalized Correlation, Adaptive Template

Current tracked location Current template

The result 1s even worse than before!

SU-VLPR 2010
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Drift is a Universal Problem!

[[ 00:00:00 Yo ! ]: [[ 00:15:02 | Y]:

1 hour

Example courtesy of Horst Bischof. Green: online boosting tracker; yellow: drift-avoiding
“semisupervised boosting” tracker (we will discuss it later today).
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Template Drift

 If your estimate of template location is slightly off, you
are now looking for a matching position that 1s similarly
off center.

* Over time, this offset error builds up until the template
starts to “slide” off the object.

* The problem of drift 1s a major 1ssue with methods that
adapt to changing object appearance.

SU-VLPR 2010
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Lucas-Kanade Tracking

The Lucas-Kanade algorithm is a template tracker that works
by gradient ascent (hill-climbing).

Originally developed to compute translation of small image
patches (e.g. 5x5) to measure optical flow.

KLT algorithm is a good
(and free) implementation
for tracking corner features.

Over short time periods
(a few frames), drift isn’t
really an issue.

SU-VLPR 2010 16
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Lucas-Kanade Tracking

Assumption of constant flow (pure translation) for all pixels
in a large template is unreasonable.

However, the Lucas-Kanade approach easily generalizes to
other 2D parametric motion models (like affine or projective).

o = argmin 3 [L(W(sip) ~ 7o)

See a series of papers called “Lucas-Kanade 20 Years On”, by
Baker and Matthews.

SU-VLPR 2010 17
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Lucas-Kanade Tracking

As with correlation tracking, if you use fixed appearance
templates or naively update them, you run into problem:s.

Matthews, Ishikawa and Baker, The Template Update
Problem, PAMI 2004, propose a template update scheme.

movie

s A Al gorithm 1 e o AR Al g Orithm 2 s RSB AlgOrithm 3

—e "
‘.’L »:“ y .ﬂi
! \ r .1 r

.,V

ey (=
g

.

, -

Fixed template Naive update Their update
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M Template Update with Drift Correction
Tracking Step ; “““ : _—_____;___—-____—_—_—___—_—_—_______—_—___—___—_—___—_—1| |
1,(x) T (x) f (%) T (x)

N D

: Track /4—1' \p,,-_ 1/ " 4>{\ Track )
n'//—- } "/—' :\' _________
\f’l’,‘/’ "\flf/

(W (x:p1)) 1(W(x:p7)

Tracke(} Output Update Step

If |[pn — Pr| < € then Tr11(x) = I,(W(x;p,))
else Ty, 1(x) = Tp,(x)
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Anchoring Avoids Drift

This 1s an example of a general
strategy for drift avoidance
that we’ll call “anchoring”.

The key 1dea 1s to make sure
you don’t stray too far from
your 1nitial appearance model.

Potential drawbacks?

[answer: You cannot accommodate
very LARGE changes in appearance.]

SU-VLPR 2010
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Histogram Appearance Models

* Motivation — to track non-rigid objects, (like a walking
person), it 1s hard to specify an explicit 2D parametric
motion model.

* Appearances of non-rigid objects can sometimes be
modeled with color distributions

* NOT limited to only color. Could also use edge
orientations, texture, motion...

SU-VLPR 2010
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Appearance via Color Histograms

' G’. Color distribution (1D histogram
discretize normalized to have unit weight)
’=R << (8 - nbits) Total histogram size is (27(8-nbits))"3
G’ = G << (8 - nbits)
B’ = B << (8-nbits) example, 4-bit encoding of R,G and B channels

yields a histogram of size 16*16*16 = 4096.

SU-VLPR 2010
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Smaller Color Histograms

Histogram information can be much much smaller if we
are willing to accept a loss in color resolvability.

i ————————————————— Marginal R distribution
R’

G’ h—-ﬂuﬂ'_._.l..h-n
1111y — I
Marginal G distribution
B, r'e

discretize Marginal B distribution

R’ = R << (8 - nbits)
>= G << (8 - nbits)
B’ = B << (8-nbits)

Total histogram size is 3*(2”(8-nbits))

example, 4-bit encoding of R,G and B channels
yields a histogram of size 3*16 = 48.

SU-VLPR 2010
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Normalized Color

(r,g,b)

(r’,g’,b’) = (r,gb)/ (r+tgt+b)

Normalized color divides out pixel luminance (brightness),
leaving behind only chromaticity (color) information. The
result is less sensitive to variations due to illumination/shading.

LN

SU-VLPR 2010 24
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Mean-Shift

Mean-shift 1s a hill-climbing algorithm that seeks modes

of a nonparametric density represented by samples and a
kernel function.

It 1s often used for tracking when a histogram-based

appearance model 1s used. But it could be used just as
well to search for modes 1n a template correlation surface.

SU-VLPR 2010
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Intuitive Description
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Intuitive Description

) Region of
& ® ° ® interest
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Mean-Shift Tracking

Two predominant approaches:

1) Weight images: Create a response map with pixels
weighted by “likelihood” that they belong to the
object being tracked. Perform mean-shift on it.

2) Histogram comparison: Weight image 1s implicitly
defined by a similarity measure (e.g. Bhattacharyya
coefficient) comparing the model distribution with a
histogram computed inside the current estimated
bounding box. [Comaniciu, Ramesh and Meer]

SU-VLPR 2010
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Mean-shift on Weight Images

Ideally, we want an indicator function that returns 1 for pixels
on the object we are tracking, and O for all other pixels

In practice, we compute response maps where the value at a
pixel 1s roughly proportional to the likelihood that the pixel
comes from the object we are tracking.

Computation of likelihood can be based on
e color
* ftexture
e shape (boundary)
« predicted location
 classifier outputs

SU-VLPR 2010
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Mean-Shift on Weight Images

The pixels form a uniform grid of data points, each with a weight
(pixel value). Perform standard mean-shift algorithm using this
weighted set of points.

_ 3 K(a-x) W(a) (a-x)
>4 K(a-x) w(a)

Ax

K is a smoothing kernel
(e.g. uniform or Gaussian)

SU-VLPR 2010
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Nice Property

Running mean-shift with kernel K on weight image w 1s
equivalent to performing gradient ascent in a (virtual) 1image
formed by convolving w with some “shadow” kernel H.

The algorithm 1s performing hill-climbing on an implicit density
function determined by Parzen estimation with kernel H.

SU-VLPR 2010
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Mean-Shift Tracking

Some examples.

Gary Bradski, CAMSHIFT

SU-VLPR 2010

Comaniciu, Ramesh and
Meer, CVPR 2000
(Best paper award)

37



Robert Collins

Mean-Shift Tracking

Using mean-shift in real-time to control a pan/tilt camera.

Collins, Amidi and Kanade, An Active Camera System for
Acquiring Multi-View Video, ICIP 2002.

SU-VLPR 2010
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Constellations of Patches

e Goalis to retain more spatial information than
histograms, while remaining more flexible
than single templates.

SU-VLPR 2010 39
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Example: Corner Patch Model

Yin and Collins, “On-the-fly object modeling while tracking,” CVPR 2007.

SU-VLPR 2010
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Example: Attentional Regions

Yang, Yuan, and Wu, “Spatial Selection for Attentional Visual
Tracking,” CVPR 2007.

ARs are patch features that are sensitive to motion
(a generalization of corner features). AR matches in
new frames collectively vote for object location.

SU-VLPR 2010
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Example: Attentional Regions

Rank and select D-AR

top 75% ARs subset  E.g Top 10 D-
ARs in a frame

Discriminative ARs are chosen on-the-fly as those that best
discriminate current object motion from background motion.

Drift 1s unlikely, since no on-line updates of ARs, and no new
features are chosen after initialization in first frame. (but

adaptation to extreme appearance change is this also limited)
SU-VLPR 2010
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Example: Attentional Regions
AVT Tracker - iy | == ',". Pa 2

'i' U ”’
’lmi&,‘.

(“ J

[\ |J a\i

) ll
4,

Movies courtesy of Ying Wu
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Tracking as MRF Inference

* Each patch becomes a node in a graphical
model.

e Patches that influence each other (e.g. spatial
neighbors) are connected by edges

* |Infer hidden variables (e.g. location) of each
node by Belief Propagation

SU-VLPR 2010
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MRF Model Tracking

Constraints
x1 x2 x3 U(z;, ;)
MRF X5 x6 Pairwise compatibility
nodes x4
X8 ¢(wsazs)
X7 / Joint compatibility
Image — zl = S=————
patches z3 :
z4 ¥ 25 z6
z7 z8 9
,-‘\ A s

SU-VLPR 2010 N



Robert Collins
Penn State

Mean-Shift Belief Propagation

Park, Brocklehurst, Collins and Liu, “Deformed Lattice Detection in Real-
World Images Using Mean-Shift Belief Propagation”, to appear, PAMI 2009.

Efficient inference in MRF models with particular applications
to tracking.  p(zy,...,zN,21,...,2y) = knzp(wi,xj) H o(xg, 24)
(2,5) 8
General 1dea: Iteratively compute a belief surface B(x1) for each
node xi and perform mean-shift on B(x1).

SU-VLPR 2010
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" Example: Articulated Body Tracking

* Loose-limbed body model. Each body part is represented by a node of an
acyclic graph and the hidden variables we want to infer are 3 dimensional x;
(x,y,0), representing 2 dimensional translation (x,y) and in-plane rotation 6

SU-VLPR 2010 47
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Articulated Body Trackmg

flarge 3D M5 A arge 30!
motion - ; -motion

MSBP2
4367640
—BP2 486*640

I = Rl s I

;% Frame

Limitations. If the viewpoint changes too much, this 2D graph tracker will fail. But the idea is that
we also are running the body pose detector at the same time. The detector can this “guide” the
tracker, and also reinitialize the tracker after failure.

SU-VLPR 2010
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Example: Auxiliary Objects

Yang, Wu and Lao, “Intelligent Collaborative Tracking by
Mining Auxiliary Objects,” CVPR 2006.

Look for auxiliary regions in the image that:
 frequently co-occur with the target

* have correlated motion with the target

* are easy to track

Star topology
random field

SU-VLPR 2010 49
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Example: Formations of People
MSBP tracker can also track arbitrary graph-structured groups of

UL i

examples of tracking the - - -n - = S B '
P ; : Al V5 AN S S 1 b & Py ¢ "‘“‘:
Penn State Blue Band PR S T e LTV 6. L R Gl S L 1 N SN g
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Lecture Outline

* Brief Intro to Tracking
* Appearance-based Tracking

* Online Adaptation (learning)

SU-VLPR 2010
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Motivation for Online Adaptation

First of all, we want succeed at persistent, long-term tracking!

The more 1nvariant your appearance model 1s to variations in
lighting and geometry, the less specific it 1s in representing a
particular object. There 1s then a danger of getting confused with
other objects or background clutter.

Online adaptation of the appearance model or the features used
allows the representation to have retain good specificity at each
time frame while evolving to have overall generality to large
variations in object/background/lighting appearance.

SU-VLPR 2010
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Tracking as Classification

Idea first introduced by Collins and Liu, “Online Selection of
Discriminative Tracking Features”, ICCV 2003

* Target tracking can be treated as a binary classification
problem that discriminates foreground object from scene
background.

* This point of view opens up a wide range of classification and

feature selection techniques that can be adapted for use in
tracking.

SU-VLPR 2010
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FesEverview:

Foreground

0:00
.0

g |

\ ‘

i -

~ background

s

L.
»

‘ ’ Background

‘ ’ ‘ samples
@

New
samples

Classitier

-
‘.'\\\
-

Estimated location Response map New frame
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o Observation

Tracking success/failure 1s highly correlated with our
ability to distinguish object appearance from background.

Suggestion:

Explicitly seek features that best discriminate between object
and background samples.

Continuously adapt feature used to deal with changing background,
changes 1n object appearance, and changes 1n lighting conditions.

Collins and Liu, “Online Selection of
Discriminative Tracking Features”, ICCV 2003
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Feature Selection Prior Work

Feature Selection: choose M features from N candidates (M << N)
Traditional Feature Selection Strategies

*Forward Selection

*Backward Selection

*Branch and Bound

Viola and Jones, Cascaded Feature Selection for Classification

Bottom Line: slow, off-line process

SU-VLPR 2010
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Penn Stat Can think of this as

Evaluation of Feature Discrimilnoniinear tuned
feature, generated
fro:n a Iiﬁear seted
feature

Object Background

Object

Feature Histograms

Background Obje

Variance Ratio
(feature score)

Var between classes
Var within classes

Likelihood Histograms

Note: this example also explains why we don’t just use LDA “
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Example: 1D Color Feature Spaces

Color features: integer linear combinations of R,G,B

(aR+b G +cB) © offset where a,b,c are {-2,-1,0,1,2} and

(|aj+[b|+c)) 0 offset is chosen to bring result
back to 0,...,255.

The 49 color feature candidates roughly uniformly
sample the space of 1D marginal distributions of RGB.
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Example

training frame test frame

background

SU-VLPR 2010
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Best

SU-VLPR 2010

Example: Feature Ranking

Worst
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Overview of Tracking Algorithm

Samples from
Current Frame

BG

SU-VLPR 2010
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Feature Space
Ranking

New Location

| median

Log Likelihood Images

P N

MeanShift

MeanShift

[t

Y

MeanShift

Location estimates

Note: since log likelihood images contain negative

values, must use modified mean-shift algorithm as
described in Collins, CVPR’03
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Avoiding Model Drift

Drift: background pixels mistakenly incorporated into the object model
pull the model off the correct location, leading to more misclassified
background pixels, and so on.

Our solution: force foreground object distribution to be a combination
of current appearance and original appearance (anchor distribution)

anchor distribution = object appearance histogram from first frame
model distribution = (current distribution + anchor distribution) / 2

Note: this solves the drift problem, but limits the ability of the
appearance model to adapt to large color changes

SU-VLPR 2010
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Examples: Tracking Hard-to-See Objects

Trace of selected features

SU-VLPR 2010 63
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Examples: Changing lllumination / Background

FREPR e
T :

Penn Stat

| [ PRy

10 =
00 — - -
30

40 [

SU-VLPR 2010

Trace of selected features
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Examples: Minimizing Distractions

Current location

Feature scores

2R-2G+B

Top 3 weight (log likelihood) images
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SU-VLPR 2010

More Detail

top 3 weight (log likelihood) images
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On-line Boosting for Tracking

Grabner, Grabner, and Bischof, “Real-time tracking via on-line
boosting.” BMVC 2006.

Use boosting to select and maintain the best discriminative
features from a pool of feature candidates.

« Haar Wavelets
* Integral Orientation Histograms
« Simplified Version of Local Binary Patterns

SU-VLPR 2010
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Penn State AdabOOSt |earning

* Adaboost creates a single strong classifier
from many weak classifiers

e |nitialize sample weights

e For each cycle:

— Find a classifier that performs well on the
weighted sample

— Increase weights of misclassified examples

e Return a weighted combination of
classifiers

SU-VLPR 2010
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s QFF-line Boosting for Feature Selection

— Each weak classifier corresponds to a feature

— train all weak classifiers - choose best at each boosting iteration
— add one feature in each iteration

labeled
training samples

weight distribution over all training

|

samples

train each feature in the feature pool
chose the best one (lowest error)
and calculate voting weight

1 update weight distribution

}

train each feature in the feature pool
chose the best one (lowest error)
and calculate voting weight

\ 4

strong classifier

V

l update weight distribution

}

iterations

train each feature in the feature pool
chose the best one (lowest error)
and calculate voting weight

Horst Bischof ﬂTU

Grazm

SU-VLPR 2010

l

<




Robert Collins
Poaiptes are
patches

7
c

"

Horst Bischof
SU-VLPR 2010

On-line Version...

one
traning

inital
importance
A=1

repeat for each
trainingsample
TU

Grazm

or, l

estimate estimate
importance importance
A

current strong classifier hStrong

v hSelector
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Tracking Examples

" Horst Bischof lTU
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Ensemble Tracking

Avidan, “Ensemble Tracking,” PAMI 2007

Use online boosting to select and maintain a set of weak
classifiers (rather than single features), weighted to form a
strong classifier. Samples are pixels.

Each weak classifier 1s a linear
hyperplane in an 11D feature space
composed of R,G,B color and a
histogram of gradient orientations.

Classification is performed at each pixel, resulting in a dense
confidence map for mean-shift tracking.
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dC

&%}*

$A k

(

(f)

During online updating;:

)

* Perform mean-shift, and extract new pos/neg samples
* Remove worst performing classifier (highest error rate)
* Re-weight remaining classifiers and samples using AdaBoost

* Train a new classifier via AdaBoost and add it to the ensemble

Drift avoidance: paper suggests keeping some “prior” classifiers
that can never be removed. (Anchor strategy).
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Semi-supervised Boosting

Grabner, Leistner and Bischof, “Semi-Supervised On-line
Boosting for Robust Tracking,” ECCV 2008.

Designed specifically to address the drift problem. It 1s
another example of the Anchor Strategy.

Basic 1deas:

e Combine 2 classifiers
Prior (offline trained) H°" and online trained H"
Classifier Hotf + Ho" cannot deviate too much from Heft

* Semi-supervised learning framework

SU-VLPR 2010
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Horst Bischof

SU-VLPR 2010

Supervised learning

Maximum margin
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Can Unlabeled Data Help?

low density
around
decision

boundary

[ Horst Bischof Ty

SU-VLPR 2010
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Penn StatD rift AVO i d a n Ce Key ldea. SampleS fI’OIn ncw frame

are only used as unlabeled data!!!

‘ i
/
,/

. ?

Labeled data §

comes from \\ /

first frame \ /
Combined
classifier

—H#""'tTﬂiscmf sign (H off(x) + H On(x))
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rnseD)rift Avoidance Key 1dea: samples from new frame

are only used as unlabeled data!!!

FIXED DYNAMIC

Labeled data § /
comes from \ Y 4
\ Y 4
first frame \ /
STABLE Combined
classifier

Horst Bischof | Sign (HOff(X) -+ Hon (X))
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Examples

Green: online boosting
Yellow: semi-supervised

Horst Bischof
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Bag of Patches Model

Lu and Hager, “A Nonparametric Treatment for Location
Segmentation based Visual Tracking,” CVPR 2007.

Key Idea: rather than try to maintain a set of features or set of
classifiers, appearance of foreground and background 1s
modeled directly by maintaining a set of sample patches.

KNN then
determines the
classification of
O
O— OO new patches.
oY o O
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“*“Drift Avoidance (keep patch model clean)

Given new patch samples to add to foreground and background:
* Remove ambiguous patches (that match both fg and bg)

* Trim fg and bg patches based on sorted knn distances.
Remove those with small distances (redundant) as well as large
distances (outliers).

* Add clean patches to existing bag of patches.
* Resample patches, with probability of survival proportional to

distance of a patch from any patch in current image (tends to
keep patches that are currently relevant).

SU-VLPR 2010



Robert Collins
Penn State

Sample Results

Extension to video segmentation.
See paper for the details.
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Segmentation-based Tracking

This brings up a second general scheme for drift avoidance
besides anchoring, which is to perform fg/bg segmentation.

In principle, it 1s could be a better solution, because your model is
not constrained to stay near one spot, and can therefore handle

arbitrarily large appearance change.

Simple examples of this strategy use motion segmentation
(change detection) and data association.

SU-VLPR 2010



Robert Collins
Penn State

Segmentation-based Tracking

Yin and Collins. “Belief propagation in a 3d spatio-temporal MRF for
moving object detection.” CVPR 2007.

Yin and Collins. “Online figure-ground segmentation with edge pixel
classification.” BMVC 2008.
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Segmentation-based Tracking

Input with shape overlﬂiﬂ\\ Soft segmentation

‘;- =
g \

Yin and Collins. “Shape constrained figure-ground segmentation and
tracking.” CVPR 20009.

SU-VLPR 2010
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Tracking and Object Detection

Another way to avoid drift is to couple an object detector
with the tracker.

Particularly for face tracking or pedestrian tracking, a
detector 1s sometimes included in the tracking loop
e.g. Yuan L1’s Cascade Particle Filter (CVPR 2007)
or K.Okuma’s Boosted Particle Filter (ECCV 2004).

* [f detector produces binary detections (I see three faces:
here, and here, and here), use these as input to a data

association algorithm.

* If detector produces a continuous response map, use that as
input to a mean-shift tracker.

SU-VLPR 2010
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Summary

Tracking 1s still an active research topic.

Topics of particular current interest include:
* Multi-object tracking (including multiple patches on one object)
* Synergies between

Classification and Tracking
Segmentation and Tracking
Detection and Tracking

All are aimed at achieving long-term persistent tracking in
ever-changing environments.

SU-VLPR 2010



