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Abstract. This paper presents an algorithm for tracking individual tar-
gets in high density crowd scenes containing hundreds of people. Track-
ing in such a scene is extremely challenging due to the small number
of pixels on the target, appearance ambiguity resulting from the dense
packing, and severe inter-object occlusions. The novel tracking algorithm,
which is outlined in this paper, will overcome these challenges using a
scene structure based force model. In this force model an individual, when
moving in a particular scene, is subjected to global and local forces that
are functions of the layout of that scene and the locomotive behavior of
other individuals in the scene. The key ingredients of the force model
are three floor fields, which are inspired by the research in the field of
evacuation dynamics, namely Static Floor Field (SFF), Dynamic Floor

Field (DFF), and Boundary Floor Field (BFF). These fields determine
the probability of move from one location to another by converting the
long-range forces into local ones. The SFF specifies regions of the scene
which are attractive in nature (e.g. an exit location). The DFF specifies
the immediate behavior of the crowd in the vicinity of the individual be-
ing tracked. The BFF specifies influences exhibited by the barriers in the
scene (e.g. walls, no-go areas). By combining cues from all three fields
with the available appearance information, we track individual targets
in high density crowds.

1 Introduction

Tracking individuals in a high density crowd scene is challenging for a number
of reasons: 1) the number of pixels on an object decreases with the increasing
density of the objects; 2) constant interaction among the individuals in a crowd
makes it hard to discern individuals from one another; 3) occlusions caused by
inter-object interactions result in the loss of observation of the target object; 4)
the mechanics of a human crowd is complex as it exhibits goal-directed dynam-
ics and psychological characteristics which in turn influence how an individual
person will behave in a crowd. Examples of high density crowd scenes are shown
in Fig. 1.

To overcome some of these challenges, we have developed an algorithm for
tracking individual targets in high density crowd scenes containing hundreds
of people at a time. The proposed algorithm is based on the observation that
the locomotive behavior of an individual in a crowded scene is a function of
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Fig. 1. Examples of high density crowd scenes. (a)-(c) Hundreds of people participating
in marathons. (d) A scene from a densely packed railway station in India. (e) A group
of people moving in opposite directions.

collective patterns evolving from the space-time interactions of individuals among

themselves and with the layout of the scene. These collective behavioral patterns,
therefore, can be included as an auxiliary source of information to constrain the
likely locations or paths that can be taken by the target object in the scene. In
other words, natural crowd flow and scene constraints influencing the behavior
of a person in a dense crowd can be used as priors to impose high-level direction
for tracking purposes. Our novel model called the ‘scene structure force model’,
is proposed to directly incorporate such prior knowledge and influences.

In our tracking algorithm, the crowd is treated as a collection of mutually in-
teracting particles. This is a reasonable model, because when people are densely
packed individual movement is restricted and members of the crowd can be con-
sidered granular particles. In order to track a specific individual in the crowd,
we model the instantaneous movement of that person (or particle) with a ma-
trix of preferences containing the probabilities of a move in a certain preferred
direction. The size of the matrix is a function of the maximum allowed velocity,
i.e. it is determined by the number of cells the target individual is allowed to
move into any direction with the center element of the matrix corresponding to
no motion. The probabilities take into consideration multiple sources of informa-
tion and constraints arising from the appearance of the target individual, flow
of the crowd and the structure of the scene. The flow of the crowd and scene
structure incorporated by introducing the concept of floor fields, which model
the interactions between individuals and their preferred direction of movement
by transforming long ranged forces into local ones. For instance, a long range
force that compels an individual in a crowd to move towards the exit door, can
be converted into a local force such that it increases the instantaneous proba-
bility of a move in that direction. The transition probability of a tracked person
then depends on the strength of the floor field in his/her neighborhood. The con-
cept of a floor field is inspired by the field of evacuation dynamics [1, 2], where
floor fields are manually designed to simulate behaviors of pedestrians in panic
situations. We automatically compute three floor fields from the visual data: a
‘Static Floor Field’ (SFF), a ‘Boundary Floor Field’ (BFF), and a ‘Dynamic
Floor Field’ (DFF).

2 Related Work

Tracking is a popular research area in computer vision [16, 6]. In this section,
we briefly review tracking algorithms that were designed specifically for crowded
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scenes. Interested readers are referred to the recent survey by Yilmaz et al.

[10] for an in-depth review of the tracking literature. For tracking in crowded
environments, the method proposed by Zhao et al. [14] was one of the first algo-
rithms. Their algorithm used articulated ellipsoids to model the human shape,
color histograms to model appearance, and a Gaussian distribution to model
the background for segmentation. The initial detection of objects was based on
the their segmentation scheme ([13]) proposed earlier. However, their method
is not suitable for the high density crowd situations that we are dealing with,
because in such a situation the whole human body is rarely visible, which makes
it impossible to fit elaborate ellipsoid models of human body shapes. Brostow
et al. [12] presented a probabilistic framework for the clustering of feature point
trajectories for detection and tracking of individual pedestrians in crowds. They
hypothesized that pairs of points that appear to move together were likely to be
part of the same individual and as such could be used for detection and tracking.

There are other interesting tracking methods which were developed for track-
ing sparse crowds of ants [6], hockey players [9], crowds of clumped people [8], a
dense flock of bats [4], and biological cells [5]. In general, these tracking methods
are object centric and do not exploit any high level or global knowledge that may
aid the tracking algorithm. This is one of the major difference between our track-
ing algorithm and these approaches; we have integrated high level constraints
resulting from crowd flow and scene structure into the tracking algorithm.

3 Tracking Framework

The crowd flow in the scene is treated as a collection of mutually interacting par-
ticles. Therefore, given a video E = [f1, f2, . . . , fN ], where N is the total number
of frames, the image space is discretized into cells where each cell is occupied
by a single particle oxi. Here, xi = (xi, yi) is the coordinate of the i-th pixel at
which the particle is located. The relationship between cells, pixels and particles
is as follows: Cells form a grid over the spatial extent of the image and each
cell is always associated with a single particle, although a cell can contain more
than one pixel depending upon the resolution of the grid. A particle represents
all the pixels in the cell. For tracking, the target individual is represented by a
set of particles P = [. . . , oxi, . . .] (red particles in Fig. 2(a)) as an individual can
span multiple cells in the image. An appearance template, H, of the target is
then computed using all the pixels corresponding to the underlying pixels repre-
sented by particles o ∈ P. The target moves from one cell to the next at discrete
time steps, t → t + 1, according to a transition probability that determines the
likely direction of the motion. This transition probability is associated with the
centroid (yellow particle in Fig. 2(a)) although its computation uses information
from all the particles in the set P. The transition probability is determined by
two factors: 1) the similarity between the appearance templates at the current
location and the next; 2) the influence generated by the floor fields. Formally,
if the target individual is currently at cell i (the cell containing the yellow par-
ticle in Fig. 2(c)), then the probability of moving to a neighboring cell j (cells
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Fig. 2. (a) The particles o ∈ P belonging to the individual we want to track. Each
particle occupies a single cell with the yellow particle representing the centroid of the
object. In order to track the target, we track the yellow particle through the scene. (b)
The green particles represent the search area for the possible next location of the yellow
particle. (c) The matrix of preferred walking directions around the yellow particle. Each
value in the matrix is the probability of the yellow particle moving from the center cell
i to the surrounding cell. The transition probability pij is computed using 1.

containing green particles in Fig. 2(c)) is:

pij = CekDDij ekSSij ekBBij Rij , (1)

where Dij , Sij , and Bij are the influences of the DFF, SFF, and BFF, respec-
tively. While kD, kS , and kB are the coupling strength of the tracked object to
the DFF, SFF, and BFF, respectively. Rij is the similarity measure between the
initial appearance template H and the new appearance template of the target
computed at location j. C is a normalization constant.

The benefit of using the above equation is that it employs the crowd flow and
scene layout constraints to weight the appearance similarity information when
tracking the person. The crowd flow constraints are captured by the DFF and
SFF, while the scene layout constraints are captured by the BFF. The weighting
can be understood in the following manner: if the crowd follows a path say from
the cell i to j, the SFF will have a high value for Sij and in turn will favor that
direction of motion. This will increase the likelihood of matching the current
appearance template of the target at location i with the one at location j at
next time instance. Similarly, if immediate crowd behavior is such that it is
moving from the cell i to j + 1, the DFF will have a higher value for Di,j+1 and
will favor that direction of motion. This will increase the likelihood of matching
the appearance template at location i with the one at location j+1. Thus we can
use the crowd flow information to gain more confidence about our appearance
matching scores. Next, we describe the algorithm for computing Sij , Dij , and
Bij from their respective floor fields.

3.1 Static Floor Field - Sij

The SFF is aimed at capturing attractive and constant properties of the scene.
These properties include preferred areas, such as dominant pathes often taken
by the crowd as it moves through the scene, and preferred exit locations. In
our framework, the SFF is computed only once for a given scene during the
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(a) (b) (c)

Fig. 3. (a) The dense optical flow for frames, [f1, f2, . . . , fM ], of the video. (b) The
computed point flow field. (c) The sink seeking process: the yellow circle represents the
initial location, while the red circle shows the corresponding sink. The black windows
represent the area used to weight the local velocity and propagate the sink seeking
process. The red trajectory represents the ‘sink seeking path’, while the number of
black windows represents the corresponding number of sink steps.

learning period, which spans initial M << N frames. The steps involved in the
computation of SFF are as follows: i) Computation of a point flow field; ii) Sink
Seeking.

Point Flow Field: A ‘point flow field’ represents the instantaneous changes of
motions present in the video. Each vector in this field is a 4-dimensional vector
obtained by augmenting the local flow vector with the position information.
The new vector is referred to as a ‘point flow vector’, hence the name ‘point
flow field’. Using the first M frames of an input video, E = [f1, f2, . . . , fM ],
a dense optical flow can be computed between consecutive frames using the
method of [15]. Then, for each cell (or pixel) i, a point flow vector, Zi = (Xi, Vi),
is computed, which includes both the location Xi = (xi, yi) and the optical
flow vector Vi = (vxi

, vyi
). Note that Vi is the mean of (M − 1) optical flow

vectors computed at pixel i from the first M frames of the video. All flow vectors
averaged over M frames of the video then constitute the ‘Point Flow Field’, which
represents the smoothed out motion information of the video in that interval.
This smoothed motion information assists in computing the dominant properties
(paths, exits) of the scene, which is the primary objective of the SFF. Fig. 3(a)
shows flow vectors generated for a marathon video using the dense optical flow
computation [15]. The resulting point flow field is given in Fig. 3(b).

Sink Seeking Process: The point-flow field is then used to discover the regions
in the scene called ‘sinks’. The idea behind the sink seeking process is that the
behavior of large crowds of pedestrians in locations such as sporting events, reli-
gious festivals, and train-stations can be described as goal directed and rational.
That is the members of the crowd have clear knowledge of what and where their
goals lie in the scene [3]. Therefore, if we know the locations of the sinks, which
are the desired goals (or locations), then for any given point in the scene we
can compute a local force representing the tendency of the individual at that
point to move towards the nearest sink. This local force will be a function of the
shortest distance to the sink in terms of the appropriate distance metric.

In order to compute the sinks and their shortest distances, we initialize a grid
of particles over the point flow field of the scene. Then, a particle dropped at
a non-zero velocity location has the tendency to move to a new position under
the influence of the neighboring point flow vectors. It then moves from that
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Fig. 4. (a) Sink seeking (red: the states of the point flow in the sink seeking process,
orange: the sink, rectangles: sliding windows, yellow: the sink path); (b) Sliding window
(solid circle: the point flow under consideration; rectangle: sliding window; hollow cir-
cles: neighboring points; red circles: non-neighboring points).(c) The region where we
want to compute the DFF. (d) The computed DFF where the yellow circle represents
the cell i. In this case, the DFF is capturing the dynamic relationship between the cell
i and the neighboring cells.

new position to the next one and continues this process. in order to optimally
combine the influence of the neighboring point flow vectors, the velocity at each
new position is re-estimated as the weighted sum of its neighboring velocities
(Fig. 4(a)). The weights are computed using a kernel density method. If all the
weights are below a threshold, it implies that the new velocity is not significant
enough to drive the particle to the next position. Therefore, the particle will stop
and the process of pursuing a new location is discontinued. We call this process
the sink seeking process and the last state (stopping state) of the process is
called the sink. The corresponding path taken by the particle to reach the sink
is called the sink path(Figures 3(c) and 4(a)). The length of the sink path is
the minimum number of steps required to reach the closest exit location in the
scene. The number of steps taken during the sink-seeking process to reach the
sink is called the seek steps. This is also the distance metric used for representing
the shortest distance. Note that the sink seeking process is carried out for each
point in the point-flow field, thus generating one sink path per point. Formally,
the ‘sink seeking process’ can be described as follows: Suppose {Z1, Z2, · · · , Zn}
is the point flow field of the video, where the state of the point i is defined as:

Z̃i,t = (X̃i,t, Ṽi,t), t = 1, 2, ..., and computed as:

Z̃i,1 = Zi , X̃i,t+1 = X̃i,t + Ṽi,t, (2)

Ṽi,t =

∑
n∈Neighbor(X̃i,t)

VnWt,n

∑
n∈Neighbor(X̃i,t)

Wt,n

, Wt,n = exp

(
−

∥∥∥∥
Ṽt−1 − Vn

ht−1

∥∥∥∥
2)

, (3)

In the previous equations, it is clear that the new position of a point only depends
on the location and velocity at the previous state. However the new velocity
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Fig. 5. (a) Crowd flow segmentation obtained by the method described in [11]. (b)
The edge map obtained from the segmentation. (c) The boundary floor field for the
sequence shown in Fig. 1c. The higher values in the field represent the decreasing effect
of the repulsive potential generated by the barriers. In this case, the barrier effect
vanishes for distances greater than 20 pixels. (d) The static floor field computed by our
algorithm for the sequence shown in Fig. 1(c).

Ṽi,t+1 depends not only on the previous velocity, but also on the observed veloc-
ities of its neighbors, which represent the motion trend of a local group. In this
work, we employ the kernel based estimation which is similar to the mean shift
approach [16]. However, there is one important difference. In mean shift track-
ing, the appearance of pixels within a small neighborhood of the object is used to
determine the location of the object in the next frame. In our approach, we use
the location and the velocity of the neighboring points in the point flow field to
determine the next location. There are other methods proposed in the literature
for locating sources and sinks in the scene ([7]), however they do not provide the
shortest distance to sink for each location in the scene. This distance is essential
for our algorithm to compute the local SFF force. Another point that we like
to highlight is that previous approaches only use the sources/sinks to initiate
person hypotheses for tracking without taking advantage of statistics of what
tends to happen between sources and sinks. Through the sink seeking process
we are able to capture the behavior between sources and sinks as well.
SFF Generation: The SFF is generated by using the sink steps for each sink
path. We find the location (x, y) (in the image space) at which each sink path
starts and place the value of corresponding ‘sink step’ at that location. Fig. 5(d)
shows the computed SFF for the sequence in Fig. 1(c). It is interesting to note
that the shape of the SFF emphasizes the notion that if you place a particle at
any location, it will roll down towards the exit. This is precisely what the goal
oriented dynamics of the crowd in this scene represent. In the tracking algorithm,
the shape of the SFF translates into a force in the direction that requires the
least number of steps to reach the nearest exit or sink. That is, the difference
between the values in cell i and j in this field is the measure of the Sij parameter
of 1. Other SFFs are shown in Fig. 6.

3.2 Boundary Floor Field - Bij

The purpose of the BFF is to capture influences generated by barriers or walls
in the scene. This influence is usually repulsive in nature. The computation of
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the BFF requires the localization of physical and virtual barriers in the scene.
The virtual barriers arise from the presence of dynamically distinct crowd flows
in the scene. The computation of the BFF is performed after a set time interval
∆TB , and works on a group of frames defined by the parameter NB . That is,
computation of BFF at time t uses frames [ft, ft+1, . . . , ft+NB

].
The computation of BFF is based on the crowd flow segmentation algorithm

proposed earlier by the authors [11]. In that algorithm, physical and virtual
barriers in the scene were represented by the ridges of the Finite Time Lyapunov
Exponent (FTLE) Field. The FTLE field is then used to compute a segmentation
map in which different labels represented different crowd flow segments. In order
to generate the BFF, we use this segmentation map and compute an edge map by
retaining only the boundary pixels of each segment. Next, the shortest distance
between the wall/barrier and each pixel is determined by computing the distance
transform of this edge map (see Figs. 5a-c). Note that when a distance is larger
than a certain threshold, the barrier effect vanishes completely. This vanishing
effect is represented by the flattening of the surface (the red region) in Fig. 5(c).
The difference between the values in cell j and i represent the measure of Bij in
1. Examples of BFFs are presented in Fig. 6.

3.3 Dynamic Floor Field - Dij

The objective of the DFF is to determine the behavior of the crowd around the
individual being tracked. The instantaneous information about the motion of
the crowd is an important cue for constraining likely future locations. In our
framework, the instantaneous interaction among the members of the crowd is
extracted by using a particle based representation. For a given scene, the DFF is
computed at each time period by using a sliding window of ND frames. That is,
for computing the DFF at time t, we use frames FD = [ft, ft+1, . . . , ft+ND

]. We

Fig. 6. The SFFs (top) and BFFs (bottom) of various sequences. Left: For the sequence
in Fig. 1(e). Center: For the marathon sequence in Fig. 1(a). Right: For the marathon
sequence in Fig. 1(b).
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(a)

(b)

(c)

Fig. 7. Chips used for tracking. (a) Marathon-1. (b) Marathon-2. (c) Marathon-3.

first compute the optical flow between consecutive frames in FD and stack them
together to generate a 3D volume of optical flow fields. Next, a grid of particles
is overlaid on the first flow field of the volume and numerically advected [11].
During the advection, whenever a particle jumps from a cell i to one of the
neighboring cells j the value of interaction between these cells increases by one.
The DFF can only have non-negative integer values and there is one DFF per cell
where each DFF captures the dynamic interaction between the target cell i and
remaining cells in the scene. A visualization of the DFF is shown in Fig. 4(c)-
(d). Since the DFF is meant to capture the local interaction of particles around
the tracked individual, Fig. 4(c)-(d) represents the shape of the DFF, but only
in that local neighborhood. The peak in Fig. 4(d) represents the location where
most particles end up if they pass through the cell containing the yellow particle.

4 Experiments and Discussion

A detailed experimental analysis was performed on the three marathon sequences
shown in Figure 6. In addition, qualitative results are shown for a busy train-
station sequence. In all the experiments, tracking began by selecting a rectan-
gular region around the target object and using it to compute the gray-level
appearance template. At each time instant, the next position of the target was
chosen according to Equation 1, where the matrix of preferences around the cur-
rent target location were twice the size of the selected rectangular region. We do
not adapt the size of the window during the tracking. The appearance similarity
was computed using normalized cross correlation and the template was progres-
sively updated at each time instant. We set the values of kS , kD, and kB equal
to 0.02 for all experiments. The tracking results were stable for small changes in
the values of these coupling factors. We used the first 50 frames of each sequence
to construct the SFF. To compute the BFF and DFF, the values of NB = 20
and ND = 5 were used.
Marathon-1: This sequence (Fig. 1a) captures participants in a marathon from
an overhead camera. It is a difficult sequence due to the severe occlusion among
the participants, and the similar looking outfits worn by most of the athletes.
The sequence has 492 frames, but each athlete remains in the field of view, on
average, for 120 frames. We manually selected 199 individuals, shown in Fig.
7(a), from various frames for tracking. The average size of the selected chip was
14 × 22 pixels.
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Fig. 8. Displays trajectories of individuals who were successfully tracked by our
method. (a) Marathon-1. (b) Marathon-2. (c) Marathon-3. (d) Train Station.

A set of trajectories generated by our tracing algorithm is shown in Fig. 8(a).
In total, we were able to successfully track 143 out of 199 individuals, i.e. the
correct label was maintained throughout the time duration for which the athlete
was visible in the FOV. Quantitative analysis of the tracking was performed by
generating ground-truth trajectories for 50 athletes, which were selected ran-
domly from the initial set of 199 athletes. The ground-truth is generated by
manually tracking the centroid of each selected athlete. The ground-truth shows
that these 50 athletes were visible for an average of 77 frames, and our algorithm
tracked them for an average of 72 frames. This is summarized by the first 50
bars in the graph of Fig. 9. The average tracking error is summarized by the
first 50 green bars in the graph of Fig. 12(a). The tracking error in a given frame
is defined as the distance in pixels between the centroid of the object in the
ground-truth and the centroid returned by our tracking algorithm. The track-
ing failure on this sequence (10(a)) occurred in situations where the target was
completely occluded by either another athlete or the street-light in the scene.
Since we did not use any prediction mechanism, we could not recover from full
occlusion. However, partial occlusions were handled by our tracker.

Marathon-2: This sequence (Fig. 1(b)) also involves a marathon. However,
the camera in this sequence is installed on a high-rise building to increase the
FOV. As a result, the number of pixels on each individual is fewer. In addition,
there are drastic illumination changes when athletes move into the shadow of
the neighboring buildings. This sequence has 333 frames. We manually selected
120 individuals (Fig. 7(b)) from various frames for tracking. The average size of
the selected chip was 13 × 16 pixels.
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Fig. 9. A comparison of track lengths against the ground-truth: 1 to 50 Marathon-1;
51-70 Marathon-2; 71-85 Marathon-3.
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Fig. 10. The failure cases. (a) Marathon-1. (b) Marathon-2. (c) Marathon-3.

A set of trajectories generated by our tracing algorithm is shown in Fig. 8(b).
In total, we were able to track 117 of the 120 (97.5%) individuals. A quantitative
analysis was performed by generating ground truths for 20 of the athletes. The
length of ground-truth trajectories and trajectories generated by our tracker is
summarized by bars 51-70 in Fig. 9. The average tracking error is summarized
by the green bars (51-70) in the graph of Fig. 12(b). It can be observed that our
tracking was very accurate, in most cases, and able to overcome the illumination
changes with the aid of the DFF and SFF. Some of the tracking failures on
this sequence are shown in Fig. 10(b). These tracking failures were the result of
severe illumination variation causing change in the appearance of the target.

Marathon-3: The third sequence (Fig. 1(c)) is extremely challenging due to
two factors: 1) appearance drastically changes due to the U-shape of the path;
2) the number of pixels on target varies due to the perspective effect. The fewer
pixels make it more difficult to resolve even partial occlusions. The sequence is
453 frames long. We manually selected 50 individuals (Fig. 7(c)) for tracking.
The average size of the selected chip was 14 × 17 pixels. In total, we were able
to track 38 of the 50 (76%) individuals without any tracking error (Fig. 8(c)).
A comparison of track lengths returned by our algorithm with 15 ground-truth
trajectories is given in Fig. 9. The average tracking error is summarized by
bars 71-85 in Fig. 12(a). In addition, we performed tracking on a busy train-
station sequence shown in Fig. 1(d). There, we tracked 20 individuals and some
qualitative results are shown in Fig. 8(d).
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Analysis: One of our experiments is now discussed in detail to provide an intu-
itive insight on how the floor fields help in improving tracking. For this purpose,
we picked a track from Marathon-3, where the athlete was wearing a black shirt
and running away from the camera (Fig. 2(a)). During the course of tracking, the
athlete’s appearance became ambiguous as neighboring athletes were also wear-
ing black shirts. Fig. 11(a) (top-left) shows the surface of appearance similarity
measure, which was obtained by matching the template in a 16 × 16 neighbor-
hood, for one of those instances. The surface was relatively flat, showing a lack
of a good match for the tracked person in the current frame. If we were to use
only this surface, there was a high probability that the tracker would jump onto
one of the neighboring athletes wearing the similar clothing. However, floor fields
helped resolve this ambiguity, which is apparent in the final decision surface (Fig.
11(a) bottom-right). The DFF shown in Fig. 11(a)(top-right) guided the tracker
by emphasizing the direction taken by most particles from the current location of
the target. Similarly, the SFF shown Fig. 11(a)(bottom-left) allowed the tracker
to consider the direction that the objects take to the exit the scene. This way, the
DFF and SFF helped resolve the appearance ambiguity and allowed our tracker
to maintain the correct label.

Mean-Shift Comparison: We performed a quantitative analysis by comparing
the results with a color based mean-shift tracker. The comparison was performed
using the ground-truth generated for the three marathon sequences. The mean-
shift was initialized using the same regions and appearance was updated during
the course of tracking. The tracking error was computed as the distance between
the centroid of the target returned by the tracker and the corresponding centroid
in the ground-truth. The error is then averaged over the entire video. The results
are summarized in Fig. 12(a). The green bars in the graph correspond to the
average error of our tracking algorithm, while the yellow bars correspond to the
average error committed by the mean-shift tracker. The tracking error of the
mean-shift is especially higher for the trajectories of Marathon-3 sequence (bars
71-85). The reason was the gradual change in the appearance of the athlete
as he/she runs along the curved portion of the track. The mean-shift algorithm
that only uses the appearance information was not able to cope with it and often
drifted away very quickly. While, using the crowd flow and scene constraints in
the form of the SFF and DFF, our algorithm was able to stay on the target
for much longer time durations. In general, it can be observed from the graph
(Fig. 12(a)) that our method works much better than the mean-shift tracking
method. This verifies our initial observation that when tracking in videos with
high density crowds appearance alone is not a reliable cue, and, other sources of
information present in the scene should be exploited.

Contribution of Floor Fields: Next an experiment was performed to test
the contribution of floor fields towards the accuracy of tracking. The experiment
was performed using those ground-truth trajectories from Marathon-1 for which
we obtained successful tracking results using all three floor fields. We picked
these trajectories as it would allow us to establish whether all three floor fields
contributed towards the success or not. There were 35 such trajectories in total
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Fig. 11. (Left to Right)The appearance similarity surface, local DFF, local SFF, and
the final decision surface obtained by merging appearance, the DFF, and the SFF
according to 1.
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Fig. 12. (a) Comparison of the tracking error of our method against the mean-shift
tracker. The bars represent the average error over the entire track. The length of the
track is given in Fig. 9(1 to 50 Marathon-1; 51-70 Marathon-2; 71-85 Marathon-3). (b)
Contribution made by different floor fields towards the tracking accuracy.

in Marathon-1. To measure the contribution of different floor fields, we ran our
tracker first using only the SFF and then using only the DFF. The error was
computed in a manner similar to that of the mean-shift experiment. The graph
in Fig. 12(b) shows the comparison. It can be observed that we obtained the
minimum error by using all three fields. However, the error committed by the
DFF and SFF is not consistent across all the tracks. By carefully observing
these 35 trajectories, we noted that SFF based tracking commits less error when
the tracked athlete was running in more or less straight path with no side-ways
movement, i.e. when he was perfectly obeying the geometry of the learned SFF
(Fig. 6:Center) which is true for most athletes in this scene. The DFF based
tracking committed relatively higher error in situations when the neighboring
athletes of the target were trying to go side-ways to over-take each other, and
far less error in cases when the target athlete and the neighboring athletes were
running in tandem.

5 Conclusion

We have developed an algorithm for tracking targets in high density crowd
scenes. The algorithm utilizes crowd flow and scene layout constraints to predict
the future locations of the target. These constraints are captured by learning
three floor fields, namely the Dynamic Floor Field, the Static Floor Field, and
the Boundary Floor Field. These floor fields together with the appearance infor-
mation is then used to track individuals in complex scenarios. The experimental
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results on complex videos verified that using high level knowledge about the
scene in the form of floor fields is helpful in improving the tracking accuracy.
The present work can take a number of future research directions: First, the
individual target-tracking can be extended to multi-target tracking by treating
the multi-target configuration as a multi-particle system and adding particle-
particle interaction terms in the tracking framework. Second, the computation
of floor fields can be improved to handle multi-modality of motion at sources,
sinks, and paths in between. This will be important for handling the crowded
situations where people can move in multiple directions.
Acknowledgements: This research was funded by the US Government VACE
program. We would like to thank Min Hu for her valuable contribution towards
this reserach.
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