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Abstract

We propose statistical data association techniques for vi-
sual tracking of enormously large numbers of objects. We
do not assume any prior knowledge about the numbers in-
volved, and the objects may appear or disappear anywhere
in the image frame and at any time in the sequence. Our
approach combines the techniques of multitarget track ini-
tiation, recursive Bayesian tracking, clutter modeling, event
analysis, and multiple hypothesis filtering. The original
multiple hypothesis filter addresses an NP-hard problem
and is thus not practical. We propose two cluster-based
data association approaches that are linear in the number
of detections and tracked objects. We applied the method
to track wildlife in infrared video. We have successfully
tracked hundreds of thousands of bats which were flying at
high speeds and in dense formations.

1. Introduction
The object recognition and tracking scenarios that com-
puter vision methods can interpret have become increas-
ingly complex in the last decades due to significant re-
search advances. Our work moves beyond the limit of what
has been accomplished by formulating and solving a visual
tracking task that involves an unprecedentedly large, un-
known, and variable number of objects in clutter (Fig. 1).
Our method solves a number of challenges:

• Initiation of the tracking process is performed auto-
matically, without prior knowledge about the location
or timing of the objects’ first appearance.

• The objects of interest are automatically distinguished
from objects that are not of interest and thus classified
to be clutter.

• Both the number of objects to be tracked and the num-
ber of objects that are not of interest are unknown.

• Our method is able to track objects that have similar
appearance.

• Previously tracked objects may not be observed in
some frames due to occlusion or low signal-to-noise
ratio. Tracking resumes as soon as the objects reap-
pear.

• Our solution scales and works reliably for hundreds of
thousands of objects.

• Our system tracks objects in near real time.

We have been motivated to tackle these challenges by a
question that has puzzled conservation biologists for many
decades – “how many bats do we have in North America?”
The mid-summer population of one particularly gregarious
species was “guesstimated” to consist of 150 million bats
in the 1950s. Using our tracking system, we were able to
make a new assessment, estimating that the current mid-
summer population of this species consists of about 9 mil-
lion bats [4]. Our results have been used to evaluate the
ecological and economic impact of bats; for example, by
preventing insect damage to cotton, each bat was shown to
provide an economic service that saves farmers $0.02 per
night in mid-June [7].

In addition to the computer-vision components, our sys-
tem contains a rich visual interface that has attracted the
attention of the United States National Park Service. The
organization would like to build an installation of our sys-
tem at Carlsbad Caverns, New Mexico, so that cave visitors
can view the impressive flight tracks of hundreds of thou-
sands of bats.

The core research contribution of our method is a solu-
tion strategy for the data association problem, which is the
problem of determining the correspondence between previ-
ously tracked objects and current measurements. The main
technical contributions of this paper can be summarized as
follows:
• Two data association methods for the problem of

tracking enormously large numbers of objects – a
“greedy data association method” and a “cluster-based
method.” Worst-case complexity analysis and experi-
ments showed that both methods are computationally
efficient.
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Figure 1. Tracking wildlife. An infrared input image shown in “false color” (left). The proposed approach was able to track bats whose
flight paths were strongly correlated when they emerged from a cave (middle) and foraging bats, for which large variations in flight paths
were observed (right). The image on the right was collected 1:53 hours after the image in the middle; video capturing was uninterrupted.
The number of tracked bats in the two scenes were 616 and 66, respectively. For visibility, the colored tracks show the most recent track
history only (2 frames).

• An event-based approach for multiple-hypotheses
tracking that facilitates the correct interpretation of
hundreds of newly appearing and disappearing objects
in the presence of clutter and occlusion.

• A statistical framework for incorporating Bayesian re-
cursive tracking methods, for example, the α-β fil-
ter [5], into a multi-object tracking system.

• Experiments to test the efficacy and speed of the pro-
posed techniques. We present evidence of reliable
tracking performance by (1) comparison of our results
with manual “ground-truth” markings, (2) analysis of
videos of the same scene taken from different view
points.

• A comparison of our data association methods to a
traditional data association method, called the “global
nearest-neighbor algorithm” [5].

• Experiments on unprecedentedly large data sets.

2. Related Work
Our method builds on statistical data association approaches
designed for tracking multiple targets in radar scans. These
radar techniques were developed in the 70’s and 80’s [3, 17]
and have created some interest in the computer vision com-
munity [8, 9, 16]. Cox [8] reviewed several data association
methods, in particular, the nearest neighbor algorithm, the
joint likelihood filter (JLF), the joint probabilistic data asso-
ciation (JPDA) algorithm, and the multiple hypothesis filter
(MHF). Unfortunately, unless the visual tracking problem
is relatively simple, e.g., the number of objects is small and
track crossings are not common, these methods are often
impractical to employ in practice. The JLF requires solving
an NP-hard optimization problem and does not handle ap-
pearing or disappearing objects. The JPDA problem is NP-
hard and assumes prior knowledge of the number of objects
tracked. The MHF filter also attempts to solve an NP-hard
problem. The exponential complexity of these data asso-
ciation methods is a serious disadvantage and makes them

unacceptable as real-time approaches to our tracking prob-
lem.

Reid [17] provided a description of pruning techniques
when he first proposed the multiple hypothesis filter. Cox
and Miller [9] developed a technique to approximate the
MHF and JPDA methods by applying Murty’s algorithm
and provided simulations to illustrate the resulting speedup
for the MHF method. Rasmussen and Hager [16] extended
the original JLM, JPDA, and MHF algorithms to track ob-
jects represented by complex feature combinations. Re-
cently, Nillius et al. proposed a method to resolve multiple
hypotheses via Bayesian networks [15]. This work follows
the current trend to employ computer science techniques,
e.g., belief propagation [10] and spatio-temporal reason-
ing [18], instead of, or in addition to, traditional radar tech-
niques. This is an advance over previous work in com-
puter vision that did not explicitly address the data asso-
ciation problem but rather focused on position estimation,
or made the simplifying assumption that only one measure-
ment would be near the predicted position and thus reason-
ing about correspondence would not be needed.

The reliability and efficiency of previously published
multi-object tracking techniques were typically demon-
strated for short video sequences that involved a limited
number of objects, for example, a few walking people.
Sometimes the application domain provided a lot of prior
information about the movements to be estimated. Note that
the correspondence problem is relatively easy if a low num-
ber of objects is tracked. A significant contribution of our
method is that it can handle a very large number of objects,
and this number does not need to be known in advance. Our
method’s reliable near real-time performance was shown for
hundreds of objects per image frame and over long periods
(hours), producing hundreds of thousands of tracks.

The analysis of wildlife video is a very challenging ap-
plication area that has recently found considerable inter-
est in the computer vision community (e.g., [2, 13, 19]).



Research in computer science, in particular, robotics and
networking, has a tradition of using biological systems as
sources of inspiration. The goal of wildlife image analysis,
however, is to apply and extend computer science research
to the study of biology [2] to better understand social in-
sects, foraging and flocking behaviors, bird flight, colony
censusing, and other movement patterns of wild life. There
are also applications involving laboratory animals, for ex-
ample, the study of the navigation behavior of drug-treated
rats [14].

3. Methods
Our methods for solving the problem of tracking large vari-
able numbers of objects in clutter include (1) an object
detection method (Section 3.1), (2) the use of recursive
Bayesian filters (Section 3.2), an event-based approach for
multi-object tracking in clutter (Section 3.3), and two so-
lutions for the data association problem (Section 3.5). A
flowchart of our system is given in Fig. 2.

3.1. Detection Method
Because the motivation of our work was to census bats,
which are active at night, we have worked with thermal
cameras and developed a method that detects bats in in-
frared video. For each pixel in the field of view, our method
builds a Gaussian model of intensity changes using a sliding
temporal window. Each model is thus dynamic and repre-
sentative of the significant changes that occur throughout
the analysis of hours of uninterrupted video. The inten-
sity changes are due to the reduction of ambient temper-
ature during the night. The Gaussian models of pixel in-
tensities are used to build foreground and background mod-
els. We classify foreground observations as either objects of
interests (e.g., bats) or clutter (tree limbs moving with the
wind, tourists wandering into the field of view, warm rocks,
etc). Background observations are sky, clouds in the sky,
and vegetation. Both foreground and background observa-
tions are generally quite noisy due to the thermal imaging
process.

We developed an adaptive filter that determines whether
a pixel belongs to the background or foreground based on its
current Gaussian intensity model [11]. If the intensity mea-
surement I(x, y, t) at the pixel deviates significantly from
the intensity expected in the background at that time, e.g.,
the difference to the mean µ(x, y, t) is larger than k = 5%
of the standard deviation σ(x, y, t),

k σ(x, y, t) < |I(x, y, t) − µ(x, y, t)|, (1)
the measurement is considered a foreground object. Clas-
sification of foreground objects of potential interest is per-
formed by spatial analysis. For example, the warm thorax of
a bat appears as a collection of pixels with a steep intensity
peak and can be distinguished from the mostly flat intensity
profile of a warm rock. Further classification of candidate
objects is performed by temporal analysis (see below).

Object Detection

Greedy, Cluster−based, GNN Methods
Data Association

Analysis of
Wildlife Behavior

Output: Object Tracks Scientific Results

Input: Video

Tracks Track Hypotheses

Measurements

Recursive Bayesian Filtering
, Kalman, Particle Filters)(α−β

Figure 2. System Overview. The shaded system components are
topic of this paper; the analysis of wildlife behavior has been pub-
lished elsewhere [7, 4, 12].

3.2. Tracking with Recursive Bayesian Filters
Recursive Bayesian filters solve the problem of tracking a
single object or feature in an image sequence recursively by
estimating the state s(t) of the object in the current frame t
based on its state s(t − 1) in the previous frame and by
“filtering” measurement x(t) in the current frame. The
Markov assumption is generally made that state s(t) only
depends on previous state s(t − 1) and a white noise se-
quence u(t) of known distribution. We denote the estimator
of s(t) based on the measurements X(t) = {x(0), . . . x(t)}
by ŝ(t). More generally, the estimator of s(t) based on
the measurements X(t′) = {x(0), . . . x(t′)} is denoted by
ŝ(t|t′).

In the case of a scalar state and measurement, the state
sequence s(t) is a Gaussian random process if the dynam-
ics of the object can be described by a first-order Gauss-
Markov process

s(t) = a s(t − 1) + u(t) (2)

with a known parameter a, a white Gaussian noise sequence
u(t), and a Gaussian prior density that is independent of
u(t). If the observations x(0), . . . , x(t) can be described by
the process x(t) = s(t) + w(t), (3)

where w(t) is a white Gaussian noise sequence, the es-
timator that minimizes the Bayesian mean square error
E[(s(t) − ŝ(t|t′))2] is the Kalman filter

ŝ(t|t) = ŝ(t|t − 1) + K(t) (x(t) − ŝ(t|t − 1)), (4)

where K(t) < 1 is a gain factor that is independent of the
measured data and can be computed offline. A simplified
version of the Kalman filter is the α-β filter [5]. We im-
plemented it with a four-dimensional state vector (i.e., 2D
position, 2D velocity). The horizontal and vertical position
components can each be estimated by

ŝ(t|t) = ŝ(t|t − 1) + α (x(t) − ŝ(t|t − 1)), (5)

where α is a fixed gain factor. The velocity components
can be updated similarly with a gain factor β. Typical



values used in our experiments were α = 0.8 and β =
0.5 [1]. Since multiple objects must be tracked, each object
is tracked by its own α-β filter. This means if n objects are
tracked in each frame, 4n separate update equations must
be evaluated (Eq. 5).

3.3. Event-based Approach for Tracking Appearing
and Disappearing Objects in Clutter

The recursive Bayesian filters described above can be used
if the number of objects is known and stays constant
throughout the image sequence. Our problem, however, is
much more complicated; the number of objects is unknown,
objects may arrive anywhere in the image at anytime, clutter
is present, and objects disappear. We use an event-oriented
approach to generate hypotheses [17]. A measurement x(t)
may originate from an event, such as a new object, or clut-
ter (1), which can appear anywhere in the V -pixel image,
or a tracked object (2), which is assumed to appear near its
predicted position ŝi(t|t−1):

p(x(t)|event)=

{

1/V (1)
N (x(t)|ŝi(t|t−1), Ci(t)) (2),

(6)

where the likelihood function p(x(t)|ŝ(t|t − 1)) is mod-
eled as a Gaussian N with a filter-calculated covariance ma-
trix Ci.

Computing the probability of a cumulative event condi-
tioned on the full history of the measurements is an NP-
hard problem [17] since the number of hypotheses gener-
ally grows exponentially with time. We propose a sliding-
window approach to prune the number of hypotheses that
must be considered at each frame. Our method discards un-
likely hypotheses by removing the tracks from further con-
sideration that are highly likely to be clutter. Initially, our
method treats newly detected objects and clutter the same
way. In both cases, the measurement is deemed to have
originated from a new object j. A new tracker is initial-
ized by assigning x(t) to its initial state and using an initial
co-variance matrix Cj .

Our method delays the decision whether x(t) is clutter
or a moving object for T frames. If at time t + T an ob-
servation cannot be found that is likely to have originated
from the object, x(t) is determined to be clutter, the tracker
is terminated, and the track sj that it produced is removed.
We call objects that have been tracked for at least T frames
persistent and objects, whose states ŝ(t − 1|t− 1) were es-
timated in the previous frame, active. We distinguish them
from inactive objects which have been tracked successfully
for at least T frames, but have not been observed in the
scene recently.

Our assumption that the sliding-window length T is
known is mild. It is defined by a lower bound on the num-
ber of frames that an object may be present in the video.
For example, for the wildlife tracking application, it may be

reasonable to assume that an animal is in the field of view
for at least 0.5 s.

Our method can output the tracks of the persistent ob-
jects on-line during the video processing or in batch format
once the last frame of the video has been processed. The
number of trackers that our method maintains at any point in
time is bounded from above by V T . In practice this number
is significantly smaller, for example, at most a few hundred
in our wildlife application.

3.4. The Data Association Problem and its Tradi-
tional Solution

The problem of data association is to determine the corre-
spondence between measurements and tracked objects. In
our system, the data association module obtains the mea-
surements from the detection module (Sec. 3.1) and the
estimated states of the tracked objects from the selected
Bayesian filter (Sec. 3.2). The data association problem
arises at time t when the task is to match the set of tracked
objects {s(t)}n(t)

i=1 with the set of measurements {x(t)}
m(t)
j=1

observed in the current frame. In the easiest case, the re-
lationship is bijective, which means all objects present are
also observed and each measurement was due to a previ-
ously tracked object. This is an unrealistic scenario in our
application; typically n(t) 6= m(t). More realistic are sur-
jective or injective mappings. Surjective associations occur
if all measurements can be matched to a previously tracked
object. In this case, no new objects were detected, but
tracked objects may have disappeared. In particular, tracked
object si may not be visible in frame t because

• object si left the camera’s field of view,

• object si is temporarily missing due to a false negative
detection by the feature detector, possibly caused by a
low signal-to-noise ratio,

• object si is occluded by an object sj , which results in
a single measurement.

Injective associations occur if all previously tracked ob-
jects can be matched to the observations {x(t)}

n(t)
j=1 , n(t) ≤

m(t). In this case, additional objects or clutter may have
been detected in the current image. The additional objects
may be new objects entering the camera’s field of view, pre-
viously tracked objects whose signal-to-noise ratios have
improved to a level that made detection in the current frame
possible, or previously tracked objects that emerged from
occlusion. The most general and realistic scenario is that the
mapping is neither surjective nor injective, which makes the
problem of finding correspondences between tracked and
detected objects extremely challenging.

The approach traditionally applied to the data associa-
tion problem is the Hungarian algorithm, which can be used
to find the measurement-to-track mappings in O(m(t)3)
time [9]. The algorithm solves the weighted bipartite graph



matching problem. The nodes of the graph are on one side
the measurements {x(t)} and on the other side the predicted
object states {ŝ(t|t−1)}. The weight of an arc between the
nodes that represent the ith object and the kth measurement
is the log likelihood log p(xk(t)|ŝi(t|t − 1)) that xk(t) is
the measurement of object si(t). The Hungarian algorithm
minimizes measurement-to-track assignment costs by max-
imizing the sum of the log likelihoods. If the likelihood
function is assumed to be Gaussian, this means minimizing
the sum of the Mahalanobis distances

d2(xk(t))=(xk(t)− ŝi(t|t−1))C−1
i (t)(xk(t)− ŝi(t|t−1)).

(7)
The Mahalanobis distance between predicted states and
measurements generalizes the concept of the Euclidean
distance between predicted object positions and measure-
ments. Since all measurements are compared with all active
tracks, the method is also called the global nearest neighbor
(GNN) approach [5].

3.5. Two Data Association Approaches

We propose two approaches [1] to solve the data association
problem that are based on the idea of gating [5]. A gate is
a surface of constant probability density; under the assump-
tion of a Gaussian likelihood p(xk(t)|ŝi(t|t−1)) it is an el-
lipsoid. A gate is defined with respect to the predicted state
ŝi(t|t − 1). Gating means pruning the number of candidate
measurements so that only measurements whose likelihood
lies within the gate must be considered (Fig. 3). Gating
reduces, but does not avoid, the possibility of conflict situ-
ations. Conflict situations arise when, for each object, the
Mahalanobis distance between its predicted state and a par-
ticular measurement (red disk in Fig. 3) is lowest among
all measurements that are likely to fall within the gate of
the object. Our cluster-based approach creates a bipartite
graph of the conflicting predicted states and all measure-
ments that are likely to be in one of the gates (red and black
disks in Fig. 3). It applies the Hungarian method to com-
pute the assignments between the states and measurements
in this cluster by minimizing the sum of their Mahalanobis
distances.

Our second approach for data association, the “greedy
approach,” also computes clusters when conflict situations
arise, but does not apply the Hungarian method. Instead, an
assignment process is conducted that “greedily” favors ob-
jects with long observation histories. The process is started
by creating a match between the longest-observed object
and its nearest measurement. This object-measurement pair
is then removed from the cluster. In the next step, the
second-longest observed object in the cluster is matched
with its nearest measurement, and so forth until all matches
are made. One might interpret the greedy approach as a
“sub-optimal” approximation algorithm for the “optimal”
Hungarian method. However, it is not clear that the Hun-

garian method’s criterion to minimize the sum of the Maha-
lanobis distances is the “best” criterion. The characteristic
of the greedy approach to favor objects whose tracks were
established earlier is a conservative attribute.

Figure 3. Cluster-based and greedy data association ap-
proaches. A cluster (black dotted rectangle) is created when the
likelihood is high that a measurement (red disk) is due to any one
of three objects (squares). The two observations (black disks) in
the gates are part of the cluster, the two observations outside (gray
disks) are not. Note that the gates are ellipsoidal probability den-
sity surfaces. In the greedy approach, which only maintains the
object’s position as its state, gates can be considered to delineate
image regions (rectangular for efficiency).

We developed two versions of the cluster-based approach
which differed in the definitions of the state vector. One ver-
sion included and one excluded an appearance component,
which was the intensity of the warmest pixel in object.

We implemented the greedy approach for the special
case when the state simply represents the object’s position.
Then the Mahalanobis distance between the predicted state
and the measurement corresponds to the Euclidean distance
between the predicted position and the measurement. A
gate can be defined as a region in the image and, for effi-
ciency reasons, we used a rectangular subimage instead of
an ellipse. These simplifications allowed us to predict posi-
tions and compute data associations in near real time.

3.6. Multi-Object Tracking with Data Association
We incorporated the detection, tracking, and data asso-
ciation methods described in the previous sections into
the multi-object tracking system shown in Fig. 4. In
the first step, a feature detector produces observations
x1(t), . . . xn(t)(t) which may correspond to objects or clut-
ter. Data association and Bayesian recursive filtering follow
in steps 2 and 3. Step 4 concludes the processing of the
current frame with an event analysis (Sec. 3.3).

Event analysis requires maintenance of the objects and
their properties (states) in three datastructures, the “tracked,
lost, and new object lists.” State estimation (step 2) is per-
formed only for active objects. This pruning technique en-
sures that the estimator does not associate current measure-
ments with “old” objects that have long disappeared from
the scene. The tracked object list contains persistent ob-
jects that are active. Objects whose measurements initiated
new trackers are placed in the new object list. They stay



For each unassociated x(t):
Create new tracker

Move persistent objects from
new object to tracked object list

Remove clutter from lost
 object list & delete tracker
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Input: Video
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Step 4

For each active object s(t−1) (tracked and lost object lists):
^
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Determine the gate for s(t|t−1)
Determine likelihoods of x(t)’s within gate

Step 3

Step 2

Figure 4. Overview of the tracking system. The first three steps
must be performed sequentially; the tasks in step 4 (in four boxes)
may be parallelized.

in this list as long as they remain non-persistent and active.
Once such an object has been tracked for T frames, it is
moved from the new object list to the tracked object list. If
an object in the new object or tracked object lists could not
be associated with measurements in the current frame, it is
moved to the lost object list.

The lost object list contains active and inactive objects,
which may be clutter. Active objects that have been lost for
more than Tlost frames are reassigned to be inactive. Main-
tenance of the lost object list requires removal of any object
that has not been tracked for T frames and has been lost
for more than Tlost frames. Such non-persistent, inactive
objects are deemed to be clutter.

For all versions of the system, the computational com-
plexity of each step, except data association, is linear in the
number of observations. The version that uses the greedy
method is linear in the number of tracks and measurements.
The cluster-based method applies the Hungarian algorithm
to each cluster, which has a complexity cubic in the number
of measurements in the cluster. If this number is bounded by
a small constant throughout the tracking, the overall com-
plexity is linear. Such a bound cannot be assumed for the
GNN method, which is cubic in the number of all measure-
ments and tracks and therefore computationally expensive.

4. Experiments and Results
The proposed method has been applied to census Brazil-

ian free-tailed bats (Tadarida brasiliensis), one of the most
gregarious mammal species in the world. Numerous cen-
suses have been conducted at this time and produced excit-
ing new results in the field of wildlife ecology [7, 4, 12]. In
the current paper, we focus on experiments that were per-
formed to evaluate the efficacy of the proposed method, but
it should be understood that the method has been applied to
track and census millions of bats.

We collected videos of flying bats near caves known to

be day-time roosts of bat colonies. Due to the low-light con-
ditions during the bats’ nightly emergence, infrared thermal
cameras were used (Indigo Systems’ Merlin Mid Imaging
Camera), which recorded digital, non-interleaved video at a
rate of ∼60 Hz. Each video frame contained V =320×240
pixels of 12-bit intensity values (Fig. 1 left). The cameras
are sensitive to the infrared range of 1 to 5.4 µm.

We first experimented with video collected during an
emergence of a small bat colony. The video contained 9,139
frames, i.e., 2:32 min of data. We established the “ground
truth” on the number of emerging bats, 7,007, by visual
inspection and manual marking. We consider this ground
truth to be accurate because the apparent size of the bats in
the images was sufficient for detection by visual inspection
and because the density and range of size of the bats in the
images were small enough so that bats occluded each other
only briefly. We used the version of our system with the
greedy method for data association. Our system detected
and tracked a total of 834,979 objects. It pruned this num-
ber with a persistence threshold of T = 32 frames, which
corresponded to 0.53 s of video. The threshold Tlost = 5
frames was used. On average, the system maintained track-
ing information of 132.7 active objects at any given point
in time. Each persistent object appeared on average in 92.8
frames. The output of our system, 7,056 tracked persis-
tent objects, compares favorably with the manual estimate
of 7,007 bats; it is a difference of only 0.78%. The average
processing rate was 10.8 Hz. The persistence threshold T
was important for detecting clutter: with T = 2 frames, the
number of tracked objects, 8,992, was considerably higher
than 7,007.

We also established the ground truth for portions of the
video collected during emergence and foraging periods at
a second cave (Fig. 1 middle and right). In a four-minute
video during the peak emergence, our system estimated
91,790 persistent objects. By manually tracking bats in a
fraction of this video and then interpolating the numbers,
we estimated 88,108 bats emerged from the cave during the
four-minute period. The discrepancy of 4.2% may be due
to mistakes by the tracking method or the manual estimate.
Persistent objects appeared in 63.5 frames on average. The
algorithm maintained 831 active trackers on average.

We also evaluated the accuracy of the tracking method
by recording the same emergence from two different view
points. The emergence lasted 86 minutes and resulted in
two video data streams, each containing 309,600 frames.
The number of bats tracked with the first camera was
431,205 and with the second camera 406,572, a difference
of 5.7% (see Fig. 5). This difference was due to the rela-
tively large distance between the bats and the second cam-
era. It is important to note that our system can only work
successfully when the apparent size of a bat in an image is
at least a few pixels. On-the-spot adjustment of camera po-



sition once the bats started to emerge would have been dan-
gerous due to the steep terrain and would have disrupted the
recording of tens of thousands of bats due to their breath-
taking speed (ca. 10 m/s).
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Figure 5. Comparison of tracking results: The number of bats
emerging from a cave in Texas based on analyzing the data from
two cameras with significantly different field of views.

Our method allowed successful tracking in the pres-
ence of occlusion and track crossings (Fig. 6). An ex-
periment showed that the cluster-based approach resolved
conflict situations similarly to four independent volunteers,
but the greedy approach did not (80% vs. 35% agree-
ment in 20 situations). We timed the processing speed of
the greedy, cluster-based, and GNN methods on several
video sequences. The average respective frame rates were
7.51 Hz, 7.10 Hz, and 0.05 Hz when a 1.7 GHz processor
was used. These results agree with our worst-case complex-
ity analysis in Section 3.6. Analysis of the computed clus-
ters showed that the average cluster size is small. When the
number of active tracks is low, almost all clusters had a size
less than 6. When the number of active tracks was greater
than 300, only 10% of the clusters had a size between 6 and
12, 90% were smaller.

5. Discussion and Conclusions
The experiments showed that the proposed method

scales extremely well and is accurate. A level of uncertainty
remains (< 6%), which is quite acceptable, especially when
compared to the previous state-of-the-art. Methods used by
biologists in the past produced census estimates that were
one order of magnitude higher than our numbers and had
confidence intervals involving millions of bats.

Our method has already made an impact in the field of
conservation biology by helping to census millions of bats.
Our techniques have the potential to make further impor-
tant contributions, for example, provide the tools to analyze
the interaction of wildlife (Fig. 7) and answer urgent eco-
nomical and ethical questions about the mortality of birds
and bats in wind energy parks. We hope this paper moti-
vates others in the computer vision community to continue
with the trend to address complex outdoor image under-

Figure 6. Recognition of crossing tracks with and without oc-
clusion. Left: A horizontally flying bat (yellow track) occluded
a bat (blue track) that was flying diagonally upwards and further
away from the camera. Although the occlusion lasted for three
frames, the occluded bat was not lost. For clarity, only small
subimages of 8 consecutive frames are shown. Right: The path
of a horizontally flying bat (blue track) was crossed by a bat (or-
ange track) that was flying diagonally upwards. Conflict resolution
was performed successfully. Only subimages of the most relevant
frames (9390, 9399, 9403, and 9416) are shown.

standing problems and thus make some contribution to help
humankind understand and conserve its environment.

Our current work can be extended in the following
ways. First, the trade-off between reliability and efficiency
should be explored further for the different filter and data-
association versions of the proposed system. New cost
functions may be developed. Second, additional object
properties could be incorporated into the definition of a
state, such as periodicity of movement, which would be use-
ful for video surveillance of walking people as well as fly-
ing animals. Information about the appearance of an object
could also be added. This is not straightforward in some
wildlife scenarios, e.g., flying bats or birds look very much
alike. Finally, although our method handles occlusion well,
it would be interesting to explore other ideas of linking track
fragments (e.g., [6, 19, 20]), which would be most impor-
tant for scenes with high object density.
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Figure 7. Observing behavior of wildlife: While hunting for
bats, an owl (long orange track) is flying into the column of bats.
Frames 9695, 9699, 9704, 9709, 9712, and 9719 are shown.


