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Abstract—Building upon state-of-the-art algorithms for
pedestrian detection and multi-object tracking, and inspired
by sociological models of human collective behavior, we
automatically detect small groups of individuals who are
traveling together. These groups are discovered by bottom-
up hierarchical clustering using a generalized, symmetric
Hausdorff distance defined with respect to pairwise proximity
and velocity. We validate our results quantitatively and
qualitatively on videos of real-world pedestrian scenes. Where
human-coded ground truth is available, we find substantial
statistical agreement between our results and the human-
perceived small group structure of the crowd. Results from
our automated crowd analysis also reveal interesting patterns
governing the shape of pedestrian groups. These discoveries
complement current research in crowd dynamics, and may
provide insights to improve evacuation planning and real-time
situation awareness during public disturbances.

Index Terms—pedestrian detection and tracking, pedestrian
groups, crowd dynamics

I. INTRODUCTION

There has been increasing interest in using surveillance
trajectory data for human behavior analysis, ranging from
activity recognition based on the motion pattern of a single
individual or interactions among a few (e.g. [1]), to analysis
of the flow of a large crowd, for example to discover
pathways or monitor for abnormal events (e.g. [2]). Less
well-studied is the collective behavior of small groups of
people in a crowd. In this paper we build upon state-
of-the-art pedestrian detection and tracking techniques to
discover small groups of people who are traveling together.
Determining the group structure of a crowd provides a basis
for further mid-level analysis of events involving social
interactions of and between groups.

Our main contribution is a hierarchical clustering al-
gorithm that, informed by social psychological models of
collective behavior, automatically discovers small groups
of individuals traveling together in a low to medium den-
sity crowd (Figure 1). A pairwise distance that combines
proximity and velocity cues is extended to form a robust
distance between groups of people using a generalized,
symmetric Hausdorff measure for inter-group closeness.
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Fig. 1: Small groups are prevalent in pedestrian scenes. Our
algorithm detects groups of people traveling together via hi-
erarchical clustering on trajectories automatically extracted
from video of crowds under various conditions.

Agglomeration of clusters is further constrained by an intra-
group tightness measure inspired by sociological research
into group behavior, enabling the number of groups in the
scene to be determined automatically.

We validate our approach extensively on several video
sequences taken in public pedestrian areas from elevated
viewpoints typical of surveillance camera footage. Two
indoor sequences are used to quantitatively compare results
of our algorithm with consensus ground truth labeled by
multiple human coders. We find that there is substantial
statistical agreement between our algorithm’s estimated
groups and the human-perceived small group structure of
the crowd. We also qualitatively evaluate our method on
three outdoor sequences with different camera elevation
angles, target sizes, and crowd densities, to demonstrate our
method’s tracking and group clustering capabilities across
a range of conditions.

Although the experiments show that grouping based on
trajectory distances is adequate to discover many small
groups, two people walking side-by-side are more likely
to form a group than two people who maintain a similar
distance and speed but in a front-to-back configuration.
We therefore hypothesize that the geometric layout of
individuals will ultimately provide an important, and com-
plementary, grouping cue. To that end, we also present a
preliminary statistical analysis of the spatial configurations
of small walking groups, using real-world pedestrian crowd
footage with human annotations.
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Analyzing the group structure of crowds has important
practical applications. Current models of evacuation treat
all people as separate agents making independent decisions.
These “particle flow” models tend to underestimate the time
it takes for people to leave an area, because groups of
individuals who are together try to leave together, limiting
the speed of the group to that of its slowest member. A
small group behavior model also suggests new strategies
for police intervention during public disturbances. Rather
than seeing an irrational homogeneous crowd, police should
be looking at small groups, only a few of which might merit
coercion. Our work also demonstrates that computer vision
is a viable methodology for supporting sociological anal-
ysis, enabling collection of empirical data on real crowds
faster and more thoroughly than previously possible.

II. BACKGROUND AND RELATED WORK

This section explains why the composition of a crowd is
important for modeling social behavior and reviews related
computer vision work on crowd scene analysis.

Collective Behavior and Small Groups. Collective
behavior is the generic term for the often extraordinary
and dramatic actions of groups and of individuals in groups
[3]. Models of collective behavior tend to be bimodal. At
one extreme are models that consider the entire crowd as
one entity. Scholars have assumed that crowds transform
individuals, so that the resulting collective begins to exhibit
a homogeneous “group mind” that is highly emotional and
irrational [3]. At the other extreme are models treating
everyone as independent members acting to maximize
their own utility. For example, crowd behavior has been
simulated by considering people as particles making local
decisions based on the principle of least effort [4].

As with most dichotomies, the truth is likely to lie in
the middle. One hypothesis is that crowds are composed
primarily of small groups, defined as a “collection of indi-
viduals who have relations to one another that make them
interdependent to some significant degree” [5]. Despite be-
ing intuitively reasonable, there has been surprisingly little
work to validate this hypothesis. Johnson [6] argues that
most crowds consist of small groups rather than isolated
individuals (see also [7]). An unpublished study by McPhail
found that 89% of people attending an event came with at
least one other person, 52% with at least 2 others, 32%
with at least 3 others, and that 94% of those coming with
someone left with the people they came with [8].

Our work in this paper analyzes sets of trajectories to
discover small pedestrian groups in a crowd. Much has
been written in the surveillance literature about detecting
and tracking moving objects [9]–[11]. Here, we cover only
recent work that focuses on analysis of crowd scenes and
the identification of group behavior.

People Detection and Tracking. There have been sev-
eral papers concerned with detecting a crowd and estimat-
ing its size. Often, the crowd is treated as a multiscale
[12] or dynamic [13] texture, and extracted features are
used to classify how many people are present [14]. Some

approaches derive area-based count estimates by using prior
calibration to relate the location and size of an image region
to the number of people the region could contain [15],
[16]. Similar approaches have been taken in [17] using
holistic properties and in [18] using corners. Other research
in vision addresses high-level crowd flow analysis in a
statistical sense. This work includes identifying locations of
roads/paths and learning patterns of normal scene activity
from large datasets of individual trajectories [19], corner
feature trajectories [20] or optical flow [21], [22]. Although
these techniques are sufficient to generate predictive macro
models of crowd motion, they do not address the problem
of identifying and tracking groups of individuals. Indeed,
measuring global crowd flow does not even require seg-
mentation of the scene into individuals. Some recent efforts
in multi-target tracking in crowded scenes have appeared
in [23]–[25].

Behavior Analysis. Behavior recognition involving inter-
preting sequences of actions of one person or interactions
of two or three are commonly built upon Hidden Markov
Models [26] or Dynamic Bayes Networks [27]. These
approaches are typically limited to a small, known number
of individuals, due to the combinatorics involved in the
coupled interpretation of multiple time series. There is
recent evidence that more efficient recognition of group
activities is possible by using a model of the group activity
process to guide interpretation of the actions of individual
members [28], [29].

More relevant to our work is recognition of collective
behavior involving an arbitrary number of actors, such as
identifying small groups of people shopping together [30],
locating queues waiting at vending machines [31], analyz-
ing social interaction in small group conversations [32],
and recognizing crowd formation and dispersal behaviors
through statistical clustering of pairwise relational predi-
cates [33]. Only recently has collective locomotion behavior
been studied. In [34], pedestrians with similar velocity are
grouped together to aid motion prediction for tracking. This
is a pragmatic definition of group, not a social one, since
people who are far apart are clustered together when they
have a common velocity. A model of social pedestrian
groups based on measurement of each individual’s personal
space is explored in [35]. Cupillard et.al [36] develop a
tracker to parse individual trajectories of people walking
in a group. The tracker consumes motion detection results
and links detected moving regions into paths (possible
trajectories of individuals), following the principle of Reid’s
Multi Hypothesis Tracking (MHT) [37]. Special heuristics
for pruning existing paths and creating new ones are
developed based on considering how a path relates to a
group structure. However, results are only shown on videos
with several people (2–5) walking in a metro station, and
it is not clear whether this method is scalable to larger
crowds considering the larger number of MHT hypotheses.
Lau et.al. [38] cluster 3D data points from a laser range
finder into groups of human-sized blobs and adapt MHT
to directly track moving, merging and splitting groups over
time. An interesting aspect of their approach is the use
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of anthropologist Edward Hall’s theory of proxemics [39]
to define groups based on ranges of personal and social
interaction distances.

Group Behavior Models. Collective locomotion be-
havior is also studied in the traffic analysis and crowd
simulation community. Models describing traffic flow can
be characterized at the macroscopic or the microscopic
level [40]. Because macroscopic studies focus more on
the space allocation for pedestrians in a facility than on
the direct interaction between pedestrians, they are not as
suitable for predicting pedestrian groups as for evacuation
planning. Microscopic models consider pedestrians as indi-
vidual agents, with the collective crowd dynamics emerging
from the interaction between agents. For example, in the
social forces model [41], the behavior of an individual is
subject to long-range forces caused by other pedestrians
and environmental components such as obstacles and pre-
ferred areas. Similar approaches are used for multi-target
tracking [42], [43] and abnormal behavior detection [44] in
crowds. Another example is the Cellular Automaton (CA)
model where individuals move according to a preference
matrix that specifies the probabilities for a particular walk-
ing direction and speed [45]. Time and state are discretized
in CA models, making them amenable to high-performance
crowd simulation. Floor field models were introduced to
substitute individual agents’ intelligence with a floor field
that is modified by the pedestrians and in turn modifies
their preference matrices [46]. The advantage of using the
floor field is that it can turn long-range interactions into
local forces. In [21], floor fields are estimated from visual
data and used to aid target tracking in dense crowds.

Relatively few models have been validated using real-
world observations and even fewer explicitly consider group
modeling. In [47], pedestrian behaviors follow a discrete
choice model (DCM) that encodes a prior on walking speed
and direction. Later, the DCM model was augmented by
a leader-follower model and a collision avoidance model,
both of which capture the interaction between pedestrians
within a spatial range [48]. The leader-follower model
(flocking) is one of the most frequently implemented mod-
els in crowd simulation [49], [50]. Other than that, small
groups are often absent in crowd simulations [51] even
though they are everywhere in real-world observations. We
are only aware of the following works that look into more
general group behavior models. In [52], crowd dynamics
are modeled by a two-level hierarchical structure: a high-
level group behavior model and a low-level action model.
In [53], intra-group and inter-group influence matrices are
used to specify interaction among group members and
between groups respectively. The model is able to generate
group structures ranging from linear line formations to
clusters by varying the values of the influence matrices.
However, no real-world data was used to validate the model.
A recent study shows that social interactions among group
members generate typical group structures that influence
crowd dynamics: at low crowd density, group members tend
to walk side-by-side, and this line formation is bent forward
into a V-shape pattern as the density increases [54].

III. DETECTING AND TRACKING INDIVIDUALS

There is no shortage of explanations for crowd behavior,
but there is a shortage of explanations supported by empir-
ical sociological research [55]. The few empirical studies
that have analyzed video data of people in public spaces
(e.g. [56], [57]) have required hundreds of person-hours to
hand code just minutes of film, greatly limiting the amount
and type of video that can be quantitatively analyzed.
The use of automated computer vision methods therefore
could represent a substantial methodological improvement.
However, generating a reliable set of trajectories for people
in crowded public spaces is a non-trivial task due to
frequent occlusions and the presence of nearby confusers.
In this section we describe an approach for pedestrian de-
tection and tracking that is capable of producing reasonable
trajectories in crowded scenes containing closely spaced
people. Clustering these trajectories to hypothesize small
pedestrian groups is presented in Section IV.

We combine a pedestrian detector, a particle filter tracker,
and a multi-object data association algorithm to extract
long-term trajectories of people passing through the scene.
The detector is run frequently (at least once per second),
and therefore, in addition to any new individuals entering
the scene, people already being tracked are detected multi-
ple times. For each detection, a particle filter tracker is in-
stantiated to track that person through the next few seconds
of video, yielding a short-term trajectory, or tracklet. The
goal at this stage is to generate a set of overlapping tracklets
for each person. For example, if detection is run every 20
frames, and a particle filter tracks each detection through
the next 80 frames, at any one moment in time roughly four
temporally overlapping trajectory fragments will be mea-
suring the location of any given person in any given frame.
A second phase of trajectory-to-fragment data association
is then run to link and merge these multiple fragments into
single, longer trajectories. Below we describe our detection
and tracking approaches in more detail.

A. Detection

We employ two different detection strategies. For videos
captured from high elevation/wide angle views where peo-
ple are small, we tackle pedestrian detection as a “cover-
ing” problem. Individual pedestrians are detected by using
Reversible Jump Markov Chain Monte Carlo (RJMCMC)
to find a set of overlapping rectangles that best explain
or “cover” the foreground pixels in a binary segmentation
generated by adaptive background subtraction. This method
is similar to that of [58]–[60] and is capable of extracting
overlapping individuals in crowds up to moderate density.

For higher resolution videos, pedestrian detection is
performed in each frame using a combination of motion
and contour (edge gradient) information, using a set of
templates learned offline from training examples extracted
from the same camera viewpoint. We use the HoG detector,
implemented from the description in Dalal and Triggs [61].
Motivated by [62], we use motion information to determine
regions that are more likely to contain moving pedestrians,
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Fig. 2: Left: Sample detections in low resolution video by estimating a rectangular covering using RJMCMC. Right:
Sample detections in higher-resolution video using an HoG detector for body (left) and head-and-shoulders (right).

in the form of a background subtraction mask. Background
subtraction is helpful for suppressing image gradients in
stationary regions of background clutter, to avoid finding
false positives in those areas. Sample detection results from
both methods are shown in Figure 2.

B. Tracking

For each detected pedestrian, a Sampling Importance
Resampling (SIR) particle filter [63] is instantiated as a
short-term tracker to track the detected person for the next
few seconds of video. The state space is four-dimensional
(x, y, u, v), where (x, y) is the hypothesized image location
of the object centroid and (u, v) is the interframe velocity.
We use constant velocity motion prediction with a Gaussian
noise model. Roughly 50 particles are propagated for each
target. The likelihood measure for determining particle
weights for resampling can vary depending on resolution
and quality of the video, e.g. normalized correlation of
greyscale intensity templates, or Earth Mover’s Distance
(EMD) on marginal R,B,G color histograms. Since we
reinitialize tracking frequently, the short-term tracker does
not need to consider appearance model updates.

Sets of tracklets extracted in overlapping sliding windows
of time are combined into longer trajectories by recursively
merging each new set of tracklets into an evolving set of
trajectories, one window at a time, in a single forward scan.
Given a set of existing long-term pedestrian trajectories,
and a new set of tracklets from the next sliding window,
we match up trajectories to tracklets through a process of
data association. Specifically, if there are N trajectories
and M new tracklets, we form an NxM affinity table
where each element contains a score rating the affinity of
one trajectory with one tracklet that overlaps it in time.
The affinity measure is a combination of geometric and
appearance terms: a measure of “continuity” computed by
the average distance between corresponding locations in the
area of temporal overlap and appearance similarity of the
targets. We also augment the affinity table with one row
and column of “slack variables” to take into account that a
new tracklet may not correspond to any existing trajectory
(trajectory birth), or that a trajectory may not have been
corroborated by any tracklet (which eventually leads to
trajectory death).

To find the best assignment of trajectories to track-
lets from the affinity table, we solve the corresponding
Linear Assignment Problem (LAP) using the Hungarian
algorithm [64]. Matched trajectory-tracklet pairs in the LAP
solution are merged to extend the trajectory. Tracklets that
have no matching trajectory are used to start new trajec-
tories. Trajectories for which there is no matching tracklet
have their ”health” decremented. When a trajectory’s health
drops to zero, it is terminated. Trajectories that still exist
at the end of this stage become the new trajectory set for
another round of data association with tracklets in the next
sliding window, and so on. The result of this forward scan
procedure is the merging of multiple overlapping tracklets
into a set of longer individual trajectories. An actual merge
between two contiguous trajectories is a simple average
of spatial locations. When two noncontiguous trajectories
are merged, the locations in the gap between the two are
computed by linear interpolation.

IV. IDENTIFYING SMALL GROUPS

In this section we present a clustering approach that
hypothesizes small groups traveling together using the
notion of group “entitativity” [65], defined in terms of
criteria from Gestalt psychology: common fate (same or
interrelated outcomes), similarity (in appearance or behav-
iors), proximity, and pregnance (patterning). Given a set of
automatically extracted pedestrian trajectories, we identify
potential groups within a sliding time window using hierar-
chical clustering based on robust measures computed from
the noisy trajectories.

Our automatic grouping algorithm is inspired by McPhail
and Wohlstein [57], who present the only objective measure
we know of in the social science literature to determine
which people are traveling together through the scene. In
[57], group membership is determined via a cascaded set of
three tests: 1) any two people who are within 7 feet of each
other and not separated by another individual are considered
to be contiguous, and pass on to the next test; 2) any two
contiguous people whose speeds are the same to within .5
feet per second are judged to have the same speed, and
pass on to the next test; and 3) any two contiguous people
traveling at the same speed whose directions of motion are
the same to within 3 degrees are judged to have the same
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direction. A group-expand procedure is also defined to test
whether a new individual should be added to an existing
group. Note that in [57], these tests are applied by human
observers who analyze frames of video offline.

A. Measurements

Consider the trajectory of a person in the scene as a
set of tuples (s, v, t), where s is the position vector of
the tracked person’s centroid (projected into the ground
plane using a homography estimated offline) and v is the
velocity vector at frame t. Let Γ be the temporal overlap of
the trajectories between person i and j within a temporal
window T . We extend McPhail and Wohlstein’s frame-
based test to an aggregated pairwise distance measure
between two trajectories over time:

wt
ij = αN (‖st

i − st
j‖) + (1 − α)N (‖vt

i − vt
j‖) (1)

δt(i, j) =
{

1 ‖st
i − st

j‖ < τs & ‖vt
i − vt

j‖ < τv

0 otherwise
(2)

ρij =
∑

t

δt(i, j) (3)

wij =

∑
t wt

ij

ρij |Γ| for i �= j and t ∈ Γ (4)

where N (·) is a min-max normalization operator applied
independently for each pair of trajectories to linearly scale
their velocity and distance differences into the range [0, 1].
We use a weight α = 0.7 to combine spatial proximity
and velocity cues into a pairwise distance wt

ij computed
at each time frame t. For each pair of tracked individuals,
we compute the average pairwise distance wij over all the
frames within Γ and scale by the number of times ρ ij

that the spatial distance and velocity difference between
person i and j are below the thresholds τs and τv . This
favors grouping people walking close to each other with
similar velocities for a long period of time. The temporal
consistency imposed by this aggregated measure helps
overcome tracking errors to get stable groups over time.

Instead of considering the speed and direction differences
separately as in [57], we compute the norm of the velocity
difference vector because it is more robust against noise.
Moreover, two people engaged in a conversation will have
small speed if they are standing still, but can possibly have
large random oscillations in orientation. The vector differ-
ence comparison is still stable in this case, and satisfies
our expectation that people with coordinated behaviors are
likely to be grouped together (Figure 6).

The pairwise distance metric is extended to measure
the inter-group closeness between two groups of people
by a generalized, symmetric Hausdorff distance. Hausdorff
distance is a popular distance metric for two finite sets,
and has been used for shape matching and trajectory
analysis [2]. Here we use a modified version to measure
the locomotion similarity between two sets of people. More
formally, the symmetric Hausdorff distance between group

Fig. 3: Identifying small groups via agglomerative clus-
tering. Top (left): Four groups (white, red, magenta, and
yellow) are identified. (right): Pairwise counting value of
ρij . Brighter color indicates two individuals exhibit col-
lective locomotion for a longer time; for example, node 9
can potentially be grouped with 8, but not 6 or 7. Bottom:
Results of agglomerative hierarchical clustering.

A and B is H(A, B) = h(A,B)+h(B,A)
2 , where

h(A, B) =

∑|A|
i=1

∑�|B|/2�
j=1 dil

|A| × �|B|/2� (5)

and dil is the lth smallest distance amongst all the distances
wij , j ∈ B, computed by Eqn.(4). The intuition behind this
is that the directed distance from A to B is small when
every member in A is close to at least half of the members
in B, a rule also used in McPhail and Wohlstein’s group-
expand procedure.

B. Clustering

We identify groups based on a bottom-up hierarchical
clustering approach that starts with individuals as separate
clusters and gradually builds larger groups by merging two
clusters with the strongest inter-group closeness (i.e., the
smallest Hausdorff distance). Alternatively, one could take
a top-down approach, starting with the entire crowd as a
whole group and iteratively splitting into subgroups based
on the same distance measure. We choose the bottom-up
approach because it is more efficient in crowds composed
of small groups.

Compared with other clustering methods (e.g. , K-means
or spectral clustering), our approach does not require a
predefined number of clusters. To automatically discover
the number of groups, we construct a connectivity graph
among people and measure the graph density as intra-group
tightness. For any group of size k ≥ 1, the vertices of
the connectivity graph Gk correspond to the members in
the group. There is an edge between vertex n i and nj

iff person i and j are together for a sufficient amount of
time, i.e. , ρij > τt (Eqn. 3). We set τt = 10 for all the
experiments. The density of this graph helps us define intra-
group tightness as follows. Let ek be the total number of
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edges in Gk and êk+1 be the minimal number of edges
desired in Gk+1 after including person pi in Gk. Following
the rule that a person i can be added to an existing group of
size k iff she is connected with half of the existing group
members [57], i.e. , the degree of n i ≥ �k

2�, we then have
êk+1 = ek + �k

2 �. By definition, e1 = ê1 = 0. For k ≥ 1,
given the basis condition that ê2 = 1 and ê3 = 2, we derive

êk =
{

(k
2 )2 if k is even

k−1
2 (1 + k−1

2 ) if k is odd
(6)

Two groups Gp and Gq then satisfy the intra-group tight-
ness criterion if

ep+q ≥ êp+q + (ep − êp + eq − êq). (7)

The terms in parentheses represent how many “extra” edges
that group Gp and Gq can contribute to the intra-group
tightness of the merged group Gp+q . A larger number of
the terms in parentheses means that either or both sub-
groups are already tight groups with dense edges. In order
for the merged group to remain a tight group, we require
more edges in Gp+q , that is, a bigger number of ep+q .
Figure 3 illustrates how this tightness measure promotes
the compactness of identified groups. Person 9 is excluded
from the group g = (6, 7, 8) because there is only one edge
connecting 9 and 8, and including 9 in g does not satisfy
the inequality specified in Eqn.(7). During each iteration
of the merging process, we check the intra-group tightness
of the next cluster to be merged. The clustering algorithm
terminates when no clusters are qualified to be merged.

To summarize, within each temporal slice, starting from
clusters with a single member, we gradually group people
exhibiting collective locomotion by agglomerative hierar-
chical clustering. Each merging step is governed by both
inter-group closeness, which is measured by a generalized,
symmetric Hausdorff distance, and intra-group tightness,
measured from the group connectivity graph. The latter
provides a more principled way to determine when to stop
clustering than manually setting a threshold.

V. EXPERIMENTAL EVALUATION

We validate our proposed group detection method on a
collection of videos of real-world pedestrian scenes with
different environments (indoor and outdoor), viewpoints,
pixels-on-target, and crowd sizes ranging from a few
individuals to over 200. Sample video frames of each
sequence are shown in Figure 4. Each video was recorded
using a Sony DCR VX2000 digital video camcorder. After
downloading the raw DV file from the tape, each video
was converted to a sequence of PNG files using the open
source program ffmpeg to produce deinterlaced 24-bit color
images at a frame rate of 29.97 frames per second. We
use full-body HoG detector on SU1, head-and-shoulders
detector on ARTFEST , and RJMCMC rectangular covering
detector on all the other sequences. For tracking, normal-
ized correlation of greyscale intensity templates was used
for SU1, which is a monochrome greyscale sequence; while
color appearance likelihood (EMD on marginal R, B, G

Fig. 4: Sample video frames of the test sequences used
for the experiments in this section: SU2 (A), SU1 (B),
ARTFEST (C), STADIUM1 (D), and STADIUM2 (E).

color histograms) was used in all other sequences. A
summary of the group size statistics for sequences where
ground truth was collected is listed in Table I.

TABLE I: Percentage of groups of different sizes.

1 2 3 4 5 or more
SU1 consensus 0.67 0.27 0.04 0.01 0.01
SU2 interview 0.64 0.32 0.02* - -
SU2 consensus 0.60 0.25 0.12 0.02 0.01

* This annotation only decomposes crowds into groups of size 1, 2, and 3 or more.

A. Data Collection and Annotation

Evaluation and comparison of work in this area is made
difficult by lack of datasets with ground truth pedestrian
groupings. We therefore have collected two datasets of
pedestrians in a student union building from an elevated
viewpoint and established “human consensus” ground truth
by combining decisions made by multiple human coders.

The first experiment, SU1, was a pilot study performed
on a four-minute video sequence. To obtain the ground
truth, nine coders watched a version of the video with
IDs overlaid on the 248 individuals passing through the
scene. Coders were instructed to identify small groups
by writing down the IDs of individuals in each group,
and were told they could rewind and replay the video
as often as needed. Groups determined by each coder
were summarized into a numeric label for each pedestrian
representing the size of the group they were traveling in
(1 for single pedestrians, 2 for pairs, 3 for triplets, and so
on). A consensus ground truth composite was computed
by combining these numeric labels across all nine coders.
The consensus label was defined as the modal response, the
most common numeric label assigned by the coders. If there
was more than one mode, the one with the smallest numeric
label was assigned. Across coders, there was adequate, but
not perfect agreement, which points out that there is some
baseline ambiguity in deciding whether individuals form a
group. For the 248 individuals in the video, all nine coders
agreed about the coding of 161 individuals (65%), 6-8
coders agreed on the coding of an additional 57 individuals
(23%), a bare majority of five coders agreed on the coding
of 22 individuals (9%), and there was no consensus about
8 individuals (3%) (see Figure 5 Left).

Coders indicated that it was difficult to make judgments
about groupings within the relatively narrow field of view
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Fig. 5: Agreement rates among human coders for SU1 (left)
and SU2 (right), reported in the form x, y% where x is the
count of agreement cases and y is the percentage that count
represents of the total cases.

of SU1. Based on their feedback, and to generate a longer
and more challenging dataset, a second test sequence, SU2,
was recorded. This sequence is one hour long, taken from a
new viewpoint with a much larger range of depth, leading
to more partial occlusion and a wider variation in image
heights of people as they walk from near field to far
field. The sequence also contains a wider range of crowd
densities, from sparse (5 people per frame) to moderately
dense (40 people per frame). Due to the length of the video,
six coders were told to click on the heads of people in
keyframes taken every 10 seconds, and to partition them
into groups. Raw head clicks provided by all six coders
were pooled to determine how many pedestrians were in
each keyframe, and to assign each a unique ID and head
location. As with SU1, group information provided by the
coders was summarized by assigning each pedestrian a
numeric label representing the size of group he or she was
with. Of the 59081 pedestrians who were labeled in this
way, all six coders agreed on the coding of 4035 of them
(69%), five coders agreed on an additional 1038 (18%), a
bare majority of four coders agreed on the coding of 510
individuals (9%) and there was no consensus about 226
people (4%), a similar rate of human coder agreement as
in the shorter SU1 sequence, as visualized in Figure 5.

B. Quantitative Evaluation

SU1 sequence. We automatically detected and tracked
pedestrians in the 4-minute SU1 sequence and applied hi-
erarchical grouping to the generated trajectories to hypoth-
esize small groups. Sample results are shown in Figure 6.

To quantitatively evaluate our grouping method, we first
coded the consensus ground truth and computer-estimated
group size for each pedestrian into one of two categories:
alone or in a group. We achieved 89% agreement rate under
this dichotomous coding scheme. Evaluating the results
using a trichotomous coding scheme for each pedestrian (
alone, in a group of two, or in a group of three or more), we

1Individuals appearing in multiple keyframes are labeled multiple times,
therefore this number is larger than the number of unique individuals who
passed through the scene.

achieved an 85% agreement rate. To test the statistical sig-
nificance of the agreement between the computer estimates
and the ground truth, we conducted Cohen’s Kappa test on
the trichotomous and dichotomous measures. In general,
the κ score is defined as

κ =
Po − Pc

1 − Pc
, (8)

where Po is the observed agreement among coders and Pc

is the expected agreement if the coders had been making
random decisions informed by the distribution of class
labels, and thus agreeing purely by chance. Kappa scores
range from -1 to 1, with the rate of agreement expected by
chance yielding a score of 0. Similar to the Chi-squared
test, Kappa measures agreement but also controls for the
underlying base rates of the variables so that trivially
predicting the group size that is dominant in the ground
truth will not yield a good score. As was shown in Table
I, the distribution of class labels for this application is not
at all uniform, and therefore the conservative Kappa test
is a more appropriate evaluation metric than agreement
rate. Table II shows that there was substantial agreement
(κ > 0.6) [66] between the consensus ground truth and the
computer estimates.

TABLE II: Cohen’s Kappa test on the indoor sequences.

SU1 SU2
match rate κ match rate κ

dichotomous 89% .75 84% .74
trichotomous 85% .69 75% .63

SU2 sequence. Similar experiments were conducted on the
longer, more challenging SU2 sequence. We obtained simi-
lar though reduced match rates and kappa scores (Table II).
Some sample detected small groups are shown in Figure 7.
Besides the Cohen’s Kappa test, we also computed the
Adjusted Rand Index (ARI) [67], which is a standard
statistical measure of the similarity in group membership
between two set partitions, adjusted for chance in the same
way that the Kappa test is. The ARI score is .65, which is
again within the range of substantial agreement as measured
on the Kappa scale. It shows that our method agrees well
with ground truth not only on the size of groups, but also
on the membership of the groups.

Further investigation on the SU2 sequence shows that the
end-to-end performance of our approach degrades gradually
as the crowd density increases, as shown in Figure 8. For
a moderate crowd of 20 people per frame, our κ value is
above .5, which still indicates reasonable agreement.

It is clear that grouping errors made by our algorithm are
coupled with the underlying detection and tracking routines.
Evaluation of our person detector alone shows a detection
accuracy of 96% for detecting people in the ground truth
keyframes with a false positive rate of 23%. Effects of
tracking errors on grouping are harder to quantify. Our
observation is that some tracking errors such as swapping
identities between people traveling together do not affect
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Fig. 6: Sample group detection results in the SU1 sequence. Notice that the group marked with the rectangle has been
consistently identified throughout a change of status from stationary to moving.

Fig. 7: Sample groups detected in the SU2 sequence.

the determination that they are a group, since their trajec-
tories still overlap for a significant period of time. However,
when the density of the crowd increases, the likelihood
of a swapping error between people in different groups
also increases, and these trajectory errors lead to errors in
grouping.

To quantify how tracking errors are lowering the group-
ing performance, we further annotated thirty minutes of the
SU2 sequence to obtain ground truth trajectories. The first
half of the sequence (SU2-L) contains a relatively light
crowd, while the second fifteen minutes of the sequence
(SU2-H) contains a denser crowd. For each person in the
sequence, hand labeling provided by human coders was
processed to generate trajectory data points at every 10th
frame. The statistical agreement between our computer-
estimated groupings and human consensus ground truth
improves (as expected) when using the ground truth tra-
jectories, especially for the trichotomous scores, as shown
in Table III.
TABLE III: Cohen’s Kappa score of estimated pedestrian
groupings on two portions of SU2, based on our method
using hand-labeled trajectories, computer-estimated trajec-
tories , and the method of Sugimara et.al. [68] using hand-
labeled trajectories, from left to right in each column.

dichotomous trichotomous
SU2-L .88 .81 .62 .83 .66 .58
SU2-H .75 .34 .33 .72 .27 .30

However, note that the improvement in performance is
much higher for the higher density SU2-H sequence, which
originally yields very low κ scores. We take this as an
indication that our current tracker is not performing well
during periods of high crowd density, and that improvement
of this component will lead to a direct increase in better

Fig. 8: Analysis of performance at higher crowd densities.
Left: Dichotomous κ scores at various crowd densities.
Right: Snapshots of crowds with 20, 30, and 40 people
per frame (ground area is roughly 120 square meters).

overall performance of the system.

C. Comparison with Corner Clustering

Theoretical Discussion. A number of works have con-
sidered the problem of counting pedestrians by clustering
corner feature trajectories into groups that each represent
a single individual [68]–[70]. These approaches can be
viewed as potentially relevant to the problem here if one
replaces the trajectories of corners with trajectories of
people, and interprets the output clusters as representing
small groups rather than individuals. Of these previous
methods, Rabaud and Belongie [69] is the most closely
related to our own. In that paper, hierarchical agglomerative
clustering is also used to cluster trajectories into groups
moving coherently through the image. Trajectories are first
“conditioned” by spatial smoothing and extrapolation. A
connectivity graph is formed with smoothed trajectories
as nodes and edges linking pairs of trajectories that can
be contained at all times within a box of expected object
size, and that maintain a certain amount of rigidity in their
pairwise distances. An initial clustering using RANSAC
groups sets of four or more points that move together
coherently with respect to an affine transformation. Finally,
agglomerative clustering iteratively considers each closest
pair of clusters in turn and merges them if all of their corner
features are linked in the graph, stopping when all pairs of
clusters have been considered.

In contrast, our small group detection is designed to be
applied directly to noisy trajectories without first precon-
ditioning them by smoothing. Rather than requiring full
connectivity between all pairs of nodes when merging, our
intra-group tightness criterion only requires each node of a
cluster to be connected to roughly half of the nodes in the
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other cluster, which is expected to be more robust when
trajectories are noisy. Furthermore, rather than pruning an
edge if the distance between two trajectories violates a
threshold in any frame, our aggregated pairwise distance
is based on “soft” measures that perform weighted averag-
ing of spatial and velocity differences, normalized by the
number of times both fall within a threshold. Therefore,
distance thresholds can be violated in some frames without
breaking the link between two trajectories. This not only
yields better robustness to noisy trajectories, but in the
present application allows us to find groups of people who
came from different directions to meet up and then travel
together, or who split up after a period of time to go their
separate ways. The aggressive pruning scheme of [69] is
fine for finding objects composed of many corner features,
since even with a few dropped corners those objects will
still be detected. In our application, however a typical small
group is composed of only two or three people and the
impact of false negatives is more damaging, motivating our
softer approach to pruning.

Experimental Comparison. A second class of approach
is represented by Brostow and Cipolla [70] and Sugimara
et.al. [68]. These methods also form a connectivity graph,
but do a one-shot pruning of edges based on a decision
threshold, followed by finding groups as connected com-
ponents in the remaining pruned graph. Here we describe
Sugimara et.al. in more detail, which we have also im-
plemented to perform a quantitative comparison. Edges in
the initial connectivity graph are formed from a Delaunay
triangulation of the x, y locations of people in the central
frame of the sequence. Each edge between nodes p and
q is assigned a weight representing a dissimilarity score,
computed as the product of four numeric cues: 1) spatial
proximity, 2) coherency of motion, 3) gait frequency, and
4) appearance consistency. Of these, only the first two make
sense for our application (our nodes are trajectories of com-
plete individuals, not corners on individuals) and are the
same two features also used in Brostow and Cipolla. Spatial
proximity is measured as the maximum distance between p
and q in any frame, and motion coherency is the standard
deviation of the distances between p and q over all frames
in their period of temporal overlap. After computing the
edge weights between trajectories in the initial connectivity
graph, the graph is cut into connected subgraphs by simply
pruning edges that have high dissimilarity scores, i.e. that
have a weight above some threshold. As in [68], we set this
threshold to half of the median value of all edge weights
in the graph. After thresholding, each remaining subgraph
is declared to be one group of individuals.

Results from Sugimara et.al. using hand-labeled trajec-
tories for the SU2-L and SU2-H sequences are reported
in Table III. There is a considerable drop in performance
compared to our method using the same trajectories, partic-
ularly for the dense SU2-H sequence. The primary reason
is that Sugimara’s method produces overly-large groups
from transitive chains of linked pairs that form a connected
subgraph even though pairs near the beginning and end of
the chain do not pass the test for being together in a group.

The problem is that connected components of purely pair-
wise linkages cannot enforce higher-order consistency tests
for group compactness, such as our intra-group tightness
measure. A second drawback of all the corner trajectory
clustering methods is an implicit assumption made about
the statistics of intracluster vs intercluster edges in the
connectivity graph. When there are 8-12 nodes (corners)
forming each individual cluster, their O(n2) short pairwise
edges represent a larger fraction of the total number of
edges in a Delaunay triangulation [68] or pruned distance
tree [70] than when there are only 2-3 nodes (people) per
cluster. As such, many of the data-driven procedures in
corner clustering approaches simply fail to work in our
application. Even the affine motion check in [69] assumes
more nodes per cluster than are typically present in a small
pedestrian group.

D. Interview Study and Real-Time Observers

Although consensus judgments can be used as one esti-
mate of whether individuals are walking together, the only
way to know for sure whether individuals are walking alone
or with others is to ask them. To collect this information,
we had two research assistants briefly interview every fifth
pedestrian while capturing the SU2 sequence. One research
assistant, standing at the west end of the atrium, interviewed
78 pedestrians. The other research assistant, standing at the
east end of the atrium, interviewed 68 pedestrians. Of the
181 individuals who were asked to be interviewed, 148
(81%) consented.

The interview consisted of two questions: (a) “Are you
walking alone or with someone?” and (b) “If you are
walking with someone, how many others are you walking
with?” One assistant coded by hand the interview notes
in the way described in Section V-A, using descriptive
information in the notes to identify the respondents in the
video keyframes. The 148 interviewed individuals yielded
419 total samples due to some individuals appearing in
multiple key frames.

Furthermore, to determine how well human observers
can spot pedestrian groups while watching a crowd in real-
time, we had two researchers on site watch the pedestrians
and write down the groups they observed. Observer A was
positioned at ground level, and Observer B was viewing
from an elevated location (the same location as the video
camera). Written notes from these observers were also
coded as samples in the manner described above.

Figure 9 shows a plot of pairwise statistical agreement
tests (Cohen’s κ scores) for the individual coders, real-time
observers, and computer results, as measured with respect
to both the interview ground truth and the human consensus
ground truth. The raw κ values are also reported in Table IV
for interview ground truth, and in Table V for human
consensus ground truth. Since some sample sets such as
the interview and real-time observer data are subsamples of
the complete set of individuals, Cohen’s Kappa agreement
score between two sets is computed on the intersection of
the samples measured in each set.
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TABLE IV: Cohen’s Kappa agreement scores based on interview ground truth for SU2.

observer A observer B computer coder 1 coder 2 coder 3 coder 4 coder 5 coder 6 consensus
dichotomous 0.22 0.56 0.74 0.86 0.85 0.75 0.82 0.85 0.82 0.85
trichotomous 0.29 0.54 0.67 0.81 0.79 0.63 0.82 0.79 0.83 0.83

TABLE V: Cohen’s Kappa agreement scores based on human consensus ground truth for SU2.

observer A observer B computer coder 1 coder 2 coder 3 coder 4 coder 5 coder 6
dichotomous 0.5 0.7 0.74 0.92 0.93 0.85 0.88 0.92 0.92
trichotomous 0.53 0.71 0.63 0.91 0.93 0.83 0.88 0.91 0.92

Fig. 9: Comparison of Kappa agreement values using
interview and consensus ground truth. A and B are the
two real-time observers. 1-6 are the six coders. C is the
computer result. Dichotomous κ scores are shown in blue
and trichotomous scores are in red. The solid line represents
the curve where Consensus κ = Interview κ.

We see from Figure 9 that, among human decision
makers, the ground-level real-time observer A performs the
worst, real-time observer B with an elevated viewpoint does
a better job, and off-line coders who can view and replay
the video as long as they want perform the best. Computer
performance is roughly on par with Observer B with respect
to consensus ground truth, and exceeds Observer B with
respect to interview ground truth. The computer results are
also more comprehensive than the results from the real-time
observers, in that 81% of the total pedestrian groups were
accounted for by the computer, versus 68% for Observer
B, and only 47% for Observer A. We therefore have an
automated system with comparable accuracy to a real-time
observer but with the advantage of being able to account
for a greater percentage of individuals in the scene.

E. Qualitative Evaluation

In this section, we demonstrate our method qualitatively
on three outdoor crowd sequences. The first two outdoor
videos, STADIUM1 and STADIUM2, were captured during
a sporting event. STADIUM1 is a five-minute clip taken
of people walking on a closed street prior to the start of
the game and STADIUM2 is a 30-minute clip taken of
people leaving the stadium gate after the game. The camera
was mounted on the stadium, thus the viewpoint is highly
elevated and the image size of each person is relatively
small. Figure 11(bottom) shows sample small groups found
using our method.

Fig. 10: Stability test on the STADIUM1 sequence. Left:
the video was chopped into 10 segments, each of 1000
frames. Right: the video was chopped into 5 segments,
each of 2000 frames. The estimated trichotomous coding of
the small group structure of the crowd remains consistent
across segments within each plot, and across both plots,
suggesting that the grouping algorithm is consistent.

Ground truth evaluation of results from the STADIUM
videos is difficult because human observers cannot make
judgments easily with such large crowds. Instead, we
evaluate the consistency of our grouping algorithm by
chopping the video into segments, running the detec-
tion/tracking/grouping pipeline on each segment, and test-
ing whether the estimated small group structure of the
crowd remains stable over time. Two sets of experiments
were conducted with different segment lengths. Figure 10
shows that the small group structure estimated by our
algorithm remains consistent within each experiment and
across experiments. However, this evaluation cannot rule
out the possible presence of systematic bias in estimated
group sizes.

The last outdoor video, the ARTFEST sequence, is a
two-minute video captured at an outdoor art festival. The
lower camera elevation angle, higher zoom, and “browsing”
behavior of the crowd leads to frequent severe occlusion
and more complicated trajectories. Figure 11(top) shows
examples of detected small groups at different time frames
where the crowd density varies and the trajectory pattern
differs (e.g., strolling down the road vs pausing in front of
a vendor).

The group parameters for all the test sequences are
summarized in Table VI. For SU1 and SU2 with ground
truth grouping information, the thresholds are decided by
running a grid search to find values that maximize the
kappa scores over a smaller training set. The parameters
for other sequences without ground truth information were
set empirically. The grouping results are not sensitive to
small changes in threshold value.
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Fig. 11: Small group detections. Top: ARTFEST sequence. Bottom: STADIUM1 (left) and STADIUM2 (right) sequences.
Trajectories of different groups are marked with different colors. The trajectories of people classified as traveling alone
are omitted for clarity.

TABLE VI: Parameter Settings.

τs τv τt

SU1 1.15 meters 0.01 10
SU2 1.06 meters 0.09 10
ARTFEST 115 pixels* 1.5 10
STADIUM1 and STADIUM2 30 pixels* 2 10

* Distance in ground plane is approximated by image distance when calibration
information is not available.

VI. GROUP CONFIGURATIONS

In addition to identifying pedestrian groups, we are
interested in understanding how groups move in crowds.
The study of group behavior is not only of interest for
sociologists but also of importance for realistic crowd sim-
ulation, evacuation planning, and vision tasks. For example,
researchers have shown that pedestrian behavior models
learned from video observations can be useful for track-
ing [21], [42], [43], [47] and activity recognition [44]. The
prediction of pedestrian motion is usually determined by a
repulsion force field, and it has been reported that a primary
failure mode of this model is when groups of people walk
together [42]. This finding suggests that a model component
should be added to take group interactions into account. To
build such a model, the first step is to study pedestrian
walking patterns from real observations.

Discrete Choice Model. We have conducted a study on
the general walking pattern of groups in normal crowds,
i.e. not in evacuations or riots, using the SU2-L and SU2-
H sequences, where human coders have annotated ground
truth trajectories for individuals in the crowd. We also
used the BIWI Walking Pedestrians dataset2 containing
two sequences (ETH and HOTEL) with similar ground

2http://www.vision.ee.ethz.ch/datasets/

truth annotations. From the ground truth trajectories and
group information, we estimate individual behavior pat-
terns using the discrete choice model (DCM) [47], where
each individual moves according to a discretized set of
choices based on his current speed and moving direction.
There are three different radius zones, which correspond
to deceleration, constant speed, and acceleration, defined
as 0.5, 1.0, and 1.5 times the current speed, and eleven
angular sectors that correspond to the discretization of
the moving direction. Our analysis (not shown here) of
DCM histograms aggregated over several groups over time
indicates that, like individuals, members of small groups
tend to maintain a constant walking speed and direction
over short periods of time. However, as shown in Figure 12,
individual DCM sequences alone are not adequate to model
behavioral correlations between group members.

Statistical Shape Modeling. In order to study correlated
patterns, we use a statistical shape analysis method [71] to
analyze the spatial position of all group members jointly
and estimate the typical group formations of walking
pedestrians, which we refer to as group configurations.
A group configuration S at a particular time consists of
a point set of member locations, i.e. S is a 2g-vector
[x1, y1, x2, y2, . . . , xg, yg]T , where g is the group size.
We first align each configuration with respect to its group
center and moving direction so that each configuration S
is centered at the origin and the group moving direction
is aligned with the positive y-axis. After this alignment,
we find the correspondence between the member points
in different configurations by a data association procedure
that minimizes the sum of squared distances between corre-
sponding points in configurations from groups of the same
size. Figure 13 shows the aligned configurations of groups
of size three. We then stack all the aligned and matched
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Fig. 12: DCM sequences from three people in a group. In
each DCM, the current direction is colored in yellow and
the next moving direction is colored in blue. The walking
patterns exhibit strong correlations, e.g. person 1 stopped
first to wait for the other two to catch up.

configurations column-wise into a 2g × N sample matrix
S. Denote by Ŝ the matrix S after centering (subtracting
the mean S̄ from each column).

Principal component analysis is applied to the covariance
matrix H = ŜŜ′ to study the joint variation in the group
configuration samples. We model each configuration by

S ≈ S̄ + Pb, (9)

where S̄ is the mean configuration, P is the matrix of
K dominant eigenvectors associated with the K largest
eigenvalues of the covariance matrix, and b is a vector of
K model parameters.

Results. In our experiment, the first four principal com-
ponents account for most of the variability in the spatial
configurations, explaining more than 99% of variations. In
Figure 14 and in the accompanying video, we visualize
these four common variations by varying b. We name the
four modes: deformation, stretching, rotation, and jittering.
For example, in Figure 14a, colored dots represent the

mean shape and the blue lines indicate the variation along
a particular principal component. We name it the defor-
mation mode because the variation of the shape exhibits a
deforming pattern: while the middle dot is moving down,
the left and right dots are moving up, deforming from a
straight line to a V-shape. Figure 14b shows the stretching
mode. It is a pattern where the middle dot remains relatively
still, whereas the left and right dots are moving in opposite

Fig. 13: The configurations of groups of size three are
aligned with respect to their group centers and moving di-
rections. The three members are plotted with three different
colors after a data association procedure that matches points
across different configurations. Edges indicating neighbor-
ing members of each group are omitted for clarity.

Fig. 14: The first four modes of variation on SU2, varying
b from 0 to one std. See also the supplemental video.

directions, making the whole group configuration wider or
narrower. Figure 14c shows the rotation mode, where the
middle dot is the pivot point, and the left and right dots
are rotating around the middle dot. Figure 14d shows the
jittering mode, where the left and right dots are moving
side-to-side in the same direction, opposite of the direction
the middle dot is going.

Two of the four largest modes, rotation and jittering, may
correspond to artifacts due to noise: jittering due to errors
in the human-labeled trajectories and rotation due to noise
introduced by the alignment process. The other two modes
reveal interesting walking configurations. The deformation
variation is the most interesting one, modeling the switch
between different formations: V-shaped, line formation, and
upside-down V-shaped. In [54], it is suggested that the
V-shape structure is actively created and maintained by
groups to facilitate social exchange. The upside-down V-
shape is expected to be a more flexible structure than
a line formation when a group of people are moving
against an opposite traffic flow. Secondly, group members
tend to maintain a distance from each other to keep the
group formation, and they adjust their spread under various
circumstances, e.g. to avoid environmental obstacles. The
stretching mode defines this flexibility of group formations
quantitatively.
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These results motivate us to conduct further analysis
in the future with a larger sample set of groups. For
example, another possible explanation for the jittering mode
is asymmetric offset of the center person with respect to the
left and the right person. With more samples, we could
conduct tests to distinguish this behavioral pattern from
procedural artifacts.

VII. CONCLUSION

We have demonstrated that automated pedestrian detec-
tion and tracking can extract trajectories from video and that
hierarchical clustering can detect small groups of people
traveling together. To our knowledge, we are the first to
show experimentally that results of agglomerative cluster-
ing are in substantial statistical agreement with subjective
human perception of who is with whom in a crowd. As a
field like computer vision matures, the importance of the
research is measured in part by the influence it has on other
fields. Our results demonstrate that automated tracking is
capable of providing quantitative characterization of real
crowds faster and with similar accuracy as human observa-
tion, providing a new methodology for the empirical study
of social behavior. It is interesting to note that trajectory
information alone is enough to yield substantial agreement
with the perception of human coders who are able to
address the grouping task by observing more subtle visual
cues such as arm gestures and gaze direction.

Our future extensions include further investigation of
small group configurations across different social events,
which will be of interest to social studies of how pedestrians
behave in different environments, and can be used for
realistic crowd simulation. We also plan to explicitly incor-
porate the learned spatial group configurations to aid our
tracking and grouping algorithms. For example, it would
be interesting to apply the statistical model of spatial group
configurations as a new social force feature for addressing
the challenges of crowd tracking.
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