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Abstract

Object tracking typically relies on a dynamic model to

predict the object’s location from its past trajectory. In

crowded scenarios a strong dynamic model is particularly

important, because more accurate predictions allow for

smaller search regions, which greatly simplifies data asso-

ciation. Traditional dynamic models predict the location

for each target solely based on its own history, without tak-

ing into account the remaining scene objects. Collisions

are resolved only when they happen. Such an approach

ignores important aspects of human behavior: people are

driven by their future destination, take into account their

environment, anticipate collisions, and adjust their trajec-

tories at an early stage in order to avoid them. In this work,

we introduce a model of dynamic social behavior, inspired

by models developed for crowd simulation. The model is

trained with videos recorded from birds-eye view at busy

locations, and applied as a motion model for multi-people

tracking from a vehicle-mounted camera. Experiments on

real sequences show that accounting for social interactions

and scene knowledge improves tracking performance, espe-

cially during occlusions.

1. Introduction

Object tracking has seen considerable progress in recent

years, with current systems able to handle long and chal-

lenging sequences automatically with high precision. The

progress is mostly due to improved object models—either

generic appearance models or detectors for specific kinds of

objects—or better optimization strategies. One aspect that

was hardly explored so far however is the dynamic model,

another key component of every tracking approach. Typi-

cally, a standard first-order model is used, which does not

account for the real complexity of human behavior.

In particular, physical exclusion in space is often mod-

eled only indirectly, by allowing at most one detection to

be assigned to a trajectory, while at the same time making

sure that detections are sufficiently far from each other. In

practice this amounts to non-maximum suppression in 2D

Figure 1. While walking among other people, several factors in-

fluence short-term path planning. Smoothness of motion, intended

destination, and interactions with others limit one’s choice of di-

rection and speed. In the example (same scene, two pedestrians’

perspectives), blue indicates good choices for velocity, red signals

“no-go”s. The white cross shows the actually chosen velocity. We

propose a dynamic model that takes these factors into account.

image space. In situations where full occlusions are com-

mon (e.g. in street scenes seen by a street-level observer),

such an image-based approach fails to adequately differen-

tiate collisions from occlusions.

We believe that one main problem in this context is the

dynamic model, typically a first- or second-order approxi-

mation applied independently to each subject, e.g. using an

Extended Kalman Filter (EKF). Inspired by work on crowd

simulation, we propose a more elaborate dynamic model,

which takes into account the social interactions between ob-

jects (here, pedestrians) as well as their orientation towards

a destination (usually outside the field of view). The fact

that people proactively anticipate future states of their envi-

ronment during path planning, rather than only react to oth-

ers once a collision is imminent, has largely been ignored in

the literature. This goes to the extent that standard motion

models do not even take into account the elementary fact

that people have a destination, and hence steer back to their

desired direction after deviating around an obstacle.

The proposed model, termed Linear Trajectory Avoid-

ance (LTA), is designed for walking people with short-term

prediction in mind. Due to the complexity of human mo-

tion patterns, longer prediction horizons become unreliable;

very short ones do not require sophisticated models, since

displacements are so small that linear extrapolation is suffi-

cient. Hence, the effect of LTA is best seen in busy scenar-



ios with frequent short-term occlusions, or when framerate

is low and the data association procedure is less reliable.

The model (Sec. 3) operates in physical world coordi-

nates and can be applied to any tracker which operates in a

metric frame. We show how the model parameters can be

learned from birds-eye view data(Sec. 4), and apply it both

in a simple patch-based tracker operating on oblique views,

and in a detection-based tracker operating on footage from

a moving camera (Sec. 5).

2. Related Work

Multi-target tracking. In recent years, object tracking

has been successfully extended to scenarios with multiple

objects [12, 16, 19]. Modern systems can track through

long and challenging sequences with high precision. To this

end, researchers have focused on improving the appearance

model [10, 5], the object detector [2, 7, 9, 22], and/or the

optimization strategy [14, 16, 23]. Others have developed

approaches specifically for crowded scenes [1, 6, 24].

The dynamics and interaction between targets is much

less explored. Several models include the requirement that

the tracked objects should not collide in any frame. The

condition is met by assigning every object detection to at

most one tracked object [12, 19, 22]. Note that the unique

assignment alone does not solve the problem for finite ob-

ject size and finite framerate: detections are not guaranteed

to be far enough apart to prevent collisions—one has to

rely on non-maximum suppression in image space. Further-

more, there are valid assignments which give rise to cross-

ing paths with a collision between adjacent frames.

In their “space-time event-cone tracking”, Leibe et al.

[16] explicitly model physical exclusion between subjects

in world coordinates, however, this is restricted to the selec-

tion of the best trajectory hypotheses only—the important

step of creating these hypotheses is done independently and

does not cater for interactions.

Besides interactions, one important factor in our model is

the desired direction of a subject by the way of goal points.

Such points have been used to influence tracking [1, 12, 14].

We directly include target points in our optimization.

Social behavior models. Modeling the behavior of pedes-

trians has been an important area of research mainly in evac-

uation dynamics and traffic analysis. Pedestrian behaviors

have been studied from a crowd perspective, with macro-

scopic models for pedestrian density and velocity. On the

other end of the spectrum, microscopic models deal with

individual pedestrians. One example for the latter is the

social force model [11], where pedestrians react to energy

potentials caused by other pedestrians and static obstacles

through a repulsive force, while trying to keep a desired

speed and motion direction. Another branch of micro-

scopic models assumes agents that interact autonomously

through a basic form of intelligence represented by a rule

set [15, 20]. In yet another branch, cellular automata are

used, which discretize the space and select the next desired

direction from a preference matrix, e.g. [21].

All these models have been designed and used for simu-

lation purposes. This is also the case for the example-based

model of Lerner et al. [17], although in this work the simu-

lation is used for synthesizing computer graphics videos.

We are only aware of three works, which use a pedestrian

model in computer vision applications. Ali and Shah [1] use

the cellular automaton model atop a set of scene-specific

“floor fields” to make tracking in extremely crowded situa-

tions tractable. In contrast, we model single pedestrians in

world coordinates, which decouples the approach from the

camera setup. Antonini et al. [3] propose a variant of the

Discrete Choice Model to build a probability distribution

over pedestrian positions in the next time step, assuming

that all subjects perform a global optimization for the next

step. Very recently, Mehran et al. [18] use the social force

model to detect abnormal behavior in crowded scenes.

Our LTA model shares some characteristics with the so-

cial force model [11], but differs in two crucial ways: first,

rather than modeling the pedestrians at their current loca-

tion as energy potentials, we predict their expected point

of closest approach, and use that point as the driving force

for decisions. Second, when simulating a subject, we make

it move in the optimal direction instead of just applying a

gradient-dependent force. Hence, in LTA pedestrians ex-

hibit decisive behavior and choose their path such as to min-

imize collisions, rather than just being reactive particles.

3. Modeling Social Behavior

Given a current configuration S = {si} of subjects

(i = 1 . . . n), our model estimates the velocity of each si

in the next time step, based on current positions and veloci-

ties for all the subjects. Specifically, we model a subject as

si =(pt
i, vt

i), where pt
i denotes its 2D position on the ground

plane and vt
i its velocity vector at time t. For brevity’s sake,

we define the current time step as t=0 and drop the corre-

sponding superscript, e.g. pi =p0

i . In the following, we will

first concentrate on the basic case of two subjects before

generalizing to an arbitrary number.

We assume a first-order model jointly for all pedestrians

in the scene: every pedestrian knows the current positions

and velocities of all subjects. It is thus reasonable to think

that each pedestrian will predict the movement of the other

pedestrians following a constant velocity model. Therefore,

if subject si proceeds with the velocity ṽi, it expects to have

the squared distance d2

ij(t) from sj at time t:

d2

ij(t, ṽi) = ||pi + tṽi − pj − tvj ||
2 , (1)

where we have made explicit the dependence of the dij

to ṽi to highlight that we are taking the perspective of si
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Figure 2. Two subjects, with their current directions (black) and

velocities (magenta). s1 feels the repulsion from s2’s expected

point of closest approach c2, and vice versa. Colors denote ener-

gies for different velocities, white dots mark the respective min-

ima. Note how s2 accelerates and turns right in order to avoid s1,

while s2 slows down and turns to his right.

(w.l.o.g.). Defining kt
ij =pt

i−pt
j and qt

ij = ṽi−vt
j we can

rewrite Eq. 1 as

d2

ij(t, ṽi) = ||k + tq||2 . (2)

We assume that pedestrians try to steer clear of collisions.

As si has an estimate for sj’s velocity from the last time

step, it will adapt its own velocity ṽi such that the minimum

distance d∗2ij from sj is greater than a certain value that si

considers comfortable. The minimum distance occurs at the

time of closest approach t∗, where

t∗ = argmin
t>0

d2

ij(t, ṽi) , (3)

and we constrain the search to future time steps. Relaxing

this constraint for a moment, the time at which the distance

is minimized is found by setting the derivative of d2

ij with

respect to t to zero,

∂d2

ij(t, ṽi)

∂t
=2(k + tq)q⊤=0 → t∗=−

k · q

||q||2
. (4)

In Eq. 4, the distance d2

ij decreases for t < t∗ and increases

for t > t∗. We can therefore reintroduce the constraint,

saying that if t∗ is smaller than zero, then the minimum of

d2

ij for t≥ 0 will be at t = 0. Substituting Eq. 4 into Eq. 2

then yields the minimum distance

d∗2ij (ṽi) = ||k −
k · q

||q||2
q⊤||2 . (5)

Note that Eq. 5 does not depend on time anymore. In order

to make sure that si avoids sj , one could set Eq. 5 equal to

some preferred distance. However, this does not extend well

to the case of multiple pedestrians. We therefore propose to

build an energy functional for the interaction between si and

sj as a function of d∗2ij ,

Eij(ṽi) = e
−

d∗2
ij

(ṽi)

2σ2
d , (6)

where σd controls the distance to the subject to be avoided.

Eij is maximal when the linear trajectories would lead to a

collision, and is minimal as d∗2ij goes to infinity.

Based on Eq. 6, the influence of multiple subjects can

now be modeled as a weighted sum, where each subject sr

(r 6= i) gets assigned a weight wr(i) depending on its current

distance and angular displacement φ from si. We set

wr(i) = wd
r (i)wφ

r (i) (7)

wd
r (i) = e

−
||kir||2

2σ2
w (8)

wφ
r (i) =

(

(1 + cos(φ))/2
)β

. (9)

σw defines the radius of influence of other objects, β con-

trols the “peakiness” of the weighting function used for the

field-of-view. The overall interaction energy for subject si,

Ii(ṽi), is then given by

Ii(ṽi) =
∑

r 6=i

wr(i)Eir(ṽi) . (10)

These interactions alone, however, do not bound the mini-

mization appropriately because scene knowledge is ignored.

Like in other works [1, 13], we assume that each pedes-

trian walks towards a destination zi, and in doing so tries to

maintain a desired speed ui. These two components can be

represented by two further energy potentials,

Si(ṽi) = (ui − ||ṽi||)
2 (11)

Di(ṽi) = −
(zi − pi) · ṽi

||zi − pi|| · ||ṽi||
. (12)

The overall energy for subject si can hence be written

Ei(ṽi) = Ii(ṽi) + λ1Si(ṽi) + λ2Di(ṽi) , (13)

with λ1 and λ2 controlling the influence of the two reg-

ularizers. See Fig. 1 and Fig. 2 for a visualization of the

obtained energies. Minimizing this distance with respect

to the velocity ṽi cannot be done in a closed form. In our

experiments we employ gradient descent with line search.

Given the situation of a pedestrian facing a group of peo-

ple, an interesting outcome emerges from Eq. 10 and Eq. 13.

Fig. 3 shows the energy that a subject s1 sees when trying to

avoid two oncoming pedestrians, s2 and s3. Each column

of the figure describes the energy for a different direction

of the velocity vector (keeping the speed fixed), while each

row indicates different distance between s2 and s3. One

can see that as a consequence of the Gaussian shape, a local

minimum in the middle exists only when the gap between

the two oncoming subjects is sufficiently large. As the gap

narrows, the two people form a local maximum that s1 will

try to avoid.

The minimization of the energy functional allows for the

calculation of the next desired velocity ṽ∗
i . However, due to

inertial constraints, the subject has to undertake a transition

from the current velocity to the desired one. This is modeled

through a simple filtering approach. The subject’s position

is updated according to

p
tN

i = pi + (αNvi + (1 − αN )ṽ∗
i ) tN , (14)

where the prediction interval N is made explicit to allow

for the adaptation to different frame rates, and α is a mixture
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Figure 3. Energy seen by subject s1 when making a choice of

changing its heading (horizontal axis) as it approaches two sub-

jects moving in opposite direction. The wider the gap between s2

and s3 (vertical axis), the easier it is to pass between them (bottom

of graph, minimum in middle) instead of steering around the pair

(top, minima on the side).

coefficient. Naturally, as N grows the prediction becomes

more linear. We keep the time interval N at the frame rate of

the respective sequence and recompute the desired velocity

at each time step.

3.1. Static Obstacles

So far, we only took dynamic obstacles in the form of

pedestrians into account. In most common scenes however,

people will also try to avoid static obstacles. Following

other authors [13] we model such obstacles as subjects with

zero velocity. The obstacle’s position is approximated at ev-

ery time step by the point closest to the pedestrian [1, 13].

While being a coarse approximation, this works well except

for highly non-convex obstacles.

3.2. Application of the Model

Given the current configuration of dynamic and static ob-

stacles at time t, we infer the optimal velocity at time t+1
for each subject in turn by minimizing Eq. 13 and then ap-

plying Eq. 14. Once these velocities have been identified

for each subject, they are updated in parallel. In the case

of tracking, if an observation is available, it is merged with

the simulation’s estimate at this point. Note that we do not

iterate the simulation in the current time step, assuming that

pedestrians base their immediate path planning only on the

past. Also, oscillations over time can still occur when peo-

ple walk towards each other—a well-known situation from

everyday life.

4. Training

The model as defined in the previous section has six

free parameters, which need to be learned from training se-

quences: the standard deviations defining the comfortable

distance σd and the radius of interest σw, the “peakiness” β
of the subject’s field of view, the importance weights λ1 and

λ2 of the desired speed and velocity, and the update rate α.

We fix the prediction time step to 0.4 seconds, which is a

Figure 4. Sample frame from one of the training sequences.

σd σW λ1 λ2 β α

0.361 2.088 2.33 2.073 1.462 0.730

Table 1. Model parameters obtained from training sequences.

reasonable horizon for the model to operate.

To train our model, we have recorded two data sets from

birds-eye view and annotated them manually. This gave a

total of 650 tracks over 25 minutes.1 A sample image in-

cluding annotation can be seen in Fig. 4.

In both scenes, goal points were labeled and the desired

direction for each subject was set towards the closest goal.

For each pedestrian, the desired speed was set to the mode

of his speed histogram. The field-of-view was restricted to

± 90 degrees (i.e., wφ
r = 0 for |φ| > π

2
). People standing

or strolling aimlessly were ignored.

To find an optimal set of parameters we have experi-

mented with two optimization strategies, namely gradient

descent starting from multiple random initializations, and a

variant of genetic algorithms (GA). We found that among

the returned local optima of the parameters vector, several

performed equally well. For the following experiments, we

always use the local optimum with the lowest error (which

resulted from the GA optimization).

In one iteration round, each subject is simulated in turn,

holding the others fixed at the ground truth. The simula-

tion is started every 1.2 seconds along the subject’s path,

and continues for 4.8 seconds, similar to [13]. The sum of

squared errors (distances to ground truth) over all simula-

tions in the round is minimized.

We obtained the parameters given in Tab. 1. At first

glance, σd = 0.36 looks reasonable, stating that people will

not feel uncomfortable with a person more than ≈ 1 meter

away; σw = 2.1 means that people further away than ≈ 6

meters do not influence path planning; β suggests a relevant

peak of attention in the center of the field of view. Note that

the restricted field-of-view and the value of σw imply that

pedestrians are actually only aware of a limited portion of

the scene.

1Data and videos available at www.vision.ee.ethz.ch/̃ stefpell/lta
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Figure 5. Left: performance of the LTA model (solid red) against a trained model that uses destinations but no interactions (crossed green),

the social force model [13] (dashed blue) and simple linear extrapolation (dashdot black). Right: Example extrapolations: the model

smoothly avoids the standing crowd (top left, yellow=groundtruth), sometimes however suggests meaningful, but wrong paths (bottom

left). Using only goal-directed prediction is effective in some cases (top right) but in general better prediction is obtained by taking into

account interaction among pedestrians (bottom right).

5. Results

To experimentally evaluate the trained dynamic model,

we test it in three different settings. First, we measure its

mere quality as a predictor, which is e.g. of interest for path

planning in robotics. Then, we apply it inside two tracking

methods, a simple patch-based tracker, as well as a state-of-

the-art multi-person tracking system.

5.1. Prediction

To test the prediction performance of our model, we use

annotated data provided by the authors of [17]. The video

shows part of a shopping street from an oblique view. We

evaluate on a subsequence of about 3 minutes @ 2.5 FPS

containing 86 trajectories annotated with splines. With the

same simulation setting used during training (see Sec. 4)

this yields ≈ 300 simulations. A homography from image

to ground plane was estimated from four manually clicked

points on the footpath to transfer image to world coordi-

nates. As destinations we chose two points far outside the

left and right image borders, which holds for most subjects.

We compare our model with a simple baseline (“LIN”),

that merely extrapolates using the previous velocity, and

with a re-implementation of the social force model (“SF”)

with elliptical potentials [13]. Parameters for the latter are

learned using the procedure discussed in Sec. 4. For our

LTA model, we explore two possible parameter sets: the

first one was trained without interaction term, adding only

the drive towards a destination (“DEST”), whereas the other

one (“LTA”) also caters for interaction among subjects.

As error measure, the average Euclidean distance be-

tween predictions and ground truth is measured in each sim-

ulation step. The experiments show an improvement of 6 %

in prediction error for the LTA model compared to SF and

DEST, and of 24% compared to the LIN model. A closer

look at the distribution of the errors sheds more light on the

differences between models. For this purpose, we define a

trajectory as correctly predicted when for each timestep of

its simulation, the distance from prediction to ground truth

lies within a threshold T . The curve in Fig. 5(left) shows

the result of this analysis, plotting the percentage of the cor-

rectly predicted trajectories over varying T . At a thresh-

old of 1 meter, ≈ 50% of the trajectories are already cor-

rectly predicted using linear extrapolation (LIN). Adding

goal-direction (DES) increases the correctly predicted tra-

jectories to ≈ 63%. The SF model performs only slightly

better than the DES model. Another ≈ 7% boost is achieved

using LTA, reaching a total of ≈ 70%.

There are two issues to note here. Firstly, the scene is

only moderately crowded, and a large part of the trajectories

are almost straight. For these, all models give satisfactory

results, which washes out the average difference. Secondly,

the error distribution of LTA has a light but long tail with a

small number of very large errors. These happen when the

model in its present deterministic form avoids other pedes-

trians by walking around the wrong side, see Fig. 5. Al-

though from a tracking perspective, bumping into an obsta-

cle is a no less severe failure than passing it on the wrong

side, the latter adds twice as large errors and thereby distorts

the comparison. A stochastic variant of our model could

help here.

5.2. Patch­based Tracking

To highlight the effect of the dynamic model and com-

pare it to the LIN model, we have implemented a simple

patch-based tracker, using the normalized cross-correlation

(NCC) as similarity measure. In the first frame a rectan-

gular patch is manually initialized at each person’s loca-



tion p0

i as appearance model, and the speed of all targets

is initialized to ‖vi‖= 0. At each new time step t, the tar-

get location pt
i is predicted with the dynamic model, and a

Gaussian centered at the prediction gives the location prior

Ppred(p) = 1

Z
exp

(

− (
‖p−p

t
i‖

2σpred
)2

)

. In the surroundings of

the predicted location, the squared exponential Pdata(p)=
1

Y
exp

(

−(NCC(p,p0

i )−1)2
)

is employed as data likeli-

hood, and the maximum of the posterior Ppred ·Pdata gives

the new target location.

This simple tracker was applied to short, interesting sub-

sequences of the footpath sequence (non-overlapping with

the ones used above). For the dynamic model, we plug

in either the LIN (constant velocity) model or our LTA

model, leaving the other parameters unchanged. For the

LTA model, the desired direction (standing, left-to-right, or

right-to-left) is set for each person according to their last

displacement, and the desired speed is set to a constant

value for all people.

Tracking was performed at 2.5 FPS, leaving 0.4 seconds

between consecutive frames. In this scenario with low fram-

erate, multiple interactions, and low data quality, a strong

dynamic prior is important to enable tracking at all. As

can be seen in the examples of Fig. 6, the simple constant-

velocity model loses track of several targets, when they pass

others and have to adjust their speed and direction. The ex-

amples also show how the trajectories fail to swing back

without a target direction. On the other hand, LTA success-

fully tracks all people in the two examples.

5.3. Tracking with a Moving Observer

To further demonstrate the versatility of the approach,

we apply the LTA model (as learned from birds-eye view)

to tracking from a moving observer. We use the tracking-

by-detection framework [8], and plug in both the LIN and

the LTA models for modeling pedestrian dynamics. Both

versions are then evaluated on two (publicly available) se-

quences from that work.

In a nutshell, the approach projects the output of a pedes-

trian detector—in our case the HOG framework [7]—to 3D

world coordinates with the help of visual odometry and a

ground plane assumption. The tracking system then gen-

erates a set of trajectory hypotheses based on the object

detections and a dynamic model, and prunes that set to a

minimal consistent explanation with model selection. This

pruning relies on the assumption that all actual trajectories

are present in the set of hypotheses, thus requiring correct

tracking even when no data is available to immediately cor-

rect the motion model, mainly during to occlusions. Here

the LTA model comes into play.

To make the method amenable to our problem formu-

lation, we adapt as follows: first, instead of creating all

trajectory hypotheses independently, we introduce a trajec-

tory extension step that updates all currently active object

hypotheses in parallel, making them fight for available de-

tections similar to the greedy approaches used by [22, 19].

This then allows the second, crucial change: in the exten-

sion step, we apply the LTA model for each hypothesis in

turn, making them anticipate the other subjects’ movements

in order to avoid them. Especially during occlusion, this en-

sures that blind trajectory extrapolation takes into account

other subjects, and increases the chance that a subject’s tra-

jectory leaves the occlusion at the right position, so that

tracking can continue correctly. To also detect static ob-

stacles, we additionally project the depth map from stereo

images onto a polar occupancy map.

LTA requires a desired orientation and velocity. Assum-

ing very little scene knowledge, we set the desired orienta-

tion parallel to the road, pointing in the respective pedes-

trian’s previous direction. The desired velocity is set to the

last measured speed of the hypothesis.

As the tracker builds on a quite reliable set of pedes-

trian detections, we expect an advantage of the LTA model

mainly in case of occlusion. The improvement is therefore

bounded by the frequency of occlusion events. Then, LTA’s

extrapolation which is constrained by other agents should

outperform a standard linear model, thus preventing possi-

ble data association problems when the occlusion is over.

To quantitatively relate the two approaches with each

other, we compare tracking output with annotated ground-

truth using the CLEAR evaluation metrics [4], which mea-

sure ID switches and the percentage of false negative / false

positive bounding boxes. In Tab. 2, we compare the two dy-

namic models by varying the threshold on the Mahalanobis

distance d used in the data association. The reasoning be-

hind this procedure is the intuition that a larger search area

could possibly compensate for the disadvantages of a less

accurate prediction. When using LTA, the number of ID

switches is constantly lower, while the number of misses

and false positives stays about the same. While consistent,

the automatic evaluation tends to over-estimate the number

of ID-switches with increasing number of occlusion events.

For d = 3, we thus manually re-counted the ID switches for

the two sequences. In the first sequence, using LTA yields

31 as opposed to 36 ID switches with LIN. In the second

sequence, these figures are 18 (LTA) and 26 (LIN). Here,

many people leave the field of view and enter again, which

is always flagged as a new ID by the tracker. Leaving out

these “unrecoverable” cases, the last comparison gets down

to 10 (LTA) vs. 18 (LIN), a 44% improvement.

A few interesting situations from the two sequences are

shown in Fig. 7. The first three columns show the sequence

including the occlusion event as tracked by LTA, then two

plots in birds-eye view contrast the results for LTA with

those for LIN. Note the ID switches (red arrows), and the

missing track in the third example. This last example is

especially interesting, because the person in the very front
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Figure 6. LTA model vs. constant velocity (LIN) model. Selected frames from two tests with the patch-based tracker. Top: When using the

LTA model, the pedestrian marked in red is constrained by people walking nearby. The LIN model overshoots when he maneuvers around

an oncoming person and loses track. Bottom: the LIN model for the person marked in red makes a significantly wrong prediction and loses

track, whereas the LTA model tries to avoid oncoming people and predicts correctly. Note also how in both examples the persons marked

in cyan drift away at the end, because they are not steering towards a target direction.

Tracking output LTA LTA(birds-eye view) LIN (birds-eye view)

Figure 7. Examples where LTA improves the performance of multi-body tracking. First three columns: short sequences with occlusion

events, tracking results with LTA. Column 4: birds-eye view for the middle frame, using LTA. Column 5: birds-eye view for the same

frame, using linear model. Black areas are static obstacles, red arrows mark ID switches, dotted lines show the pre-switch trajectories

still being extrapolated—these dissappear after ≈5 frames as they fail to find supporting detections. First row: the man on the left is

successfully recovered from occlusion. Second row: constrained by the oncoming person, both ladies and the oncoming man are picked

up again. Third row: while the man in the front is not detected, he is integrated into the obstacle map, thus constraining the man in the

red-black sweater.



ID switches misses false positives

1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0

Seq#1

LIN 55 55 51 48 0.29 0.28 0.28 0.28 0.19 0.19 0.19 0.19

LTA 48 42 45 41 0.28 0.28 0.28 0.28 0.19 0.19 0.19 0.19

Seq#2

LIN 35 33 31 31 0.21 0.21 0.21 0.21 0.08 0.08 0.09 0.09

LTA 31 30 26 25 0.21 0.21 0.20 0.20 0.08 0.09 0.08 0.09

Table 2. Comparison of the dynamic models for differing data as-

sociation thresholds based on the CLEAR evaluation metrics.

is only detected as a static obstacle. Nevertheless it in-

fluences the man in the striped sweater, who successfully

steers around it, whereas LIN looses track.

6. Conclusion

We have proposed a new, more powerful dynamic model

for tracking multiple people in complex scenarios. The LTA

model is not dependent on any specific tracker or scene, it

merely needs the subjects to reside in a space that allows

one to calculate metric distances.

The LTA model takes into account both simple scene in-

formation in the form of destinations or desired directions,

and interactions between different targets. As it operates in

world coordinates, the model can be trained offline on train-

ing sequences, and then applied elsewhere. We have shown

experimentally that the model yields better predictions, and

consistently improves tracking performance compared to

dynamic models which discregard social interaction. The

improvement comes at negligible computational cost (less

than 10 ms for a frame with 15 subjects).

We draw attention to an additional lesson learned from

the study: a person’s destination is valuable information and

should always be used. While this finding is by no means

new, e.g. [14, 12], we emphasize that it is true even when the

destinations are incomplete or inaccurate. We have shown

that even roughly guessed target directions help to make

more meaningful predictions. This is particularly interest-

ing for the case of mobile cameras, where the destination

cannot be learned from continuous observation.

In the present state, we do not model groups of people

walking together. This would be possible by an extension

to the energy potential. A further interesting direction is

the stochastic application of the proposed energy functional.
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