
GraphTrack: Fast and Globally Optimal Tracking in Videos

Brian Amberg and Thomas Vetter

University of Basel

Department of Mathematics and Computer Science

{brian.amberg, thomas.vetter}@unibas.ch

Abstract

In video post-production it is often necessary to track in-

terest points in the video. This is called off-line tracking, be-

cause the complete video is available to the algorithm and

can be contrasted with on-line tracking, where an incom-

ing stream is tracked in real time. Off-line tracking should

be accurate and – if used interactively – needs to be fast,

preferably faster than real-time. We describe a 50 to 100

frames per second off-line tracking algorithm, which glob-

ally maximizes the probability of the track given the com-

plete video. The algorithm is more reliable than previous

methods because it explains the complete frames, not only

the patches of the final track, making as much use of the data

as possible. It achieves efficiency by using a greedy search

strategy with deferred cost evaluation, focusing the compu-

tational effort on the most promising track candidates while

finding the globally optimal track.

1. Introduction

Interactive, offline feature tracking [2, 4, 12, 13] is of

great interest in movie postproduction [1], because it allows

the realistic introduction of effects and virtual objects into

the video. In this setting, it is necessary to track a feature

through an arbitrary amount of frames, even in the presence

of occlusions and when the appearance of the tracked fea-

ture varies. This cannot be solved by a fully automatic sys-

tem, instead an interactive interface is needed which gives

the user immediate feedback on the tracking results. This

implies, that the system has to track faster than realtime, be-

cause we immediately need the track in the complete video.

The higher speed requirement makes offline tracking more

difficult than online tracking, but on the other hand the al-

gorithm can reason over the whole sequence at once, while

an online tracking algorithm does not have access to future

frames and therefore suffers from drift [9].

Here, we build on the work of [4], who proposed an ex-

tremely fast offline tracker, which we will call DP-TRACK.

DP-TRACK achieves its – faster than realtime – speed by

preprocessing the video in a computationally intensive step

without user interaction, and using the search structure from

this preprocessing step for fast lookup of candidate matches.

It then find a path through these candidates which simulta-

neously (1) passes through the landmarks, (2) minimizes the

difference in appearance between the marked and detected

patches and (3) minimizes the length of the track.

When the user sees that the track is lost in a frame, she

can mark the missed patch, and the algorithm recalculates

the optimal track over the whole video. This is the behavior

which we are searching for, but it turns out that when the

appearance of the patches changes too strongly throughout

the video, the tracking becomes unstable. Correcting a bad

frame can lead to loosing track in regions of the video which

were tracked correctly before adding the additional input.

The reason for this behaviour, is that the appearance

model becomes too broad, i.e. the uncertainty in the patch

appearance increases. We correct this behaviour and in-

crease the tracking stability by explaining not only the track,

but instead the full video. This makes it necessary to intro-

duce a background appearance model in addition to the ap-

pearance model of the interest points used in DP-TRACK.

The effect is, that marking an interest points in a frame does

not only tell us ‘this is what the interest point looks like’,

but also for every patch which was not clicked upon ‘this is

what the interest point does not look like’.

We formalize the optimization as a shortest path search

in a suitably constructed graph. The graph search improves

the efficiency of the algorithm, which allows us to incorpo-

rate the background model at a moderate additional cost.

2. Contributions

DP-TRACK as formulated in [4] is flawed, it does not

find the global minimum of its energy function, because the

occlusions are not correclty formulated in the dynamic pro-

gramming optimization method. We overcome this by using

a different search strategy which allows us to (1) extend the

formulation with a background model, (2) focus the compu-

tation on the most promising regions and (3) find the glob-

ally optimal path given the user constraints.

1209

3. Method

The algorithm finds the most probable track through the

video given interest points marked in some frames. Denote

the video with V = (f1, . . . ,fF), where V is a tuple of

frames f i, and a track as T = (x1, . . . , xF), where each xi

is the position of the interest points in frame i. In L ≪ F
frames we have marked interest points, which we denote by

L. We use Bayes’ theorem to model the probability of a

track given the video and the landmarks as

p(T | V,L) ∝ p(V,L | T)p(T) . (1)

The video determines the position of the landmarks, but

given a track these two are independent. We write this as

p(T | V,L) ∝ p(V | T)p(L | T)p(T) . (2)

We assume that the user has clicked correctly, such that

p(L | T) is a Dirac distribution. This might seem like

a strong requirement, but actual user input turned out to

be sufficiently accurate. The extensions necessary to make

the algorithm more robust to incorrectly or noisily marked

landmarks are straightforward, but result in a longer run-

time. Assuming correctly clicked landmarks allows us to

unclutter the equations by omitting the L and reasoning

only over tracks which pass exactly through the selected in-

terestpoints. We will now describe how we model the prior

and the video likelihood.

3.1. Track Prior

The prior over tracks is modelled as a Markov chain

looking back a single frame, such that the position of a

landmark in frame i depends only on the position of the

landmark in frame i − 1

p(T) = p(x1)
F∏

i=2

p(xi | xi−1) . (3)

Using only the previous frame, we are restricted to a first

order motion model, which assumes that the new position

is probably close to the old position. We therefore model

the new position as an isotropic Gaussian centered on the

position in the previous frame. For the first frame we are

using a uniform distribution, (which is in this case a proper

distribution, because we are considering only a discrete set

of positions).

p(x0) ∝ 1 (4)

p(xi | xi−1) ∝ exp{−λd‖xi − xi−1‖
2} .

3.2. Video Likelihood given the Track

We assume that the likelihood factorizes into a term for

each frame and pairs of adjacent frames

p(V | T) =
∏

i

p1(f i, | xi)
F−1∏

i=1

p2(f i,f i+1 | xi, xi+1).

(5)

The per-frame factor p1 is learned from positive example

patches P = (p1, . . . ,pL) and negative example patches

N = (n1, . . . ,nN) from the frames where interest points

are marked. We denote the class of interestpoints as ip and

the background class as bg, such that we can write the re-

sulting appearance model as

p(f i(x) | ip) ∝ exp{−λf min
j

‖f i(x) − pj‖
2} (6)

p(f i(x) | bg) ∝ exp{−λb min{δb,min
j

‖f i(x) − nj}‖
2}

where f i(x) is the patch at position x in frame f i, and δb is

a parameter giving the maximum possible distance from the

background. δb is used to model the fact that new samples

which are very far from both the known interest points and

the known background samples are more probably back-

ground than interest points. The norm used here is the Eu-

clidean distance between feature vectors extracted at each

patch. The details are given in section 7, but are not neces-

sary to follow the algorithm. Assuming independence be-

ween the patches in a frame1 allows us to factor the per-

frame term given the track as

p1(f i | xi) = p(f i(xi) | ip)
∏

x6=xi

p(f i(x) | bg) (7)

=
p(f i(xi) | ip)

p(f i(xi) | bg)

∏

x

p(f i(x) | bg) .

The product in Eqn. 7 is independ on the choice of xi, al-

lowing us to simplify Eqn. 7 to

p1(f i | xi) ∝
p(f i(xi) | ip)

p(f i(xi) | bg)
. (8)

In the pairwise appearance term we encode the assump-

tion that the appearance of the tracked patch changes only

gradually between frames, such that

p2(f i,f i+1 | xi, xi+1) (9)

∝ exp{−λs‖f i(xi) − f i+1(xi+1)‖
2} .

As opposed to the per-frame factor p1 which explains the

complete frame, our definition of p2 only explains the ap-

pearance change of the patches under the tracked patch, and

1A common assumption necessary to arrive at an efficient algorithm but

nonetheless a simplification, as an image with independent pixels would be

very boring

1210

ignores the remaining area of the frames. This is necessary

to keep the algorithm efficient, but might be an interesting

starting point for further research.

4. Efficient Optimization

We minimize the negative log of the posterior track prob-

abilities, which has the form

− log p(T | V,L) = constant (10)

+

F∑

i=1

(λf min
j

‖f i(xi) − pj‖
2})

−
F∑

i=1

(λb min{δb,min
j

‖f i(xi) − nj‖
2})

+ λs

F−1∑

i=1

‖f i(xi) − f i+1(xi+1)‖
2

+ λd

F−1∑

i=1

‖xi − xi−1‖
2 .

DP-TRACK uses a dynamic programming approach to min-

imize this cost. This dynamic programming method fails

to find the global optimum when handling occlusions, as

is demonstrated in the appendix. For our method we ob-

serve that the cost function can be encoded as a graph and

minimized efficiently and globally optimal with a shortest

path search. We use a version of Dijkstra’s shortest path

search [6] which speeds up the search and allows us to effi-

ciently incorporate our background model.

We now describe how to map the cost to a graph. We can

interpret the cost as a directed acyclic graph. This graph has

one layer for every frame, and in each layer a node ni,x for

every patch. Each node has a weight corresponding to the

single frame match

w(ni,x) = − log p1(f | x) . (11)

The nodes of one frame are connected to the nodes of the

next frame by edges (ni,xi
, ni+1,xi+1

) with a weight con-

sisting of the movement prior and the pairwise appearance

term

w(ni,xi
, ni+1,xi+1

) (12)

= λs‖f i(xi) − f i+1(xi+1)‖
2 + λd‖xi − xi−1‖

2

The frames where the interest points were marked contain

only a single node at the interest point. This ensures that all

paths run exactly through the selected points. The graph has

two additional special nodes, the source, which is connected

to all patches of the first frame, and the sink, which is the

target of all patches of the last frame. See Fig. 1 for a small

example. Every path from source to sink passes through

2

Frames

3 4 5

Source Sink

1 2

Frames

3 4 5

Source Sink

1

Without occlusion handling With occlusion handling

Figure 1. The cost function can be interpreted as a directed acyclic

graph with weights on the nodes and edges. The optimal track is

the path from source to sink which has the minimal weight. On

the left is a graph for the cost function without occlusion handling,

and on the right the same graph with occlusion handling. Each

frame has 4 candidate patches, and frame 1 and 4 do have a marked

interest point.

exactly one node of every layer, as each node is only con-

nected to the directly following layer. The possible paths

map therefore one-to-one onto the possible tracks, and the

sum of the costs of all edges and nodes of a paths is exactly

equal to the cost assigned to the corresponding track. The

shortest path from source to sink is therefore also the global

minimum of the cost function.

We search for the shortest paths using a variant of Di-

jkstra’s shortest path using a Fibonacci heap [7]. Dijkstra’s

algorithm partitions the nodes into an ‘active’ and a ‘solved’

set. The minimal distance towards the nodes in the solved

set is known, and for the nodes in the active set an upper

bound on the distance is kept. An invariant of the algorithm

is that each node in the active set has a distance which is

larger than the maximal distance to any node in the solved

set. This invariant is maintained, by greedily choosing the

node from the active set which has the minimal distance,

moving it to the solved set and updating the distance bound

towards the descendants of the expanded node with the dis-

tance of the path through the expanded node. To do this

efficiently we need a priority queue with a O(1) decrease

key operation. The full algorithm is:

1. The source is put into a priority queue, with an associ-

ated track length of zero.

2. The remaining nodes are inserted into the priority

queue with an associated track length of ∞.

3. Iterate, until the sink is expanded:

A. Select the node xi from the queue, which has the

minimal track length.

B. Expand xi by doing for every descendent xj of

xi:

a. Calculate the length of the shortest path to

xj passing through xi, this is the distance

towards xi plus the edge cost w(xi, xj) plus

the per-frame cost w(xj).

1211

b. If this length is smaller than the length as-

sociated with xj , decrease the length of xj

to the new length, set a parent pointer from

trackj to tracki and update the priority

queue.

4. Follow the parent pointers from the sink to the source

to recover the shortest path

While this optimization is efficient, it is still slow to cal-

culate the weights for all edges and nodes. Especially eval-

uating Eqn. 7 for each node is expensive, because this in-

volves a search over a large number of negative examples,

and the graph has a huge number of edges, as every frame

is densely connected to the following frame. We can over-

come this by observing that, for realistic settings of the pa-

rameter weights, we only have to expand a small fraction of

the nodes. The cost of the shortest path towards most nodes

is larger than the cost of the minimal path towards the sink.

This is especially true when the track prior favours small

movements, i.e. λd is relatively large. In step 3.ii we have to

calculate for all descendents of the expanded nodes the edge

weights. This requires NExpanded NodesNCandidates/Frame evalu-

ations. We will now describe a method to lazily evaluate the

edge costs such that only a few of the shortest edges going

into the expanded nodes are evaluated, bringing these ex-

pensive operations down to the order of O(NExpanded Nodes).

Note that while we are, for a strong motion prior, effec-

tively calulating costs only for a few nodes around the cur-

rently best track, this is different from methods which re-

strict the search to a small region around the current tracked

position, as we are still searching over the full frame when-

ever the optimal track requires this. The search is only ar-

ranged in the most efficient order.

To be able to lazily evaluate the appearance cost we mod-

ified Dijkstra’s algorithm by using a lower bound on the

track length instead of the actual track length. This lower

bound is calculated by replacing the per-frame cost w(xj)
in step 3.B.a with a lower bound of the frame cost if xj has

not been expanded before. The actual cost of xj is then

calculated when it is expanded. Updating the lower bound

of the frame cost can lead to it being no longer the overall

smallest node. In that case, instead of further expanding it,

we just add it back into the priority queue. This guarantees

that the globally optimal path is found while performing

only the absolutely necessary amount of computation. As

every lower bound is updated only once, we can guarantee

that the number of times a node is taken from the priority

queue is maximally doubled.

The approximate frame cost is calculated by using a re-

stricted set of background examples. We include for each

positive example the one negative example which is closest

to it.

The true per-frame cost is the distance towards the clos-

est positive example minus the clamped distance towards

the closest negative example plus the unknown constant

from from Eqn. 7. But the constant was left out, as it does

not change the position of the minimum. This can result in

a negative distance, which is not solveable with Dijkstra’s

algorithm. To overcome this we add to all nodes an up-

per bound on the distance to the background. The upper

bound is found by taking the distance between each candi-

date patch and the recduced background model. This does

not change the minimal path, because every path has to go

through the same number of nodes, and the offset is added

to all nodes.

While the algorithm as presented minimizes the number

of nodes which actually need to be expanded, it is still too

slow to be used with all pixels in all frames. Instead, we

select in a first step a number of candidate patches from

each frame (typically 150-250 patches) which are the input

for all stages of the algorithm. The efficient selection of

candidates is explained in section 6.

5. Occlusions

So far, our algorithm cannot handle occlusions. The oc-

clusion handling method introduced in [4] does not result

in a globally optimal solution (as demonstrated in the ap-

pendix, but we present a relatively efficient globally optimal

occlusion handling method here.

To model occlusions we introduce a new binary random

tuple, O = (o1, . . . , oF) describing the occlusion state of

each frame. We find the MAP estimate of

p(T ,O | V,L) ∝ p(V,L | T ,O)p(T)p(O) , (13)

where we have assumed that occlusion and track movement

are independent. We model the occlusion prior again as a

Markov chain

p(O) = p(o0)

F∏

i=1

p(oi | oi−1) (14)

The resulting cost could be directly encoded in the graph by

adding for every pixel in every frame a node corresponding

to the state of being occluded at this position. That is not

feasible, as the number of nodes would be too large. An ef-

ficient method can be found by noting that the track position

during a run of occluded frames depends only on the motion

model, and with our first order motion model is completely

determined by the endpoints of the occluded run. We can

therefore combine all possible occluded subpaths between

two frames into a single edge, whose weight is the minimum

of all these paths. This removes all occluded nodes, and

instead introduces on the order of N 2
framesNCandidates Per Frame

edges. The resulting path search is still relatively efficient,

because the weights on all these edges are only calculated

1212

• •

• •

Frame 0 24 48 72 95

• •

• •

Frame 0 100 200 300 458

Figure 2. Tracking results on a talking head sequence and on a

video of a giraffe. Between one and three user clicks were needed

to achieve accurate tracking for the head sequence. Note the cor-

rect handling of the occluded ear, which was achieved with a single

click. The eye of the running giraffe needed eight clicks, of which

three marked occlusions. Please refer to the accompanying video

for more details.

lazily for the expanded nodes. For long sequences with

more than 100 frames, the cost of updating all nodes in the

subsequent frames becomes substantial. In this case we pro-

pose to limit the number of edges by adding only edges from

a node to the 10 directly following frames, then to every sec-

ond frame in the range 11-20, every third in the range 21-30

etc. This assumes that the expected length of occlusions is

relatively short, or that the object of interest is visible in

large parts of the video. For long occlusion we might find a

track which stays occluded longer than necessary. This can

be remedied by the user, by marking the track position in

the first non-occluded frame.

Also, we speed up the update of the children by checking

if the current cost plus the occlusion cost is already larger

than the current minimal cost of a child. In that case we can

skip the relatively more expensive calculation of the simi-

larity cost.

Instead of specifying the four probability values of p(oi |
oi−1) we are using two costs, an occlusion start cost and a

cost between occluded frames, such that the cost associated

with an occlusion edge from xi to xj is

λo + λr(j − i − 1)
︸ ︷︷ ︸

occlusion

(15)

+
λs‖f i(xi) − f j(xj)‖

2

j − i − 1
︸ ︷︷ ︸

similarity

+
λd‖xi − xj‖

2

j − i − 1
︸ ︷︷ ︸

distance

,

where we assumed that the appearance and position change

linearly during the occlusion.

6. Candidate Selection

To make the algorithm faster than real time it is neces-

sary to restrict the number of candidate positions taken into

With background model Without background model

R
id

g
e

o
f

th
e

li
p

s
C

o
rn

er
o

f
th

e
m

o
u

th
F

la
n

k
o

f
a

g
ir

af
fe

Figure 3. The candidate points which were selected in a single

frame of a video sequence. No spatial prior is imposed when se-

lecting the candidate points, such that our algorithm can handle

arbitrary large movements if the evidence is strong enough. We

show the matches for the ridge of the lip, the right eye corner

and the flank of a giraffe. The size of the dots corresponds to

p(f
i
| tracki), where the left column is using the background

model and the right column is not using the background model.

We picked three examples where the correct track (shown as a

green line) is only found when including the background model.

In all sequences the landmark was marked in the first frame.

consideration in each frame. This section explains, how we

efficiently extract candidate positions from the video. The

GRAPH-TRACK search algorithm is able to handle a few

hundred candidates per frame efficiently, as opposed to the

four candidates per frame used by DP-TRACK.

Finding the candidates is essentially a template match-

ing problem, and could be addressed by methods such

as [3, 11, 8, 5], but for offline tracking it is allowable to

invest some time into the preprocessing, if this leads to im-

mediate feedback during the user interaction. Following [4]

we therefore preprocess the image such that each patch is

represented by a feature vector. The details of the feature

extraction are given in section 7, for now it suffices to say

that we extract 16 one-byte features at each pixel position

in a one-off preprocessing phase. The rest of the algorithm

then works with this 16 byte representations of the image

patches, allowing much faster calculations than those ob-

1213

tainable with a generic template matching method.

To efficiently select candidates, [4] stored the patch fea-

tures into a KD-Tree structure using 24 bytes per patch.

While the KD-Trees are quite efficient we found that an

exhaustive search can be as fast, but requires only 2/3
the amount of memory allowing the handling of 1.5 times

longer sequences. Another advantage is that with the effi-

cient feature extraction described in section 7 and without

the need to construct the KD-Trees the preprocessing time

dropped from hours ([4], personal communication) to min-

utes. The candidates are chosen to be the Ncandidates patches

which are closest to the positive examples and are locally

minimal. To make the search efficient we are not calculat-

ing the sum of squared differences while deciding on the

candidates, but instead use the sum of absolute differences

as a proxy function. The sum of squared differences cost is

then calculated only for the examples selected based on the

proxy function. The SSE instruction set of modern CPUs

contains a command to calculate the sum of absolute differ-

ences between two pairs of unsigned eight byte vectors in

a single instruction. By organizing the data accordingly we

can efficiently calculate the differences. While computing

the differences we are performing a non minimum suppres-

sion. This requires access to the costs of the current image

row and the last row. This fits into the processor cache, re-

sulting in a fast algorithm. Already during the run we are

choosing the top Ncandidates positions with a heap data struc-

ture.

Additionally, all candidates with a feature space distance

of more than 72 from the positive examples are rejected.

The threshold of 72 was selected manually once on some

test sequences, and proved to work well for all other videos.

7. Feature Extraction

The algorithm consists of an offline phase and an online

phase. In the offline phase we calculate a 16 byte feature

vector for every patch in the input video. The features are

independent from the track, such that the offline calcula-

tions have to be done only once per video. We use the fea-

tures proposed in [4], where a linear filter jet [10], is used,

which is adapted to the video under consideration. The fea-

tures are a projection of the patches pi into a PCA basis of

all patches of the video:

f(xi) = UT (pi − p̄) . (16)

Here pi − p̄ are the patches centered by the mean of all

patches in the video. We use the 16 basis vectors of the PCA

which have the largest associated eigenvalues and explain

most of the variability observed in the video. The features

are then scaled to the range of [0, 255] and quantized to eight

bits. The PCA basis is trained on the video, by sampling

1/8th of the patches of every frame.

Figure 4. The filter bank responses for two two different videos.

A frame of each of the videos is shown next to a depiction of the

video specific filter jet, offset such that it can be visualized in RGB

space. At the bottom of the figure we also show the response of

the features on the example frame. While the spatial structure of

the jets is similar for both videos, they do differ a lot in the color

distribution. Filtering the video with a specially tuned basis decor-

relates the patches, and thereby removes some of the redundancy

in the colour channels, without losing the available information as

a transformation to grayscale would.

The feature extraction runs at about 20 frames/minute

on a commodity PC for a VGA-sized video, when exploit-

ing the following observations. The average of all patches

of a video has a constant color, because (assuming circular

boundary conditions) every pixel in the video occurs ex-

actly once at every position in one of the patches. Therefore

instead of calculating the average patch, it is sufficient to

calculate the average color, and subtract it from the input

video. The patches of the resulting video are then already

mean-centered. This turns the projection into the PCA ba-

sis into a convolution of the mean-centered frames with the

basis vectors. This is implemented efficiently using FFT,

by using the well known fact that a convolution can be ex-

1214

pressed as A ∗ B = F−1(F(A) ◦ F(B)), where ◦ denotes

the elementwise product. As we need to convolve all images

Ai with all kernels Bj , we can calculate the forward trans-

form of all kernels and images, and then get the outputs by

elementwise multiplication and a backward transform of all

combinations (Ai, Bj).
The filter jet extracted from two different videos is

shown in Fig. 4, showing that the basis adapts to the video,

such that it captures as much information as possible.

8. User Interface

While [4] proposed to let the user modify the values of

the parameters, we found that when working with similar

scenes it is faster to supply a few additional interest points

and use a preset of parameters for the scene type. Now that

we have included a background model we found that the re-

sult of adding a landmark is more predictable than that of

changing the priors, and it is easier to teach new users the

meaning of selecting landmarks than the exact meaning of

the priors. We found that for talking heads the default pa-

rameters λf = λb = 1, λs = 10, and λd = 10, λo = 5000,

λr = 1.5λo, δb = 4096 gave good results over most se-

quences. Nonetheless different priors are needed for scenes

of differing character, e.g. the giraffe sequence shown in

Fig. 2 has faster motion and more occlusion, and therefore

needed a smaller occlusion and motion weight.

9. Refinement

As in DP-TRACK we follow the path search with a re-

finement step, where the best SSD match of the 15×15 im-

age patches within 8 pixels of the track to the image patches

of the positive examples is found.

10. Experiments

Accuracy: In Fig. 2 we show example tracks for a talk-

ing head sequence with rapid movements and pose changes,

and a video of running giraffe with severe occlusions. See

also the accompanying videos to get a feeling for the user

interaction required to mark up these videos. As the process

is interactive, and we are using a background model, we are

able to track anything in any video, given enough user input.

Speed: To get a feeling for the speed of the algorithm we

evaluated the calculation time for varying numbers of land-

marked frames (which increase the size of the foreground

model, but also simplify the search graph), and for vary-

ing numbers of candidates. We did this by marking a 107

frame sequence with more landmarks than absolutely nec-

essary and then chose all possible subsets of the marked

landmarks. The experiments were done for search graphs

with different maximum occlusion lengths. The results are

110

120

12
0

130

1
3
0

1
4
0

140
150

Max Occluded

#
 L

a
n
d
m

a
rk

s

Search Speed in Frames/sec
Candidates: 100

0 5 10 15 20
1

2

3

4

5

6

7

8

50

100

150

80

90

9
0

100

1
0
0

110
120

Max Occluded

#
 L

a
n
d
m

a
rk

s

Search Speed in Frames/sec
Candidates: 150

0 5 10 15 20
1

2

3

4

5

6

7

8

50

100

150

60

7
0

70
80

90100

Max Occluded

#
 L

a
n
d
m

a
rk

s

Search Speed in Frames/sec
Candidates: 200

0 5 10 15 20
1

2

3

4

5

6

7

8

50

100

150
50

50

6
0

60
7080

Max Occluded

#
 L

a
n
d
m

a
rk

s

Search Speed in Frames/sec
Candidates: 250

0 5 10 15 20
1

2

3

4

5

6

7

8

50

100

150

Figure 5. Tracking speed as a function of the algorithms parame-

ters. The tracking time of GRAPH-TRACK is increasing approx-

imately linearly with the number of landmarks, the number of

candidate patches and the maximum occlusion length, where the

largest influence is due to the number of candidate patches.

shown in Fig. 5. For some combination of landmarks we do

not find the correct tracks. In this specific example we do

need four landmarks to accurately track the eye corner dur-

ing all blinking events and head pose changes. The failed

tracks are included in the timing and are still interesting, as

it is important that the user gets immediate feedback while

marking up the video, such that she knows which frames

require further attention.

As opposed to the 4 candidate patches per frame and

marked interest point which were used in DP-TRACK, we

are extracting between 100 and 300 candidates per frame,

which makes the algorithm much more reliable on difficult

frames. Our algorithm seems to scale approximately lin-

early in the number of frames, linearly with a small coeffi-

cient in the number of landmarks and linearly in the maxi-

mum number of occluded frames which we consider. The

sweet spot seems to be at 150 to 200 candidates per frame,

and with a value for the maximal occlusion length which

closely matches the actual occlusion length in the video.

11. Conclusion

We presented an enhancement of the tracking algorithm

of [4], which is more reliable on difficult videos, and more

stable when the user adds additional patches. Better stabil-

ity is achieved by modelling the full frame appearance, in-

stead of only the patch appearance. Even though that seems

to imply a lot more computational work, we proposed an

efficient search algorithm which lazily performs the expen-

sive computations. The beauty of our search approach is

that it adapts automatically to a stronger smoothness or oc-

1215

10

1

1

1

2

2

1

2 1

0

Distance: 3 ?

?

?

Distance: 3

Distance: 0

5

5

a

b c i1

d i2

e i3

f

The image space distances between the nodes of the graph are:

b c d e f

a 2 1 10 10 10

b 0 10 3

c 10 10 0

d 5 3

e 10

Figure 6. The computationally less intensive occlusion handling of

DP-TRACK does not find the global minimum. This figure shows

the graph of a counterexample. Shown is a graph with visible

nodes a, . . . , f in five frames plus the invisible states i1, . . . , i3
of the not landmarked frames, sink and source were ommited. The

dashed lines are not edges, they annotate the distance cost which

would be incurred between the connected nodes. The weight of the

orange lines leading out of the invisible states corresponds to this

distance cost for the node which is currently connected via parent

pointers along the invisible nodes. The optimal track is marked

with green, while the track found by DP-TRACK is marked in red.

Frame: 1 2 3 4 5

a = 0/source b = 2/a d = 2/b e = 7/d f = 6/i3
c = 1/a i2 = 2/c i3 = 3/d
i1 = 1/a

Figure 7. The DP-TRACK dynamic program corresponding to the

graph in Fig. 6. Each entry contains the name of the node, the total

cost up to this node and the pointer to the parent node.

clusion prior, only performing as much computation as nec-

essary, without absolutely restricting the search. If the patch

appearance gives enough evidence, arbitrarily large jumps

in space and time are possible, while still being efficient.

The algorithm is useful as building block in many appli-

cations. To encourage its use we publish the source code

and binaries for this project.2

Appendix: Why the occlusion reasoning of

DP-TRACK misses the global optimum

Here we give an example where DP-TRACK fails to find

the globally optimal solution for a video when occlusion

handling is used. But we start with a word of warning: [4]

are very terse on the topic of occlusion handling, so our

understanding might misrepresent the authors ideas. DP-

TRACK does not fully exploit the graph structure of the

problem, only the fact that the corresponding graph is lay-

ered, but there is a graph equivalent to the construction in

2The source code can be downloaded from www.cs.unibas.ch/

personen/amberg_brian/graphtrack/ .

DP-TRACK. This equivalent graph handles occlusions with

a single additional node per frame, corresponding to the ‘oc-

cluded’ state. The cost of entering this node is fixed, the cost

of going from an occluded state to the occluded state of the

next frame is another constant, and the cost of leaving the

occluded state and entering a non occluded state xj in the

following frame depends on the distance between the node

xi which is found by following the parent pointers along the

current occlusion state and xj . This greedy choice can lead

to suboptimal results. To demonstrate the problem consider

the graph shown in Fig. 6 and assume additionally that the

between frame similarity and appearance cost are zero ev-

erywhere. The cost of going into an invisible state is set to

1 and the cost of staying in an invisible state is 2.

The optimal path through the graph in Fig. 6 is

a, c, i2, i3, f , with a total cost of four, while the path found

with DP-TRACK is a, b, d, i3, f , with a total cost of 6. The

result of applying DP-TRACK is given in Fig. 7.

References

[1] 2D3. Boujou. http://www.2d3.com/.

[2] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.

Keyframe-based tracking for rotoscoping and animation. In

SIGGRAPH ’04, volume 23, issue 3, pages 584–591. ACM,

2004.

[3] R. Anderson and H. Schweitzer. Fixed time template match-

ing. In SMC 2009, Systems, Man, and Cybernetics, pages

1359 –1364, Oct. 2009.

[4] A. Buchanan and A. Fitzgibbon. Interactive Feature Track-

ing using K-D Trees and Dynamic Programming. In CVPR

’06, pages 626–633. IEEE, 2006.

[5] L. Di Stefano and S. Mattoccia. Fast template matching us-

ing bounded partial correlation. Machine Vision and Appli-

cations, 13:213–221, 2003.

[6] E. W. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, 1(1):269–271, Dec. 1959.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their

uses in improved network optimization algorithms. JACM:

Journal of the ACM, 34(3):596–615, July 1987.

[8] T. Kawanishi, T. Kurozumi, K. Kashino, and S. Takagi.

A fast template matching algorithm with adaptive skipping

using inner-subtemplates’ distances. Int. Conf. on Pattern

Recognition, 3:654–657, 2004.

[9] L. Matthews, T. Ishikawa, and S. Baker. The template update

problem. PAMI, 26(6):810 –815, June 2004.

[10] C. Schmid and R. Mohr. Local grayvalue invariants for im-

age retrieval. PAMI, 19(5):530–535, 1997.

[11] H. Schweitzer, J. Bell, and F. Wu. Very fast template match-

ing. In ECCV ’02, volume 2353 of LNCS, pages 145–148.

Springer, 2006.

[12] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Bi-directional

tracking using trajectory segment analysis. In ICCV ’05,

pages 717–724. IEEE, 2005.

[13] Y. Wei, J. Sun, X. Tang, and H. Y. Shum. Interactive offline

tracking for color objects. In ICCV ’07. IEEE, 2007.

1216

www.cs.unibas.ch/personen/amberg_brian/graphtrack/
www.cs.unibas.ch/personen/amberg_brian/graphtrack/
http://www.2d3.com/

