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 Crowd Scene Analysis 
•  Using computer vision tools to look at

 people in public places 

•  Real-time monitoring 
–  situation awareness 
–  notifications/alarms 

•  After-action review 
–  traffic analysis  
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Crowd Scene Analysis 

•  How many people are there? 
•  How to track specific individuals?  
•  How to determine who is with whom? 

Things we might want to know: 

Challenges: 
Crowd scenes tend to have low resolution. 
You rarely see individuals in isolation. 
Indeed, there are frequent partial occlusions. 
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Crowd Counting 
FAQ: How many people participated in ... 

•  Tahrir Square Protests 
•  Obama’s inaguration 
•  Occupy Wall Street 
•  Kumbh Mela 
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Jacob’s Method 

•  Herbert Jacobs, Berkeley, 1960s 
•  count = area * density 

–  10 sqft/person – loose crowd (arm’s length from each other) 
–  4.5 sqft/person – more dense 
–  2.5 sqft/person – very dense (shoulder-to-shoulder) 

•  Problem: Pedestrians do not uniformly distribute
 over a space, but clump together into groups or
 clusters.  

•  Refinement: break area into a grid of ground patches
 and estimate a different density in each small patch. 
 Accumulate these counts over whole area. 
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Example of Jacob’s Method 

source http://www.popularmechanics.com/science/the-curious-science-of-counting-a-crowd 
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Computer Vision Could do Better! 

Cavaet: nobody really wants accurate counts 

e.g. organizers of the “Million Man March” in
 Washington DC threatened to sue the
 National Park Service for estimating that
 only 400K people attended. 
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Vision-based Counting 

•  detection and tracking (light density) 
•  clustering feature trajectories that move

 coherently (moderate density) 
•  treat crowd as a dynamic texture and

 compute regression estimates based on
 measured properties (heavy density) 
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Detecting and Counting Individuals 
Ge and Collins, "Marked Point Processes for Crowd Counting," IEEE Computer Vision and 
Pattern Recognition (CVPR'09), Miami, FL, June 2009, pp.2913-2920.  

Good for low-resolution / wide-angle views. 
Relies on foreground/background segmentation. 
Not appropriate for very high crowd density or stationary people. 
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GateA Path Counts 

•  \ 

Maintain a running count of number of people whose
 trajectories cross a set of user-specified lines (color-coded). 

movie 
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30 minute period 

Crowd Flow/Density 
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Time Lapse.  Integrated over spatial/temporal windows. 

Crowd Flow/Density 
movie 
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Motion Segmentation 

•  G. J. Brostow and R. Cipolla, “Unsupervised bayesian detection of independent motion in crowds,” in IEEE
 Conference on Computer Vision and Pattern Recognition, 2006, pp. 594–601.  

•  V. Rabaud and S. Belongie, “Counting crowded moving objects,” in IEEE Computer Vision and Pattern Recognition,
 New York City, 2006, pp. 705–711. 

•  D. Sugimura, K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, “Using individuality to track individuals: Clustering
 individual trajectories in crowds using local appearance and frequency trait,” in International Conference on
 Computer Vision, 2009, pp. 1467–1474. 

Idea: track many small features (e.g. corners) over time 
and cluster sets of features that have similar motion.  

clustering 

corner trajectories independently moving objects 
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Motion Segmentation 
Basic steps: Form a corner connectivity graph.  
Assign each edge a dissimilarity score based on 
distance and motion coherence of trajectories. 
Prune edges with high scores.  The remaining 
connected components are the independent 
objects.  

connectivity graph connected components 
after pruning 
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Motion Segmentation 

connectivity graph connected components 
after pruning 

Note: Sugimara et.al. add a feature 
based on gait periodicity to help 
disambiguate nearby people. 
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Texture-based Crowd Detection 

•  SIFT descriptors 
•  K-means clustering to 
form “SIFT-Words” 

Arandjelovic, “Crowd Detection from Still Images,” BMVC 2008 

•  Likelihood ratio of distributions of  
    word counts over 10 patch sizes 
    yields 10-D feature vector 
•  Radial basis SVM for classification  
    into crowd / non-crowd 

non-crowd 

crowd 

on boundary 
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Texture-based Crowd Detection 
Sparse classifications turned into dense segmentation using graph cuts. Unary 
costs based on SVM output and pairwise costs based on magnitude of patch 
likelihood scores (small magnitudes indicate interclass boundaries). 

false  
positive 
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Texture-based Counting 
Chan and Vasconcelos, “Counting People with Low-level Features and Bayesian Regression”,  
IEEE Transactions on Image Processing,  Vol 21 (4), 2160-2177, April 2012 

Extract feature vector for each frame: 
• region features 
    e.g. area, perimeter, num connected components... 
• internal edge features 
    e.g. num edges, histogram of orientations 
• grey-level texture features 
    e.g. homogeneity, energy, entropy 

short video clip 

motion segmentation 
using dynamic textures 

segment 
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Texture-based Counting 
Chan and Vasconcelos, “Counting People with Low-level Features and Bayesian Regression”,  
IEEE Transactions on Image Processing,  Vol 21 (4), 2160-2177, April 2012 

Extract feature vector for each frame: 

short video clip 

estimate counts using 
learned regression function 

segment 

es
tim

at
e 
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Texture-based Crowd Detection 

green/red = crowd walking towards/away     blue = total 
numeric results formatted as: estimated count (uncertainty) [true count] 
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Texture-based Crowd Detection 

green/red = crowd walking towards/away 
numeric results formatted as: estimated count (uncertainty) 
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Tracking in Dense Crowds 

Goal: Track targets in high-density crowd scenes. 

Challenges: lots of occlusion; small object sizes; 
   appearances are similar 

Idea: Model typical crowd behavior to provide 
better motion priors. 
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Point of View: Macro vs Micro 
•  Macroscopic level: modeling dynamic behavior of

 the whole crowd; holistic 
–  density, flow, mean speed of a traffic stream  
–  analogy to fluid streams; particle flow 
–  behavior is reactive, a function of environment and density 

•  Microscopic level: models decision makers, their
 goals, and interactions; individualistic 
–  intelligent agents make decisions based on goals and social rules 
–  simulating realistic interactions 

Crowd Flow 

Social Force Models 
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Crowd Flow: Floor Fields 

Inspired by particle flow evacuation models. 

Represents how global scene structure affects local 
pedestrian motion decisions. 

Long-range goals/influences  
transformed into local forces  
(similar to potential fields for  
robotic path planning). 

Saad Ali and Mubarak Shah, Floor Fields for Tracking in High Density Crowd Scenes, The 
10th European Conference on Computer Vision (ECCV), 2008.  

potential field 
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Floor Fields 

• Static Floor Field (SFF)   
attraction field; represents typical crowd 
motion towards interesting locations, dominant 
paths, exits 

• Boundary Floor Field (BFF)  
repulsive forces; boundaries, walls, obstacles 

• Dynamic Floor Field (DFF) 
current motion of neighboring individuals 
computed in temporal sliding window 
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Static Floor Field 
example: marathon runners turning a corner 

optic flow averaged flow over time sink-seeking 

mean-shift-like procedure 
to determine particle flow 
(path, distance) to nearest 
goal location. 
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Static Floor Field 
example: marathon runners turning a corner 

optic flow averaged flow over time sink-seeking 

SFF = path length surface. 
Low values are “better”. 
Intuition: drop a ball on 
surface and it rolls towards 
nearest sink. 
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averaged flow 

Boundary Floor Field 

segmented flow edge map 
(real+virtual boundaries) 

BFF = truncated distance transform. 
High values are “better”.   
Intuition: go/no-go surface with deep 
valleys forming the barriers.   
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Dynamic Floor Field 

DFF = current local motion 
likelihood computed from flow in 
a narrow temporal window.  

Intuition: this is how nearby 
particles are currently moving. 

local neighborhood around target 
location (yellow dot) 



Penn State 
Robert Collins 

VLPR 2012 

How Floor Fields are Used 

For current target location, compute matrix of local transition 
probabilities combining appearance and floor field terms. 

appearance term 
(likelihood) 

SFF/BFF/DFF influence terms 
(priors) 
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How Floor Fields are Used 
multimodal 
likelihood 
(appearance is  
not discriminative) 

much more reliable 
(unimodal ) posterior 

scene goal  
prior 

local motion 
prior 
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Tracking Examples 
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Tracking Examples 
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Floor Field Drawbacks 
•  SFF can’t represent multimodal goals / motion at single 
point in the scene 

•  DFF allows some local temporal adaptation, but only 
correct when target moves similar to neighbors 

•  Hard to track outlier behaviors (moving against traffic) 
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HMM-based Flow Model 

Intuition: model multi-modal, time-varying flow by training 
an HMM at each scene location.  

Predicted Local 
Motion Pattern 

Spatio-Temporal Model of 
the Crowd’s Motion 

Local Motion Patterns 

time 

Kratz and Nishino, Tracking with Local Spatio-Temporal Motion Patterns in Extremely 
Crowded Scenes, IEEE Trans Pattern Analysis and Machine Intelligence, 2012. 
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HMM-based Flow Model 

•  dice training video into 
     space-time cuboids 
•  estimate 3D Gaussian motion 
     pattern in each cuboid 
     (space-time gradients) 

•  in each time-tube of cuboids 
   - discretize motion patterns by 
         online clustering 
   - train an HMM 

Training stage: 
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HMM-based Flow Model 
Training stage: 

The HMMs can model time-dependencies between 
multiple motions at a single spatial location. 
e.g. “this location has two dominant flow directions that tend to be interleaved” 
       “this location exhibits many rapidly-changing  flow directions” 
       “this location has a single dominant flow” 
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HMM-based Flow Model 
Tracking stage: 

•  at runtime, use observed 
motion patterns up to time t-1 
to compute expected motion at  
at target’s center at time t. 

Predicted  
2D Motion 

•  project this 3D motion 
pattern into 2D to get predicted 
image flow distribution 
•  use this distribution as a 
motion prior for particle filter 
tracking 

project into 2D 
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Sample Results 

play video outside ppt 
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Data Driven Flow Modeling 

•  Floor fields and HMM-based flow are scene-centric
 models (must be trained previously on video from
 the same scene viewpoint) 

•  They also have trouble tracking “rare” motions
 because they accumulate distributions of typical
 scene behavior 

•  Idea: try non-parametric data-driven approaches that
 have been very successful in texture synthesis and
 inpainting. 
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Data-Driven Flow 
Rodriguez, Sivic, Laptev, and Audibert, “Data-driven Crowd Analysis in Videos”, 
ICCV 2011. 

Insight: Any given crowd video can be viewed as a composite mixture 
of patches taken from a large dataset of previously viewed videos. 
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Two-Stage Matching  

•  First stage: Global matching using GIST descriptor
 of first frame to find videos roughly matching
 orientation and scale (viewpoint) of input video. 

input video matches from database 
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Two-Stage Matching  
•  Second stage: Local patch matching based on HOG3D

 descriptors (histograms of spatio-temporal gradients)
 to find patches with similar structure and motion as
 neighborhood around target. 

spatio-temporal patch 
centered on target 

k-nearest neighbor matches 
from pool of stage 1 videos 
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Motion Transfer 
•  Motion information is averaged over the matching patches and incorporated

 into a motion prior during Kalman filter tracking. 
•  This data-driven prior, using different videos, does better than averaging

 scene flow over the actual input sequence. 

red = ground truth;  green = data-driven flow, yellow = averaged scene flow 
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Performance on Rare Events 
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Social Force Model 

Helbing and Molnár (1995). “Social force model for pedestrian 
dynamics”. Physical Review E 51 (5): 4282–4286 

Social forces represent similar information as floor fields. 

But one important distinction: working in an agent-centered 
point of view rather than a scene-centered one. 

In other words, microscopic rather than 
macroscopic. 
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Social Force Model 

you are  
here 

goal 

desired  
velocity 



Penn State 
Robert Collins 

VLPR 2012 

Social Force Model 

you are  
here 

goal 
obstacle 

repulsive  
force 



Penn State 
Robert Collins 

VLPR 2012 

Social Force Model 

you are  
here 

goal 
obstacle 

something 
interesting 

attractive 
force 
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Social Force Model 

you are  
here 

goal 
obstacle 

something 
interesting 

other 
pedestrians 

collision 
avoidance 
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Social Force Model 

you are  
here 

goal 
obstacle 

something 
interesting 

other 
pedestrians desired  

velocity 
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Social Force Model 

you are  
here 

goal 
obstacle 

something 
interesting 

other 
pedestrians desired  

velocity 

actual 
velocity 
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Case Study 
Pellegrini, Ess, Schindler, van Gool You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ICCV 2009 

s1 s2 

v1 v2 

 Consider two moving pedestrians. 
What is their point of closest approach? 
   (assuming they move with constant velocity) 



Penn State 
Robert Collins 

VLPR 2012 

Case Study 
Pellegrini, Ess, Schindler, van Gool You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ICCV 2009 

s1 s2 

v1 v2 

s1 + t v1 

p1(t) = s1 + t v1 

s2 + t v2 

p2(t) = s2 + t v2 

t* = argmin(t>0) || p2(t) – p1(t) || 

c2 

c1 

c1 = s1 + t* v1 c2 = s2 + t* v2 

min dist (d12) 
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Case Study 
Pellegrini, Ess, Schindler, van Gool You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ICCV 2009 

s1 s2 

v1 v2 

c2 

c1 

min dist (d12) 

intuition: we want to adjust v1 and v2 to keep a 
“comfortable” distance d12 between them, while  
maintaining roughly the original desired directions 
and speeds.  

? 
? 
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Case Study 
Pellegrini, Ess, Schindler, van Gool You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ICCV 2009 

the new velocities are found 
by numerical optimization 

s1 slows down and  
turns to right 

s2 speeds up and  
also turns to right 
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Model Yields Intuitive Behavior 
Pellegrini, Ess, Schindler, van Gool You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ICCV 2009 

Depending on distance between s2 and s3, pedestrian s1  
will either try to pass between them, or around them.  
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Pedestrian Fingering 

Green: leftward moving. Red: rightward moving, 

Helbing’s social force model also predicts “fingering” 
in areas of bidirectional motion.  People tend to follow  
others to minimize collisions (maximize throughput). 
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Fingering Effect 

Density by image row 
Green (leftward); Red (rightward) 

collective behavior emerges 
from independent decisions 
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Collective Locomotion 

•  Find small groups traveling together 
–  Sociological hypothesis: validating that the majority of

 people in the crowd cluster in small groups 
–  Public safety: improving situation awareness and

 emergency response during public disturbances 



Penn State 
Robert Collins 

VLPR 2012 

McPhail and Wohlstein, 1982 
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Automated Group Testing by Agglomerative Clustering 

1 3 2 4 5 6 7 8 11 10 12 13 14 9 

“distance” is based on spatial proximity  
and velocity coherence 

W.Ge, R.Collins and B.Ruback, "Vision-based Analysis of Small Groups in Pedestrian Crowds," 
IEEE Trans Pattern Analysis and Machine Intelligence, Vol 34(5), 2012, pp.1003-1016. 
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note: computer only sees this view! 

p < .001  

Evaluation reveals substantial agreement between computer-generated 
groupings and those found by human coders (ground truth) 

Sample Results 
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More Grouping Results 
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Likely Group Shapes 

Are some group configurations more likely than 
others?   Of course! 
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Analysis of Group Shape 
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Analysis of Group Shape 

Procrustes Analysis, first four modes of variation 

analyzing groups 
 of three people 
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Research Questions 

Is multitarget tracking of human crowds any different  
than tracking crowds of animals? bats? cells?  


