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What is Tracking? 

typical idea: tracking a single target in isolation. 
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Appearance-Based Tracking 
current frame + 
previous location 

Mode-Seeking 
(e.g. mean-shift; Lucas-Kanade;  
particle filtering) 

Response map 
(confidence map; likelihood image) current location 

appearance model 
(e.g. image template, or 

color; intensity; edge histograms) 
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Appearance-based Tracking 
Research tends to focus on: 
•   finding discriminative features 
•   model adaptation  

Search for best match tends to be simple gradient ascent
 (hill-climbing). 

Motion prediction tends to be simplified to constant
 position + noise (assumes previous bounding box
 significantly overlaps object in the new frame). 

Previous VLPR lectures with more detail:

    http://www.cse.psu.edu/~rcollins/CollinsVLPR2009Lecture.pdf 

    http://www.cse.psu.edu/~rcollins/CollinsVLPR2010Lecture.pdf
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What is Tracking? 
Multi-target tracking.... 

ant behavior, courtesy of 
Georgia Tech biotracking 

“targets” can be corners, and 
tracking gives us optic flow. 
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What is Tracking? articulated objects having
 multiple, coordinated parts 
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Multi-Target Tracking 
•  The previous two slides are examples of tracking multiple

 targets over time.  Such work tends to focus on constraints
 between individuals, either strong geometric constraints,
 or weak exclusion constraints. 

Y 

Time 

X 
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What is Tracking? 

Active tracking involves moving the sensor in response to
 motion of the target.  Needs to be real-time! 
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Why are there so many  
papers on tracking? 

Because what kind of tracking “works” 
depends on problem-specific factors. 
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Factors: Discriminability 
How easy is it to discriminate one object from another. 

appearance models can 
do all the work 

constraints on geometry  
and motion become crucial 
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Factors: Frame Rate 
frame n frame n+1 

H 
I 
G 
H 

L 
O 
W 

gradient ascent 
(e.g. mean-shift) 
works OK 

much harder 
search problem. 
data association 
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Other Factors 

single target vs multiple targets 

single camera vs multiple cameras 

on-line vs batch-mode 

do we have a good generic detector?   
     (e.g. faces; pedestrians) 

does object have multiple parts? 
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Filtering and Data Association 

•  Filtering 
–   Recursive Bayesian estimation 
–   (continuous) Probability Theory  

•  Data Association 
– Assignment problems 
–  (discrete) Combinatorics 
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State Space Approach 

Two vectors of interest: 

1) State vector:  vector of variables xk representing 
          what we want to know about the target 
          examples: [x,y];   [x,y,dx,dy];   [x,y,θ,scale]       

2) Measurement vector:  noisy observations zk  
 related to the state vector.  
 examples: image intensity/color; motion blobs 
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Foundation: Bayesian Filtering 

Rigorous general framework for tracking.  Estimates the
 values of an unknown state vector given a time series
 of uncertain observations. 

Key idea: use a recursive estimator to incrementally
 update the posterior probability density function (pdf)
 of the state vector based on most recent data.  

Bayesian hypothesis: All quantities of interest, such as
 MAP or marginal estimates, can be computed from the
 posterior pdf. 
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Bayes Rule 
Bayes rule can be derived by a simple  
manipulation of the rules of probability.   
But it has far-reaching consequences. 

Thomas Bayes 
1702-1761 

interpretation:   
      posterior          likelihood  *  prior 

€ 

∝
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Posterior Distribution 

For a Bayesian, the posterior distribution is the starting point for
 answering all well-posed statistical questions about the state. 

e.g. 

•  What is the most likely location of this object? 
     the mode of the posterior (MAP estimate) 

•  With what certainty do I know that location? 
      spread of probability mass around the MAP estimate 

•  Are there other likely locations?  If so, how many? 
     analysis of multi-modality of the posterior 

Important point: output of Bayesian approach is not a single point
 estimator, but a whole probability distribution over state values. 
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A Simple “Cartoon” Example 

Let’s assume our target state x is a 2D location (x1, x2), and that our 
target is within some bounded region of interest, say 
  0 < x1 < 100  and  0  < x2 < 100   

X1 

X2 

0 100 

0 

100 
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Bearings-Only Example 
Initially we don’t know the target is, so we guess it is at (50,50). 
We are uncertain, so model that uncertainty as a Gaussian with 
high variance (truncated and normalized so all mass lies within 
the region of interest)  

X1 

X2 

0 100 

0 

100 

prior 
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Bearings-Only Example 
A bearings-only sensor located at (0,0) takes a noisy reading of 
the angle (alpha) towards the target.  We will model the difference 
between the measured angle and actual angle as a zero-mean, 
1D Gaussian.  

X1 

X2 

0 100 

0 

100 

α
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Bearings-Only Example 

prior likelihood 

to combine using Bayes rule:  point-wise multiply the 
prior times the likelihood, then renormalized the result 
so that to total mass sums up to 1. 
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Bearings-Only Example 

prior likelihood 

posterior 
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Bearings-Only Example 
Say a second sensor at (0,100) also takes a second noisy 
measurement of the target.  We this have another likelihood 
function to represent this second observation. 

X1 

X2 

0 100 

0 

100 

α


β
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Bearings-Only Example 

prior =our 
old posterior 

likelihood 

new posterior 
becomes prior for 
new observations 
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A More Interesting Example 
Let’s say our ship wants to be found, and is broadcasting a radio
 signal, picked up by a transmitter on a buoy.  That gives us a
 known distance to the ship. 

X1 

X2 

0 100 

0 

100 

prior 
buoy 

A second, bearings-only reading, is also taken... 

β
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Range+Bearings Example 

prior likelihood 
p(x) 

p(z1|x) 

posterior 
p(x|z1) = p(z1|x)p(x) 

p(z1|x)p(x) 

€ 

∑
x 
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Range+Bearings Example 

prior likelihood 
p(z2|x) 

p(x|z1) 

posterior 
p(x|z1,z2) = p(z2|x)p(x|z1) 

p(z2|x)p(x|z1) 

€ 

∑
x 
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Range+Bearings Example 
Note the posterior distribution is multimodal.  Presumably a
 second bearings reading from a sensor at the lower left of the
 region would disambiguate the location.  But it is important that
 the multimodality be preserved, in order for that to happen!  If
 we only kept the highest peak (in this example), we would get
 the wrong answer. 

posterior 
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Adding Motion Prediction 

Our previous examples left out something
 important... 

We didn’t take into account that the target
 could be moving! 

To do this we also need to model p(xt | xt-1) 
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Tracking as Bayesian Estimation 
Graphical Model: 

hidden nodes 

observed nodes 

Markov assumptions 

Factored joint probability distribution 



Penn State 
Robert Collins 

VLPR 2012 

Recursive Bayes Filter 
Motion Prediction Step: 

Data Correction Step (Bayes rule): 

previous estimated state state transition predicted current state 

predicted current state measurement 
estimated current state 

normalization term 
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Problem 
Except in special cases, these integrals are intractable. 

Motion Prediction Step: 

Data Correction Step (Bayes rule): 
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Such Special Cases 

All pdfs are Gaussian   Kalman Filtering 

Monte Carlo Integration  Particle Filtering; MCMC 

Hill-climbing on posterior    Mean-Shift; Lucas-Kanade 

and of course there are lots 
of papers on all of these 
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Filtering and Data Association 

•  Filtering 
–   Recursive Bayesian estimation 
–   (continuous) Probability Theory  

•  Data Association 
– Assignment problems 
–  (discrete) Combinatorics 
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Intro to Data Association 

Let’s consider a different tracking approach   

•  Detect objects in each frame. 

•  Determine interframe correspondences between them. 

Actually, in “ancient” times when tracking meant
 looking at blips on a radar screen, this was the natural
 approach. 

It is popular again due to successes in object detection. 
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Remainder of this Talk 
•  Data Association 

–  associate two sets of objects 
–  e.g. matching detections across frames 

•  Two frames: linear assignment problem 
•  Generalize to three or more frames 

– Greedy Method 
– Mincost Network Flow 
– Multidimensional Assignment 

increasing  
solution  
quality 

Polynomial time 

NP-hard 

R.Collins, "Multitarget Data Association with  
Higher-Order Motion Models,” CVPR 2012. 

approximate solution 
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Data Association Scenarios 
Match object detections across frames 
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Data Association Scenarios 

observations 

? track 1 

track 2 

How to determine which observations  
to add to which track? 

Match a current set of trajectories to object
 detections in the next frame 
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Linear Assignment Formulation  

Frame T 

Frame T+1 

.90 

.95 

.12 .81 

.89 

.23 

.25 .85 

.11 

Form a matrix of 
pairwise similarity  
scores 

We want to choose one match from each  
row and  column to maximize sum of scores 
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Linear Assignment Formulation 
Extend each trajectory (motion prediction) and assign scores
 to each observation based on inverse distance such that closer
 observations get higher numbers. 

track1 
o1 

o2 

o3 
o4 

1  3.0  
2     5.0 
3     6.0      1.0 
4  9.0      8.0 
5             3.0 

ai1 

o5 

track2 

ai2 

choose at most one match in 
each row and column to 
maximize sum of scores. 



Penn State 
Robert Collins 

VLPR 2012 

Linear Assignment Problem 

constraints that say 
X is a permutation matrix 

subject to: 

The permutation matrix ensures that we only match up one 
object from each row and from each column. 

maximize: 

minimize: 
note: alternately, we can minimize  
costs rather than maximize weights 

Mathematical Definition 
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Hungarian Algorithm 

There is an algorithm called Kuhn-Munkres or
 “Hungarian” algorithm specifically developed to
 efficiently solve the linear assignment problem.  

If you need to solve LAP, you should use it.  

However, we are going to look at other algorithms,
 because they generalize more readily to multi-frame
 (> 2 frames) problems. 
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Greedy Solution to LAP  

0.95   0.76   0.62   0.41   0.06    
0.23   0.46   0.79   0.94   0.35    
0.61   0.02   0.92   0.92   0.81    
0.49   0.82   0.74   0.41   0.01    
0.89   0.44   0.18   0.89   0.14   

1        2        3       4         5 

1 
2 
3 
4 
5 

Score = .95+.94+.92+.82+.14 = 3.77 

Find the largest score. 
Remove scores in same row and column from consideration 
  (that is, enforcing the 1-1 matching constraints) 
Repeat 

Is this the best we can do? 
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Greedy Solution to LAP  

0.95   0.76   0.62   0.41   0.06    
0.23   0.46   0.79   0.94   0.35    
0.61   0.02   0.92   0.92   0.81    
0.49   0.82   0.74   0.41   0.01    
0.89   0.44   0.18   0.89   0.14   

1        2        3       4         5 

1 
2 
3 
4 
5 

0.95   0.76   0.62   0.41   0.06    
0.23   0.46   0.79   0.94   0.35    
0.61   0.02   0.92   0.92   0.81    
0.49   0.82   0.74   0.41   0.01    
0.89   0.44   0.18   0.89   0.14   

1        2        3       4         5 

1 
2 
3 
4 
5 

Score=3.77 Score=4.26 
Greedy Solution Optimal Solution 

No! 

Greedy method is easy to program; quick to run; and  
 yields “pretty good” solutions in practice.  
But it often does not yield the optimal solution. 
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Min-Cost Flow 

3  2    3 
2    1    3 
4    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

b3 

 2 
 3 

 2 
 1 

 3 

 4 
 5 

 1 

 3 3  2    3 
2    1    3 
4    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

b3 

-2 
-3 

-2 
-1 

-3 

-4 
-5 

-1 

-3 

transform weights into costs 

S 
0 

0 

0 
T 

0 

0 

0 

add source/sink nodes with 0 cost 
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

b3 

-2 
-3 

-2 
-1 

-3 

-4 
-5 

-1 

S T 

-3 

0 
0 

0 

0 

0 

0 

transform weights into costs 
add source/sink nodes with 0 cost 
directed edges with flow capacity of 1 

[+3] [-3] 

pump N units of flow from source to sink 



Penn State 
Robert Collins 

VLPR 2012 

Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

b3 

-2 
-3 

-2 
-1 

-3 

-4 
-5 

-1 

S T 

-3 

0 
0 

0 

0 

0 

0 

note: interior nodes become transshipment nodes 
(sum flow out = sum flow in) 

[+3] [-3] 
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

b3 

-2 
-3 

-2 
-1 

-3 

-4 
-5 

-1 

S T 

-3 

0 
0 

0 

0 

0 

0 

There are standard algorithms for efficiently solving 
min-cost network flow, e.g. push-relabel algorithm;  
or successive shortest paths. 

[+3] [-3] 
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

-2 

-2 
-1 

-4 
-5 

-3 

S 
0 

0 

0 

[+2] 
T 

0 
0 

[-2] 

Nice property: The min-cost flow formalism readily
 generalizes to matching sets with unequal sizes.  
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Min-Cost Flow 

a1 

a2 

a3 

b1 

b2 

-2 

-2 
-1 

-4 
-5 

S T 

-3 

0 
0 

0 

0 
0 

[+2] [-2] 

Min-cost flow formalism readily generalizes to
 matching between sets with unequal sizes.  
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Last Words on LAP 

•  As I mentioned earlier, the solution used in
 practice is Kuhn-Munkres (aka Hungarian)
 algorithm. 

•  Main point is that exact solution to LAP can
 be found efficiently (in polynomial time). 
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Remainder of this Talk 
•  Data Association 

–  associate two sets of objects 
–  e.g. matching detections across frames 

•  Two frames: linear assignment problem 
•  Generalize to three or more frames 

– Greedy Method 
– Mincost Network Flow 
– Multidimensional Assignment 

increasing  
solution  
quality 

Polynomial time 

NP-hard 

R.Collins, "Multitarget Data Association with  
Higher-Order Motion Models,” CVPR 2012. 

approximate solution 
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Multi-Frame Generalization 

Generalizing to three more more frames 
– Sequential (Recursive) Greedy Method 
– Mincost Network Flow 
– Multidimensional Assignment 

Increasing generality from top-to-bottom 
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Sequential Greedy Method 

•  Extend a partial solution, frame-by-frame,
 sequentially forwards in time 

•  Results in a series of linear assignment
 problems between trajectories found up to
 frame t-1 and new observations in frame t. 

Traditional multi-target tracking approach.  Often combined
 with recursive filtering to smooth the trajectories.  
For more info: Blackman and Popoli, Design and Analysis of
 Modern Tracking Systems. 
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Sequential Greedy Matching 
Matching observations in a new frame to a set of
 trajectories from frames 1 to t-1 

observations 
   in frame t 

? track 1 

track 2 

1 

3 

2 

4 

5 
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Prediction  
Predict next target position along each track via some
 motion model (e.g. constant velocity). 

track 1 

track 2 

1 

3 

2 

4 

5 
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Prediction / Scoring 
Form track i to observation j scores wij based on distance and
 (or) appearance such that higher scores mean better matches. 

track 1 

track 2 

track1 

track2 

1         2         3         4         5 

w11       w12     w13     w14    w15 

w21       w22     w23     w24    w25 

1 

3 

2 

4 

5 
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Prediction / Scoring / Solve 
Find optimal solution using Hungarian algorithm. 

track 1 

track 2 

track1 

track2 

1         2         3         4         5 

w11       w12     w13     w14    w15 

w21       w22     w23     w24    w25 

1 

3 

2 

4 

5 
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Important Point 

Constant velocity motion prediction greatly improves 
quality of matching in situations where objects are  
closely spaced and appearance cues are not strong. 

no motion prediction constant velocity prediction 

Offset of correct match from last known location of object. 
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Sequential Greedy Method 

Pros:  
     Very efficient (real-time tracking) 
     Very common / well-understood 

Cons: 
      Purely causal (no “look-ahead”) 
      Matches, once made, cannot be undone if later 
          information shows them to be suboptimal 
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Network Flow Approach 
Motivation:  Seeking a globally optimal solution by

 considering observations over all frames in “batch” mode.  

a1 

a2 

a3 

b1 

b2 

b3 

S T 

Approach:  Extend two-frame min-cost formulation by
 adding observations from all frames into the network       

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 
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Network Flow Approach 

picture from Zhang, Li and Nevatia, “Global Data Association for Multi-Object
 Tracking Using Network Flows,” CVPR 2008.  
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Network Flow Solutions  

•  push-relabel method 
–  Zhang, Li and Nevatia, “Global Data Association for Multi-Object

 Tracking Using Network Flows,” CVPR 2008.  

•  successive shortest path algorithm 
–  Berclaz, Fleuret, Turetken and Fua, “Multiple Object Tracking using

 K-shortest Paths Optimization,” IEEE PAMI, Sep 2011. 
–  Pirsiavash, Ramanan, Fowlkes, “Globally Optimal Greedy

 Algorithms for Tracking a Variable Number of Objects,”  
CVPR 2011. 

–  these both include approximate dynamic programming solutions 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

-3 

-6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

-3 

-6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Find the minimum cost path. 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

-3 

-6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Find the minimum cost path. 

cost -6 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

-3 

+6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Reverse each edge along that path, and negate
 the score on each reverse edge. 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

-3 

+6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Find a remaining minimum cost path. 

cost -3 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

+3 

+6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Reverse each edge along that path, and negate
 the score on each reverse edge. 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

+3 

+6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Find a remaining minimum cost path. 

cost -2 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

+3 

+6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Notice that this path includes a reversed edge. 
When this happens, edit rules are applied to
 splice and correct the previous and new paths. 

cost -2 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

-3 
-1 

-3 

-2 
-1 

+3 

-6 
-5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Notice that this path includes a reversed edge. 
When this happens, edit rules are applied to
 splice and correct the previous and new paths. 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

+3 
-1 

-3 

-2 
-1 

+3 

-6 
+5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Reverse each edge along that path, and negate
 the score on each reverse edge. 
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

+3 
-1 

-3 

-2 
-1 

+3 

-6 
+5 

-1 

min-cost flow network 

3   1    3 
2    1    3 
6    5    1 

Small (3x3) example 

a1 

a2 

a3 

b1 b2 b3 

S T 

Now we are done, since there are no more  
directed paths from S to T.  
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Successive Shortest Path Example 

a1 

a2 

a3 

b1 

b2 

b3 

3 
1 

3 

2 
1 

3 

6 
5 

1 

maximum weight matching (thick edges). 
Total weight = 11 

3   1    3 
2    1    3 
6    5    1 

a1 

a2 

a3 

b1 b2 b3 

min-cost flow network Small (3x3) example 

corresponding  
solution 
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Network Flow 

Pros:  
     Efficient (polynomial time) 
     Uses all frames to achieve a global batch solution 

Cons: 
      Cost function is limited to pairwise terms 
      Cannot represent constant velocity or other higher-order 

      motion models 
      Will therefore have trouble when appearance information  

      is not discriminative and/or frame rate is low  
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Confusion Alert 
•  Wait... we know the graphical model for Kalman filter has only

 pairwise links, yet KF is able to represent constant velocity
 motion models. Why do you say a network flow graph cannot? 

•  KF is a recursive estimator that can propagate past location
 information forward in time.  Network flow graphs are static
 structures; costs on edges are fixed in advance, but constant
 velocity is a function of 3 nodes (if only x,y data observed). 
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Multi-Dimensional Assignment 

Recall the elements of 2D assignment problem: 
 - observations are nodes in bipartite graph 
   - edges contain one node from each partite set 
   - each edge has an associated cost / weight 
   - each edge has a binary decision variable (on/off) 

   - each node can only be part of one “on” edge 
     (i.e. edges in the solution set are disjoint) 
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Multi-Dimensional Assignment 

Generalization to k-frame assignment problem: 
 - observations are nodes in k-partite graph 
   - hyperedges contain one node from each partite set 
   - each hyperedge has an associated cost / weight 
   - each hyperedge has a binary decision variable 

   - hyperedges in solution set must be disjoint 
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Four-Frame Example 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

observations arranged in four sets (4-partite graph) 
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Four-Frame Example 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

hyperedge 1-2-2-3 decision variable x1223 
associated cost c1223 
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Four-Frame Example 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

hyperedges 1-2-2-3 and 3-2-3-2 are incompatible 
•     they share observation 2 in frame 2 
•     x1223 + x3232 > 1  is disallowed 
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Four-Frame Example 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

1-2-2-3 , 3-3-3-2 , 2-1-1-1 is a feasible solution 
•    all observations used once and only once [partitioning] 
•     x1223 = x3332 = x2111 = 1 ; all others 0 
•     solution cost is c1223 + c3332 + c2111  
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Four-Frame Example 

•  Mathematical formulation (an ILP) 

Intuition:  
We want to find a minimum cost partitioning of
 observations into disjoint hyperedges. 

reduces to LAP for 2 frames 



Penn State 
Robert Collins 

VLPR 2012 

Some Implementation Details 
I am glossing over some details.  For example, each
 partite set includes a dummy node (index 0) that can
 be assigned multiple times to allow objects to appear,
 disappear, and to explain missing observations. 

dummy 
nodes 

This is why we are able to require a partitioning of the
 observations (each observation used once and only once) 
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General MDA as an ILP 

reduces to LAP for 2 frames 
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MDA Solutions 

•  MDA is NP-hard 
•  three-frame decision version is one of  

    Karp’s 21 NP-complete problems 
•  Previous approaches 

–  branch-and-bound: multi-hypothesis tracking
 (MHT) is a version of this 

– Lagrangean relaxation (Aubrey Poore) 
–  complicated, time-consuming algorithms 

intuition: there is an exponential number of decision variables that
 you have to reason about.  k objs in f frames  kf  hyperedges 
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Our Approach 

•  We propose an approximation algorithm 
•  Starting with an initial feasible solution, it

 does a series of improvement steps  
•  Always maintains a feasible solution  
•  Guaranteed to converge to an optimum 
•  Cavaet: it is a local optimum 
•  In practice it converges quickly to very

 reasonable solutions 
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Factoring Hyperedges 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

hyperedge 1-2-2-3  (a1-b2) (b2-c2) (c2-d3) 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

f11 

g22 h23 

decision variable x1223 =  f12 * g22 * h23 
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Factoring Hyperedges 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

Hyperedges become k-paths; decision variables factor. 
Reintroduces graph structure of network flow approach 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

Key point: factoring allows us to consider local updates! 
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Factoring Hyperedges 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

Another important point:  costs remain unfactored. 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

This allows us to use arbitrary cost functions, defined
 over entire trajectories. 

f11 

g22 h23 cost=c1223 
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Local Updates 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

•  Pick a pair of adjacent frames (e.g. 2 and 3) 
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Local Updates 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

•  Pick a pair of adjacent frames (e.g. 2 and 3) 
•  Revise the decision variables (edges) between those

 frames while holding the rest of the solution fixed 
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Local Updates 
•  Rewriting objective function in terms of edges between

 frames 2 (indexed by b) and 3 (indexed by  c): 

where (ab) means current solution path that ends at
 observation b in frame 2, and (cd) means current path
 that starts at observation c in frame 3. 

fixed fixed 

variables being updated 
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Example 
Consider two targets viewed through four frames as in the sketch below: 

We are solving for edges between frames 2 and 3 (dashed), holding all
 other edges (thick) fixed.  The reduced cost matrix w(b,c) is: 

b=1 

b=2 

c=1 c=2 
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Local Updates 
•  In the paper, we show that updates to edge decision

 variables between two adjacent frames: 

The bottom line is that local updates to edges between
 two frames reduces to a two-frame linear assignment
 problem!  We solve this using Hungarian algorithm. 

fixed fixed 

variables being updated 

minimize 

reduces to: 

minimize 
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To Summarize Our Approach 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

•  Start with an initial feasible solution. 
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To Summarize Our Approach 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

a1 

a2 

a3 

b1 

b2 

b3 

c1 

c2 

c3 

d1 

d2 

d3 

frame1 frame2 frame3 frame4 

•  Begin stepping through adjacent pairs of frames, 
solving updating edge decisions to improve the  
objective function value 
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To Summarize Our Approach 

•  Step through all pairs of frames, from beginning to
 end of sequence.  This is one cycle. 

•  If no edge variables changed value during the cycle,
 we have converged  and can stop. 

•  Otherwise, go back to first pair of frames and step
 through all pairs for another cycle. 
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Relation to ICM 

•  This method is very much related to the iterated
 conditional modes algorithm  of Besag (1986) for
 computing MAP estimate of an MRF 

•  But instead of optimizing a single variable at a
 time, we do a block update of all edge variables
 between two adjacent frames. [leads to faster
 convergence, and maintains a feasible solution] 

•  Inherits convergence properties (and proof) from
 ICM [guaranteed to converge to a local optimum] 
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Validation 
•  Two datasets with ground-truth trajectories

 collected.  One is relatively sparse (average
 of five people per frame); one is dense
 (average of 20 people per frame). Each
 sequence is 15 minutes long. 

•  We temporally subsampled the data into
 testsets having 3, 2 and 1 frames per sec. 

•  Only location data used; no appearance. sample frame  
dense sequence 

•  Our approach is compared to two baseline methods 
-  greedy sequential filtering (using constant velocity) 

-  network flow algorithm (successive shortest paths) 
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Validation 
•  We use a higher-order trajectory cost function

 based on the “snake” energy function of Kass,
 Witkin and Terzopoulos (1987) 

distance 

curvature 
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Sample Results Sparse Dataset 
Network Flow 
(22 ID swaps) 

Our Approach 
(2 ID swaps) 
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Sample Results DenseDataset 
Network Flow 
(116 ID swaps) 

Our Approach 
(71 ID swaps) 
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Validation 
•  Tabulating mismatch error percentage (one

 component of the MOTA tracking accuracy measure) 

    where g(t) is number of objects at time t and mme(t) is 
number of ID swaps at time t 

Flow Greedy Ours       Flow Greedy Ours       smaller  
numbers  

are  
better 
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Tracking and Data Association 

•  Tracking 
–   Bayesian filtering 
–   (continuous) Probability Theory  

•  Data Association 
– Assignment problems 
–  (discrete) Combinatorics 


