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Abstract—Biologically inspired approaches are an alternative
to conventional engineering approaches when developing complex
algorithms for intelligent systems. In this paper, we present
a novel approach to the computational modeling of primate
cortical neurons in the dorsal medial superior temporal area
(MSTd). Our approach is based-on a spatially distributed mixture
of Gaussians, where MST’s primary function is detecting self-
motion from optic flow stimulus. Each biological neuron was
modeled using a genetic algorithm to determine the parameters
of the mixture of Gaussians, resulting in firing rate responses that
accurately match the observed responses of the corresponding
biological neurons. We also present the possibility of applying
the trained models to machine vision as part of a simple dorsal
stream processing model for self-motion detection, which has
applications to motion analysis and unmanned vehicle navigation.

Index Terms—Dbiologically plausible system; mixture of Gaus-
sians; MST single neuron receptive field model; genetic algo-
rithm, motion detection, self-motion analysis.

I. INTRODUCTION

As the development of intelligent system advances, numer-
ous automated systems and algorithms have been introduced
to enhance artificial intelligence and computer vision. In com-
puter vision for motion analysis, many engineering algorithms
attempt to understand optic flow in order to monitor self-
movement and track moving objects [8][13]. A biologically
inspired algorithm is an alternative to conventional engineering
methods. Biologically inspired algorithms can be developed
by simulating perceptual and neuronal process in primates’
brains, and applying principles derived from those simulations
to understand the world in ways that are more related to
biological intelligence.

The human visual cortex consists of two primary pathways
that process visual information, commonly called the ventral
stream and the dorsal stream [18]. The ventral stream, also
known as the what-pathway, processes the objects in a scene
to support detection and recognition. The dorsal stream, also
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Adapted from Gibson (1950)

Fig. 1. This commonly seen figure illustrates the perception of optic flow
when moving forward.

known as the where pathway, processes location and motion
information, including the self-motion cues in full-field optic
flow [19][20]. Fig. 1 illustrates optic flow as the visual motion
that is created by a person’s self-motion [17]. In this paper,
we propose a computational model of MST (medial superior
temporal area) neurons, that are an advanced stage in the dorsal
stream.

The dorsal stream processes visual motion data from V1
(primary visual cortex) to V2, MT (medial temporal area),
and then MST [18] as illustrated in Fig. 2. V1 and V2
preprocess the visual input’s multi-dimensional information
and relay its output to MT for local motion and small pattern
motion analysis. MT further consolidates and transforms visual
motion information and transfers the results of its analysis to
MST, where full-field optic flow is processed for self-motion
detection.

We used an array of mixture of Gaussians models, derived
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Fig. 2. The dorsal stream information flow process.

from genetic algorithms, to characterize the local motion
sensitivities of MST neuronal receptive fields and explore the
relations of those responses to the optic flow sensitivities of
MST neurons. Finally, we apply the single neuron receptive
field models with a feed-forward neural network as a biolog-
ically plausible machine vision self-motion detection system.

II. RELATED WORK

A variety of computational models of visual cortical func-
tion have been considered. Ventral extrastriate cortical neu-
ronal receptive fields have been modeled using Gabor filters
to enable the simulation of object recognition [10]. The vast
range of object shapes can be detected and segmented by
convolving a group of Gabor filters with specific orientations
and angles.

Connections between the neurons and neuron hierarchies in
the ventral system have been modeled as Visnet [2], Visnet
simulates the neurons structured in layers that propagate
information in a hierarchical format. Bayesian probabilistic
learning rules are used to sustain or discard connections
between randomly initialized nodes, the trained Visnet can be
used to recognize objects and patterns.

Dorsal extrastriate visual cortical neurons have been the
subject of several efforts to develop biologically inspired mod-
els of visual motion processing. Gaussian derivative models
have been used to model striate cortical neurons that are
thought to be the first steps in cortical motion sensing [15][16],
where three orthogonal Gaussian derivative models of different
orientations can be combined to detect the velocity and the
direction of a moving edge from input video frames. Summed
Gabor filters of different orientation and shift are used in a
separate instance to detect the motion energy of moving bars
[21], and such energy models mimic many aspects of the
physiology of primate motion perception. MT neurons have
been modeled using sets of von Mises functions to analyze
the mixture of sinusoidal grating plaid stimulus [5].

Our work follows the spirit of biologically inspired models.
We propose a mixture of Gaussians model of MST single
neuron receptive fields. These models are trained by a genetic
algorithm using neuronal response data obtained during the
presentation of local motion stimuli, and then tested with
16 full-field optic flow stimuli. The trained models should
simulate the behavior of the MST neuronal receptive fields,
and be able to detect self-motion in a manner that is consistent
with the putative primary function of MST.

Fig. 3. The setup of single segment recordings. We record a neuron’s response
one segment at a time, presenting 1 of the 4 planar motion directions at a time.
The segment numbers are displayed here, and the 4 planar motion directions
is shown in segment 1.

Fig. 4.  The local motion patterns summarizing the directions of dot
movement in the 16 optic flow stimuli that represents different self-motion
sensation. Notice that the 3x3 white dividing lines for each stimulus does not
actually display on screen, it is drawn here only for presentation clarity.

III. DATA

The neurophysiological receptive field data that we model
are recordings of 52 MST single neurons’ firing rate responses
from an adult Rhesus monkey. Each neuron’s evoked responses
(spikes per second) is recorded after a specific visual motion
stimulus shown on a 90°x90° rear projection screen while the
monkey maintained centered visual fixation. Full-field optic
flow is simulated by displaying a radial pattern composed of
500 moving white dots on a black background moving at an
average velocity of 40° per second.

A. Single Segment Recordings

The display screen is partitioned in to a 3x3 array of
nine segments. A neuron’s responses to each single segment
stimulus is recorded by presenting one of the four planar
motions (0°, 90°, 180°, and 270°) at a time (Fig. 3). Since
we record 4 planar motions per 9 segments, there is a total of
36 local motion stimuli. Multiple trials of the same stimulus
are recorded to derive an average response to each stimulus.

Baseline firing rate was recorded during blank screen peri-
ods of centered visual fixation that were interleaved between
the local motion or full-field optic flow stimuli. The blank
screen intervals provided information on how each neuron
responds when there is no visual motion stimulus present.
Recording the blank screen periods allowed us to obtain the



baseline firing rate of each neuron for comparison to the
stimulus evoked responses.

B. Full Field Flow Recordings

Our second type of neurophysiological data consists of
recordings of single neuron responses to full-field optic flow
stimuli simulating 16 different directions of observer self-
movement. The optic flow stimuli can be approximated as the
combination of 8 different motion directions (4 planar and
4 diagonal directions). This perspective views each direction
of moving white dots as occupying one of the 3x3 array of
segments with motion that is approximately uni-directional to
construct the optic flow stimuli. Fig. 4 shows the 16 different
optic flow stimuli that are generated from combining the 8
different motion directions at each of the 3x3 segments.

Each of the 8 motion directions is quantitatively labeled
as an integer 1 through 8 corresponding to the directions of
motions of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°,
with the singularity (all directions combined to yield no net
motion) being set to the value 0. This arrangement of the
motion labeling enables us to process each recording of the
data as an 1x11 vector: the first value is the mean firing
rate as spikes per second, the 2nd through 10th values are
the motion direction integers for segments 1 through 9, and
the 11th value represents the firing rates’ standard deviation
derived from the recordings’ multiple trials. This row vector
represents the input stimulus as well as the resulting mean
firing rate with its standard deviation in a convenient way,
where a single neuron’s response data is then a 16x11 matrix
containing response data from all 16 optic flow visual stimulus
recordings. The data for the single segment recordings follow
the same convention.

IV. PROPOSED METHOD

To model the neurophysiological data, we proposed the use
of a generative model of mixture of Gaussians, trained on the
optic flow response data. The Gaussian mixtures’ parameters
are optimized using a genetic algorithm, maintaining the link
to biological plausibility.

A. Dual-Gaussian Model

We propose using the mixture of two Gaussian shaped
functions to model the directional selective firing rate data, it is
chosen as a reasonable and widely employed approximation
to single neuron response directionality functions [4]. Dual
functions are used to to accommodate the excitatory and
inhibitory effects that are commonly observed from local
motion mechanisms, and also from either two excitatory or
two inhibitory mechanisms. Due to the local motion selectivity
that is implied by the single segment recordings, we allow
each segment to have its own distinct dual-Gaussian model:
for each of the nine segments, we model the local motion
selectivity by utilizing two Gaussian functions. For each
Gaussian, disregarding the normalizing constant would yield
the following form:
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G(p, o) = exp( ) (1)
where p represents the direction of preferred motion, ranging
from O to 359 degrees, and o reflects the variance of the motion
selectivity. We remove the normalizing constant because the y-
axis of our coordinate system represents the magnitude of the
firing rate data, and it can be any positive value (the Gaussians
can be negative to represent inhibitory responses). Therefore,
the dual-Gaussian model per segment’s local motion selectivity
would require two additional parameters ¢ and p representing
the gain constant that modulates the height of the Gaussian
curve, and the polarity parameter as to indicate the excitatory
or inhibitory of its associated Gaussian, respectively and
shown as follows,
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We denote G(z|€2) as the Gaussian with trained parameters
Q, and ¢(x|Q2) as the final and combined form of dual-
Gaussian segmental model for generating segmental firing rate
responses. Variable x is the direction of input visual motion
stimulus, where = = 0, 45, 90, 135, 180, 225, 270, 315, and
the trained parameter space Q = (C,P,M, X)), where C =
{¢; € (0,...,200);: =1,2},P={p; € (-1,1);i =1,2},M =
{p; € (0,...,359);i = 1,2}, ¥ = {0; € (0,...,90);¢ = 1,2},
with 7 corresponds to one of the two Gaussians that the
parameters are associated with.

max (G (z|Q), G2(2|Q2)), if pr =p2 >0
P(z|) = ¢ min(G1(2[21), G2(2[22)), if p1 =p2 <0
2?21 Gi(z|9), otherwise

In the next section, the precise training of {2, using a genetic
algorithm, is explained in detail. Each of the nine receptive
field segments consists of an independent dual-Gaussian model
¢(x|€2). The receptive field model is trained by placing the
nine segmental dual-Gaussian models in accordance to the 3x3
segmental layout, and summing the nine segmental responses
to generate the firing rate response given the full-field optic
flow motion stimulus.

9
P=b+ Y x|y 3)
j=1

We denote 7 as an MST neuron’s receptive field model’s
firing rate response given a full-field optic flow motion stim-
ulus, and b is the neuron’s baseline firing rate recorded when
the monkey is fixating on the screen in the absence of a visual
stimulus other than the fixation point. The summation of Eq. 3
combines the 9 segment local responses in an additive model,
which follows the generally accepted convention that receptive
fields are additive [22][23].
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Fig. 5. A sample neuron’s trained receptive field dual-Gaussian model, raw
dual-Gaussian mixtures representation. The x-axis is the direction of motion
selectivity and spans from 0 to 359 in degrees; the y-axis is the amplitude
of the firing rate in spikes per second that spans from -18 to 18 in this case.
Red implies positive Gaussian (excitatory responses) whereas blue represents
negative Gaussian. The Gaussian curves wrap around both x directions that
are consistent with the continuity of angles.

B. Model Training using Genetic Algorithm

The nine pairs of segmental dual-Gaussian models are
organized in the 3x3 array of receptive field segments, as
shown in Fig. 5 and the corresponding arrow representation
in Fig. 6. All parameters are tuned to generate firing rate
responses for comparison to the recorded neuronal responses.
We used a genetic algorithm as our model training method
to optimize the parameters @ = (C,P,M, ), where the
genetic algorithm is an optimization method that consists of
several stages of processing, based on principles reflecting the
course of evolution and survival of the fittest [1][12]. Although
the genetic algorithm only produces an approximation to
the search of optimal solutions and requires a number of
iterations, it is an evolutionary computing method that is
highly biologically plausible [9].

1) Initialization: To begin the process of finding the best
fitting receptive field model, we randomly initialize the param-
eters 2 of 1300 individual candidates, where each individual
is the 9-segment model that contains a dual-Gaussian for each
segment. Therefore, an individual model contains 18 Gaussian
functions G(z, ¢, p, p, o) defined from Eq. 2 with its 4 param-
eters ¢, p, i, and o optimized, where x is the observation of
recorded firing rate for a particular stimulus presentation trial.
Each of the 4 parameters are randomly initialized according
to their allowable range, where ¢ = 0,...,200, p = 1,...,15
with integer larger than 7 representing positive polarity (+1)
and negative (-1) otherwise, u = 0,...,359, and ¢ = 1,...,90
as defined in the previous section.

2) Selection: After 1300 first generation individuals are
randomly initialized, we select the top performing individuals
as the parents for crossover stage, based on their fitness score.
Each individual is evaluated for its fitness, which represents
how similarly the models’ generated firing rates approximate
those obtained from the recorded neuronal responses. We
define two fitness criteria that represent how closely related
a candidate model is to its biological counterpart:
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Fig. 6. A sample neuron’s trained receptive field dual-Gaussian model, arrow
representation. Each arrow represents a Gaussian, the orientation corresponds
to its tuned motion selectivity angle (x) in polar coordinate; red signifies
positive Gaussian which implies excitatory response while blue represents
negative (inhibitory) Gaussian. The length of the arrow is proportional to its
magnitude (c) and the width of the arrowhead denotes its motion selectivity
variance (o).
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We defined Eq. 4 as the fotal error fitness score over 36
distinct local motion stimuli as shown in Fig. 3, which is the
distance between the model’s response 7; from the recorded
firing rate response r;, where se; denotes the standard-error
calculated from the multiple trials of biological recording
given the #*" local visual motion stimulus. Eq. 5 is the group
error fitness score, in which we denote kmc(x,k) as the
k-means clustering of a given set of observations x and k
clusters. In this case, we cluster the model responses 7; as well
as recorded firing rate observations 7; into groups of £ = 3 in
a k-means cluster analysis where the product of that analysis
represents inhibitory, no response, and excitatory effects by
sorting the final centroids’ amplitude.

Each individual’s total error score d. and its group error
score dg are computed to minimize the final d. by utilizing
both d. and d, error criteria in order to search for an optimally
tuned model for each neuron. We then pick the best fitting 25
candidate models with the lowest d. and the 25 with the lowest
dgy.

3) Crossover: The crossover stage of the genetic algorithm
combines the selected elite parents, in the hope of producing
more viable offspring in the next generation by proliferating
the better fitting genes from the parents. Crossover is done
by merging the parents’ genes for each of the Gaussian
parameters: C, P, M, and 3. As the parameters have been
initialized within their allowable range, they were converted
into its binary bit string representation where each bit is a
chromosome in order for crossover to be possible.

From the 2 selected elite groups each containing 25 individ-
uals, crossover is done by merging the genes from 2 parents,



where the first parent is chosen from the total error list while
the second parent is from the k-means group error list. This
type of hybrid crossover enables the training to include both
traits as the model converges: best fitting as well as correct
grouping, which allows the model to capture two plausible
views of the systems implications of neurophysiological re-
sponses. When 2 parents are chosen, for each gene that is to
be crossed over a random index z is selected, and it is within
the size of the gene’s bit string. The index z serves as the cut-
off point that splices the genes from both parents into 2 left
and right subsets. By concatenating the parent 1’s left portion
to parent 2’s right portion, and parent 2’s left portion to parent
1’s right portion we create 2 offspring genes, and repeating this
step for all 4 parameters result in 2 individuals that are the
product of crossing over a pair of parents. Since there are 25
elites from each of the 2 selected groups, the crossover stage
yields 25 % 25 x 2 = 1250 offspring individuals.

4) Mutation: Genetic algorithms are a directed search
method that attempts to locate the global minimum in terms
of parameter errors. Mutation is applied by randomly altering
the genes of some offspring individuals to overcome the
algorithm’s potential resistance to escaping from any local
minimum in the search space. Each offspring individual has a
probability for being mutated, in this case we set our mutating
probability as 0.05 meaning mutation happens about 5% of
the time. When a mutation occurs, we execute a bit toggling
operation, where the mutating individual toggles one bit for all
4 of its genes, at one randomly selected index per bit string. An
alternative perspective might view this as a quadruple mutation
within each affected gene, and hence a higher mutation rate.
Mutation may increase or decrease an individual’s fitness, but
the decrease may just be what it takes to bring the search out
of the local minimum in order to continue the search for the
actual global minimum.

5) Next Generation: After the previous phases have com-
pleted in sequence, the 50 elite parents are put back into the
pool of their 1250 offspring individuals, making it a grand total
of 1300 individuals that compose the population for the next
generation. Each generation of the genetic algorithm operates
through the selection, crossover, and mutation process until
the individuals converge to a globally optimized fitness score.
Various stop criteria have been used with genetic algorithms.
We observed that the imposition of a limit of 75 generations
served our modeling efforts as well as other approaches and
provided a consistent limit across all models and neurons, thus
we applied it exclusively.

V. EXPERIMENT

Our goal was to train dual-Gaussian models on the single
segment recordings, and test the capacity of those models to
predict neuronal responses to the full-field optic flow stimuli.
In doing so, we are evaluating the hypothesis that local planar
motion responses sum to create the responses to full-field
stimuli. We set up the dual-Gaussian model and let the genetic
algorithm training take its course. A total of 10 randomly
initialized and independent trials of genetic algorithm trainings

takes place for every single neuron neuron. The one model out
of all 10 trials with the lowest total error d. is picked as the
final receptive field model when the training sessions finish. It
is important to note that although we use a hybrid crossover
method that utilizes two fitness measures to combine both best
fitting as well as correct grouping criteria, in the end the model
that yields the lowest d. is selected as the final optimized
model.

Our data was recorded using 36 distinct local motion stimuli,
as shown in Fig. 3. Therefore, each neuron model’s total error
d. and group error d, were derived from the 36 training
stimuli, as defined from Eq. 4 and Eq. 5. We found that the
training of the models converges at around 40" generation
by both d. and d, fitness measures (Fig. 7), well within our
stopping criteria of 75 generations. The figure also displays
the clear superiority of the selected elites from the overall
population.

The genetic algorithm training method that we use for
our experiment is a hybrid-selection and crossover process,
intended to keep the models successively approximating the
neuronal data. To demonstrate that our hybrid-selection and
crossover approach is viable, we set up a total of 4 different ge-
netic algorithm variants that include conventional approaches:
tournament selection using total error only, hybrid tournament
selection (using both d. and d,), top selection using total error
only, and hybrid top selection.

Tournament selection is a type of genetic algorithm selection
method, in which selection is done by randomly picking two
pairs of individuals, and keeping the individual with the lower
error from each pair as the parents to undergo crossover to
create the next generation. We compared tournament selection
to our top selection because of the popularity of tournament
selection. We also compared the single criteria selection vs.
our hybrid selection to determine whether one or the other
approach conveyed a substantial advantage.

The comparison of selection/crossover methods keeps all
parameters the same, that includes the test neurons, the number
of randomly initialized individuals, parameter ranges, the
number of individuals selected, generation count, and mutation
rate. We randomly selected 10 neurons for this experiment,
and 3 trials of each genetic algorithm variant is conducted
over 75 generations. Fig 8 shows the result of the training
session from the four selection/crossover methods that were
tested, with the results averaged across tested neurons over all
trials. It is apparent that top selection is the method of choice
for these data, where top selection of d, is able to converge to
a net error level that is about 3 times lower than that achieved
with the tournament selection method.

Hybrid selection yielded a more interesting result in which
we see almost no difference between hybrid and total error
only approaches with respect to d.. However, hybrid selection
is able to produce d, as low as O early into the training session.
Therefore, it is apparent that hybrid top selection and crossover
yields the best results in this case by taking both d. and d,
into account.

The resulting neuron models achieves a mean total error d.
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Fig. 7. Genetic algorithm training plot, averaged across all trials and  Fig. 8. Genetic algorithm variants training comparison plot, averaged across

neurons. The error bars from the elites curve represents the variance of a
given generation. The plots display apparent convergence for the elites, as
well as its variance.

of 33.95 sp/s (spikes per second) over each of the 36 local
motion stimulus set, which computes to 0.94 sp/s for every
local motion stimulus. This is a robust result, in the context
of our mean firing rate of our recorded neurons is 12.26 sp/s,
therefore our trained models are within 92% overall accuracy.

In Fig. 9, we show 4 sample neuron’s singles data training
response profile, its full-field optic flow data prediction, and
the resulting model visualized in arrow representation. The
figure shows that training on the singles data is highly accurate,
and that dual-Gaussian neuron models are can predict the full-
field optic flow data, suggesting that the receptive fields of
neurons are linearly additive. However, the 4th neuron in the
figure tells a different story: it was not able to predict the optic
flow responses. This raises the issue of segmental interaction
effects, which is the focus of ongoing work.

With the total of 52 models that are trained from hybrid
top selection and crossover, we may construct a self-motion
detector based on the trained dual-Gaussian models by us-
ing Gaussian derivative models [15][16], our trained dual-
Gaussian models, and a feed forward neural network.

To build a simple model for the dorsal stream that detects
self-motion, we refer back to the specifications of Fig. 2, and
implement the goal of detecting the global pattern of optic
flow from an input video sequence, divide the global motion
into 3x3 local motion fields, then use the trained dual-Gaussian
models to differentiate which self-motion the video contains.

We maintain biological plausibility by using the approach
that optic flow from a given input video sequence can be
detected by utilizing the Gaussian derivative models intro-
duced by Young et. al. (2001). Gaussian derivative models
are 3D Gaussian filters that are differentiated and organized
into specific orientations that mimic the receptive fields in V1
and V2 to detect motion. More details of the approach can
be found in [15] and [16]. For our purposes, we situate 4
different Gaussian derivative filters at each pixel for detecting
the 4 planar motions of left, right, up and down. We extract
Harris corner features on each video frame, and convolve the
Gaussian derivative filters with the frames from the resulting
Harris corner responses.

The mean responses of the 4 Gaussian derivative filters

all trials and the tested neurons. It is apparent that although all four variants
of genetic algorithm training sessions converge, the hybrid top selection setup
achieves both the lowest total-error de and k-means group error dg.

from each of the 3x3 local area of the video frames are
computed and by subtracting the mean leftward responses
from the mean rightward responses, and subtracting the mean
downward responses from the mean upward responses of each
3x3 local segments of the resulting frames, we are able to
obtain each local segment’s x and y components that describes
the segmental motion.

We use the Gaussian derivative detected motion responses as
the input to the trained dual-Gaussian models to get the firing
rate responses. One way to make sense of the responses from
the 52 neuron models is to train a neural network that learns
how to classify self-motion directions based on the firing rate
responses from all 52 neuron models.

We used a feed-forward neural network to train our models.
It has a 52 neuron input layer that takes the responses of the
52 neuron models as inputs, 3 hidden layers that are 40, 30,
and 20 neurons toward the 4 neuron output layer. The 4 neuron
output layer is trained to output as a column vector of either
[1T00O0],[0100][0010],or[00O0 1] that represents
the four self-motion directions tested: rightward global motion
(leftward self-motion), leftward global motion (rightward self-
motion), inward global motion (backward self-motion), and
outward global motion (forward self-motion) respectively.

We tested our dorsal stream model on a virtual reality
video sequence that was captured during a forward motion
followed by a right turn, then a final brief forward motion. We
choose to use a virtual reality motion sequence because the VR
environment eliminates the shaky movements that complicate
the acquisition of video signals. This simulates the stabilizing
effects that are provided by oculomotor reflexes in biological
systems. Fig. 10 shows an example of the results from the
processing of images from the virtual reality walk through.

This preliminary examination of self-motion detection
yielded an overall accuracy rate of 60% correct discriminations
between the four directions of self-motion presented, in which
random guesses would be correct 25% of the time. We
conclude that our models may provide the basis for automated
self-motion detection.



Neuron 712R06 - Singles Profile

—Recorded Response
—Model Response

iy
<
<

L]
<

s
o

h
=]

=]

Normalized Firing Rate (sp/s)
(-2
=]

[ T e e T T i S >
[Ny N NN [y SN N, iy NNy Sy S— R E_——
1 2 3 4 5 8 7 8 9

Motion Direction )

Stimulus Condition (
Screen Segment

Neuron 712R07 - Singles Profile

—Recorded Response
=Model Response

=
=
=

©
=

Y
=]

N
=i

Normalized Firing Rate (sp/s)
(-]
=

=

[ N [y N By NSy SN SN N S ) S S_—
1 2 3 4 5 6 7 8 9

Motion Direction )

Stimulus Condlition (
Screen Segment

Neuron 819R01 - Singles Profile

—Recorded Response|
==Model Response

=
=
=]

=]
=

Y
=4

)
=]

=

=
=
S

=] o
=] =3

&
=i

)
c

Normalized Firing Rate (sp/s)

=
i=3
=]

PO -]
-

D
=]

Me Response

Normalized Firing Rate (sp/s)

<

=
=4
=

s o o
-

]
<

=]

Neuron 712R06 - Flow Prediction

—Recorded Response
== Model Response

L AN

-2 1 K~ | \_*_o-}om.—}_,#..l—.*‘_
Stimulus Condition (motion direction )

Neuron 712R07 - Flow Prediction

—Recorded Response,

\

S AR L e

Stimulus Condition (motion direction )

Neuron 819R01 - Flow Prediction

—Recorded Response|
—Model Response

Normalized Firing Rate (sp/s)
(-]
=

ey ->1<-‘ -bh-* -bfﬂ-‘ -bh-‘ ->f<-‘ »h-* -b*‘-‘ -bh-‘
[ S N TR SN S I N Y S I S
1 2 3 4 5 6 7 8 9

- .en Motion Direction
Stimulus Condition ( )
Screen Segment

Neuron 819R34 - Singles Profile

Normalized Firing Rate (sp/s)

= At R ] Py kb e
Stimulus Condition (motion direction)

Neuron 819R34 - Flow Prediction

-ty -bh-‘ ->1<-‘ -bfd-‘ »h-& -bh-‘ -bf‘-‘ -bh—* -b*d—‘
I T e e R S A

. -, Motion Directi
Stimulus Condition ( otion Dlrectlon )

Screen Segment

Fig. 9. Sample results for 4 neurons. The first column is the singles data training response profile with the 2 horizontal lines from each profile representing
the range of observed baseline firing rates, and the error bars represent the standard error from the multiple recording trials. The center column is each
neuron’s full-field optic flow data prediction using the trained model, and the right column is the neuron model visualization in arrow representation. The
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than linearly additivity for MST neuron receptive fields. (All neuron responses are normalized to the range of [0 100])
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Fig. 10. Sample test video sequences within the lobby of Strong memorial
hospital virtual reality environment. Sequence (a) shows a forward self-motion
followed by the detected global flow field by the Gaussian derivative model,
and the 52 dual-Gaussian neural network classifies the motion as forward self-
motion ([0 0 0 1] after rounding to the nearest integer). Sequence (b) shows
a right turn self-motion, with the corresponding flow field and the decision
vector rounded into [0 1 0 0] that is also correctly classified as a rightward
self-motion.

VI. CONCLUSION

We have developed a mixture of Gaussians method to model
MST neuron receptive fields, and tested the resulting models
on full-field optic flow data. Our hybrid selection for the
training of the genetic algorithm optimized the parameters of
our dual-Gaussian models in 75 generations. We conducted
this experiment as 10 independent trials that all yielded con-
verging results. The models’ optic flow predictions revealed
that some models are able to predict optic flow responses
whereas others could not. This may imply interaction between
screen segments, where parts of a neuron’s receptive field
interact with each other non-linearly to produce an optimal
full-field optic flow response.

Finally, we applied the models to computer vision as a bio-
logically inspired self-motion detection system that represents
a simple pipeline in dorsal stream processing. Although we
would like the accuracy to be higher, it is the first real neuron
model that is applied to computer vision motion detection to
the best of our knowledge, therefore we are excited about the
results from our experiments.

We are currently working on exploring more of the possi-
bilities of segmental interactions that are suggested from our
experiments, and we are also analyzing the design of data
collection, in which we hope to incorporate more diversity
into our data while reducing the recording time. Future work
includes finding the potential segmental interaction effects by
designing a reduced dual-Gaussian model, and construct a
more robust self-motion detector using interaction effects.
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