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Abstract. Computer assisted surgical planning and image guided tech-
nology have become increasingly used in neurosurgery. We have devel-
oped a system based on ATmC (Adaptive Template moderated Classi-
fication) for the automated segmentation of 3D MRI brain data sets of
patients with brain tumors (meningiomas and low grade gliomas) into
the skin, the brain, the ventricles and the tumor. In a validation study
of 13 patients with brain tumors, the segmentation results of the auto-
mated method are compared to manual segmentations carried out by 4
independent trained human observers. It is shown that the automated
method segments brain and tumor with accuracy comparable to the man-
ual method and with improved reproducibility.

Keywords: Surgical planning, Image guided neurosurgery, Magnetic
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1 Introduction

Computer assisted surgical planning and image guided technology have become
increasingly used in neurosurgery [1,9,15,21]. 2D images accurately describe the
size and location of anatomical objects. The process of generating 3D views
to highlight structural information and spatial relationships of the anatomy,
however, is a difficult task and usually carried out in the clinician’s mind. Image
processing tools can provide the surgeon with interactively displayed 3D visual
information to facilitate the comprehension of the entire anatomy, and improve
the spatial information about relationships of critical structures (e.g. motory
and sensory cortex, vascular structures) and pathology [12].

Today commercially available systems usually provide the surgeon only
with 2D cross-sections of the intensity value images and a 3D model of the
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skin. The main limiting factor for the routine use of 3D models of other impor-
tant structures in clinical practice is the amount of time that an operator has to
spend in the preparation of the data [7,14]. The availability of automated meth-
ods will significantly reduce the time and is necessary to make such methods
practical.

Conventional segmentation methods for tumor segmentation such as statis-
tical classification or mathematical morphological operations may work well in
some cases but may not differentiate between enhancing tumor, edema and nor-
mal tissue [8,17,18]. For the separation of these tissues, the acquisition of several
tissue parameters alone has been shown to be insufficient [10]. A combination of
statistical classification and anatomical information has been used for the seg-
mentation of MRI images of the brain [3,11,20]. In a recent study, an anatomical
knowledge guided fuzzy c-means method was used for automatic detection and
segmentation of glioblastoma multiforme from a combination of T1-, T2- and
Proton density (PD) MR images with promising results [2].

We have developed an automated segmentation method based on ATmC
(Adaptive Template moderated Classification) [19] that combines statistical clas-
sification with anatomical knowledge from a digital atlas. The algorithm seg-
ments the skin surface, the brain, the ventricles and some of the most common
tumor types, meningiomas and low grade gliomas. The purpose of the current
study was to assess the accuracy and robustness of the algorithm by comparing
the automated method to manual segmentation carried out by trained medical
experts.

2 Materials and Methods

2.1 Patient Image Data

The MRI datasets consisted of a 3D sagittal spoiled gradient recalled (SPGR)
acquisition (field of view (FOV): 240 mm; slice-thickness: 1.5 mm;
256×256×124 matrix) after gadolinium-enhancement. 13 different patients with
brain tumors of different size, shape and location were selected, i.e. 5 menin-
giomas (cases No. 1–3, 11, 12), and 8 low grade gliomas (cases No. 4–10, 13).
A development database (cases No. 1–10) used for the design and validation of
the automated segmentation method was extracted from a neurosurgical image
database of approximately. 100 brain tumor cases that had been post-processed
for image guided neurosurgery (manual outlining of the structures skin-surface,
brain, ventricles, vessels and tumor). These cases provided a representative se-
lection of meningioma and low grade glioma cases. Validation was also carried
out on the datasets of 3 patients (cases No. 11-13) were image acquisition and
processing took place after completion of the algorithm development.

2.2 Automated Segmentation of Brain and Tumor

We adapted a general algorithm intended for the automated segmentation of
anatomical objects in different locations in the human body [19]. The algorithm
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Fig. 1. ATmC (Adaptive Template moderated Classification) segmentation
scheme (a) and brain tumor segmentation flow diagram (b).

combines two approaches to image segmentation into an iterative process: sta-
tistical classification and segmentation by registration of an anatomical atlas
(Fig. 1). We summarize here the concept of the segmentation framework and
its application to brain tumor segmentation. For a mathematical description we
refer to [19].

Image Segmentation Statistical classification (k-Nearest Neighbor rule) di-
vides the image into different tissue classes based on the signal intensity value [5].
Overlap between signal intensity distributions of different tissue classes leads to
mis-classifications. To resolve this problem, additional information is derived
from a digital volumetric atlas of a normal brain that has been manually seg-
mented into approximately. 250 different structures by medical experts [12]. By
projecting anatomical templates from the atlas onto the individual patient data,
different structures of interest in the patient dataset can be located according to
their location in the atlas.

Comparing the images of two different brains requires non-linear registration
for the projection of the atlas onto the patient data, capturing individual differ-
ences by allowing structures to shrink, grow, and twist, and to move or rotate
locally and independently [4]. In our approach, the algorithm computes the spa-
tial nonlinear transform on the basis of the segmented images, rather than the
original signal intensity values, in order that the registration be less susceptible
to image noise and intensity artifacts.

Instead of directly projecting anatomical templates onto the patient and thus
having to rely on hard boundaries, a model of anatomical localization was for-
mulated that reflects lower confidence in the localization towards the boundary
of structures (“soft boundaries”). This was implemented by using Euclidian dis-
tance transforms computed from the templates as additional anatomical feature
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channels in the kNN classification. The approach has the advantage that a very
precise registration is not necessary, because the method uses both the MR in-
tensity information and the soft spatial location.

Statistical classification and registration of the anatomical brain atlas are
iterated. The goal of the iteration is to improve the result of the registration
by providing tentative image segmentations, and to improve the result of the
classification by providing regions of interest.

Objects of interest are defined on the classified images, where every voxel
was labeled according to the assigned tissue class. For the identification of each
structure and removement of classification artifacts, a local segmentation strat-
egy was used, consisting of a) a morphological erosion to “cut” classification
artifacts such as thin connections between different objects, b) a connected-
component algorithm to re-label every voxel as belonging to one object or an-
other and c) a morphological dilation to restore previously eroded voxels on the
object boundaries [16].

Application to Tumor Segmentation Five tissue classes were modeled:
background, skin (fat/bone), brain, ventricles, and tumor. Due to the homoge-
neous tissue composition of meningiomas and low grade gliomas one tissue class
was sufficient for the statistical model. A simple, hierarchical model of anatomy
was used to define the order in which the different structures were segmented. By
proceeding hierarchically from the outside to the inside of the head (Fig. 1), each
segmented structure provided additional anatomical knowledge (i.e. a refined re-
gion of interest) for the next structure to be segmented. A standard normal brain
atlas contains no tumor template. This has three consequences. First, anatomical
templates from the atlas were derived only for the head, the ICC and the ventri-
cles. Second, because the registration paradigm assumes correspondence between
every structure in atlas and patient, a compound tissue class of the normal and
pathologic brain structures was formed during ICC registration. The atlas brain
was registered to the patient brain and pathology. Third, in a first tumor seg-
mentation iteration, only atlas brain and ventricle templates were used. In a
second iteration, the tumor segmentation from the first iteration was used as an
anatomical template. Although this template was approximate, the additional
information about the location of the tumor prevented the mis-classification of
brain.

Initialization of the Automated Segmentation Method Prior to the seg-
mentation, the image data is preprocessed with an anisotropic diffusion filtering
method to reduce the noise in the MR images while preserving edges [6]. The
method requires the selection of 3–4 example points for each tissue class. For the
2D display of MR slices and the selection of example tissue points using a mouse
a graphical user interface was developed. The program calculated a statistical
model for the distribution of the grey values based on these manually selected
tissue prototypes.
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2.3 Validation

Since there is no “gold standard” to compare with, our definition of a segmen-
tation “gold standard” is based upon the opinion of the medical expert, mani-
fested in manual segmentations using interactive computer segmentation tools.
However, manual segmentation is subject to inter-rater variability and human
error. To minimize the influence of these factors while maintaining the means of
measuring the segmentation accuracy of the individual raters, the standard was
defined as the area of those voxels where at least 3 out of 4 experts agreed upon
the identification. To determine inter- and intra-variability of the segmentation
results, a fifth rater manually segmented each selected 2D slice 4 times over a
period of one week, and the 4 experts carried out repeated initialization of the
automated algorithm.

The experimental setup was the following: The automated algorithm was
trained on a single MR slice containing the structures of interest and executed,
resulting in a segmentation of the entire 3D dataset into the structures skin,
brain, ventricles and tumor. A single 2D slice was randomly selected from the
subset of MR slices containing the tumor. On those slices, brain and tumor
were manually segmented by 4 trained medical experts using an interactive seg-
mentation tool (MRX, GE Medical Systems, Schenectady, NY). The structures
were outlined slice-by-slice by pointing and clicking with a mouse. The program
connected consecutive points with lines. An anatomical object was defined by a
closed contour, and the program labeled every voxel of the enclosed volume.

Statistical analysis was carried out by comparing the volumes of the auto-
matically with the manually segmented structures. Accuracy was defined as the
percentage of correctly classified voxels with respect to the total number of vox-
els in the image. To measure the inter- and intra-rater variation, the coefficient of
variation (CV% = 100*[(SD volume)/(mean volume)], SD: standard deviation)
of the volume of the structure was calculated.

3 Results and Discussion

Examples for manual and automated segmentation (Fig. 2) for a meningioma
(top row) and a low grade glioma (bottom row) illustrate high similarity between
the two methods. Fig. 3 shows the accuracy for brain and tumor segmentation
achieved by the automated and the manual method. The segmentation accuracy
of the cases 11–13 is displayed in Tab. 1. The segmentation accuracy with the
automated method is above 95 % for brain and above 99 % for tumor, and
within or close (maximum difference 0.6 %) to the range of the minimum and
maximum of the accuracy with the manual method. The errors of the automated
brain segmentation are in part due to the over- and under-segmentation in the
area of the tentorium cerebelli and the area of the lateral sulcus with abundant
vessels. The algorithm tends to oversegment these areas, if voxels e.g. of the neck
close to the cerebellum are mis-classified as brain and the template ICC derived
from the atlas is mis-registered.
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(a) (b) (c)
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Fig. 2. Examples of manual and automated segmentation: Meningioma (SPGR
image (a), manual (b), and automated segmentation (c)). Low Grade Glioma
(SPGR image (d), manual (e), and automated segmentation (f).

The size of the structure affects the segmentation accuracy. Potentially, the
boundaries are the areas of segmentation error. Since the comparison is based
on measuring the number of correctly classified voxels (fore- and background),
large objects tend to have a lower accuracy since there are more boundary voxels
to mis-classify with respect to the entire image.

Fig. 4 and Fig. 5 show the inter- and intra-rater variability achieved by
the manual and the automated methods. The horizontal lines mark the mean
coefficient of variability over all 10 cases.

The inter- and intra-observer variability of both methods are lower for the
brain than for the tumor. This is because the methods are consistent in labeling
the “center” of an object, but vary in the determination of the boundaries. Since
the brain is a larger structure than the tumor, the disagreement on the brain
boundary with respect to the overall brain volume (not the entire image, as for
the accuracy measurement) is less significant than for the tumor.
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Table 1. Segmentation accuracy of the three cases 11–13, where image data was
acquired and segmented after completion of the algorithm development.

Brain Accuracy [%] Tumor Accuracy [%]
Tumor Histology Manual Manual

min max mean
ATmC

min max mean
ATmC

Meningioma 96.66 99.69 99.48 97.23 99.12 99.58 99.44 99.58
Meningioma 98.75 99.62 99.15 98.69 99.25 99.89 99.72 99.57
Low Grade Glioma 96.55 99.72 98.85 99.16 99.90 99.94 99.93 99.91

(a) Tumor (b) Brain

Fig. 3. Segmentation accuracy of the manual (mean, minimum and maximum)
and the automated method for each of the 10 brain tumor cases (1–3 Menin-
giomas), (7–10 Low Grade Gliomas).

The mean inter- and intra-observer variability of the automated method is
lower than with manual outlining. While the inter-observer variability with the
automated method is consistently lower than with the manual method, the intra-
observer variability of the automated method is higher for most of the low grade
glioma cases. This can be explained with the different grey value distributions
of the meningioma and the low grade gliomas with respect to the brain. The
meningioma tissue class partially overlaps with parts of the skin, fat in the neck
and the straight and superior sagittal sinus. By restricting the region of interest
(ROI) for the meningioma to the ICC, tissues that show signal intensity over-
lap with the meningioma are excluded and the meningioma can be successfully
segmented. Low grade gliomas, however, are less distinguishable from brain tis-
sue. Partial volume artifacts on the boundary of the brain and the tumor may
cause signal intensity overlap between grey matter and tumor tissue, leading to
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(a) Tumor (b) Brain

Fig. 4. Inter-observer variability of manual and automated method (coefficient
of variation, CV). The horizontal line marks the mean of the CV values.

mis-classifications, i.e. over- or under-segmentation of brain and tumor. Thus,
the classifier is more sensitive to differences in the tissue prototype selection.

The mean computation time for the automated segmentation of the whole
volume was 75 minutes on a Sun ES 6000 server with 20 CPUs and 5 GB
of RAM (Sun Microsystems, Mountain View, CA). The overall operator time
was approximately. 5–10 minutes for the selection of prototypes for each of the
relevant tissue classes, while manual segmentation time for a neurosurgical case
has been reported to be in the range of 180 minutes [14], The reduction of
operator time makes it practical to consider the integration of computerized
segmentation into clinical routine.

3.1 Conclusion and Future Work

We have developed a method for the automated segmentation of meningiomas
and low grade gliomas without edema. Accuracy and intra-observer variability of
the automated method are comparable to the segmentation results from trained
human observers, with improved inter-observer variability.

Further investigation is required to extend the algorithm to a broader range
of brain tumors such as the glioblastoma multiforme or tumors with edema. Our
algorithm is implemented on high performance computing hardware. However,
through further algorithmic improvement and hardware speedups, we expect
that this method will become practical in a clinical setting in the near future [13].
Currently, our tool is used in routine surgical planning to provide the basis for a
clinical study based on a larger population to determine robustness and practical
use in a clinical setting.
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(a) Tumor (b) Brain

Fig. 5. Intra-observer variability of manual and automated method (coefficient
of variation, CV). The horizontal line marks the mean of the CV values.
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