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Abstract. Validation and method of comparison for segmentation of
magnetic resonance images (MRI) presenting pathology is a challeng-
ing task due to the lack of reliable ground truth. We propose a new
method for generating synthetic multi-modal 3D brain MRI with tumor
and edema, along with the ground truth. Tumor mass effect is modeled
using a biomechanical model, while tumor and edema infiltration is mod-
eled as a reaction-diffusion process that is guided by a modified diffusion
tensor MRI. We propose the use of warping and geodesic interpolation
on the diffusion tensors to simulate the displacement and the destruction
of the white matter fibers. We also model the process where the contrast
agent tends to accumulate in cortical csf regions and active tumor re-
gions to obtain contrast enhanced T1w MR image that appear realistic.
The result is simulated multi-modal MRI with ground truth available as
sets of probability maps. The system will be able to generate large sets
of simulation images with tumors of varying size, shape and location,
and will additionally generate infiltrated and deformed healthy tissue
probabilities.

1 Introduction

The segmentation of brain tumor from magnetic resonance (MR) images is a
vital process for treatment planning and for studying the differences of healthy
subjects and subjects with tumor. The process of automatically extracting tu-
mor from MR images is a challenging process, and a variety of methods have
been proposed [1,2,3]. The typical standard for validation of the different seg-
mentation methods is comparison against the results of manual raters. However,
manual segmentation suffers from the lack of reliability and reproducibility, and
different sites may have different methods for manually outlining tumors in MRI.
The true ground truth may need to be estimated from a collection of manual
segmentations [4]. Validation of the segmentation of structures other than brain
tumor is typically not done since manual segmentation of edema or of the whole
brain are very challenging tasks and might not represent truth very well.

Brain MRI with tumor is difficult to segment due to a combination of the
following factors:
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1. The deformation of non-tumor structures due to tumor mass effect.
2. Infiltration of brain tissue by tumor and edema (swelling). Edema appears

around the tumor mainly in white matter regions.
3. There is gradual transition from tumor to edema, often it is difficult to

discern the boundary between the two structures.
4. The standard MR modality used to identify tumor, T1w with contrast en-

hancement (typically using gadolinium), is not always ideal. Blood vessels
and cortical cerebrospinal fluid (csf) tend to be highlighted along with tu-
mor, while parts of tumor that are necrotic tissue do not appear enhanced
at all. It is generally impossible to segment tumor by simply thresholding
the contrast enhanced T1w image.

Rexilius et al.[5] proposed a framework for generating digital brain phantoms
with tumor. They used a biomechanical finite element model to simulate the tu-
mor mass effect. The phantom for a healthy subject is deformed and a tumor
structure from a real subject is inserted to the MRI. Their model for edema
is computed from the distances to the tumor boundary and the white matter
mask. This is insufficient to simulate some real infiltration properties because
infiltration is not only influenced by distance to tumor. Typically, edema infil-
tration occurs following the white matter fibers. Their framework only considers
contrast enhancement inside tumors, without enhancement of vessels and csf
regions.

We propose a method for generating simulated brain tumor MRI which in-
cludes most of the difficulties encountered in real MR images. The MR images
produced by the method presents the four challenges as listed above. Tumor
mass effect is simulated using a biomechanical model. Infiltration of brain tis-
sues by tumor and edema is simulated as a reaction-diffusion process that is
guided by a modified diffusion tensor MR image (DT-MRI). We also simulate
the process where the contrast agent accumulates in some fluid regions and outer
tumor regions to generate contrast enhanced T1w MRI that reflect challenges
encountered in real tumor MR images.

2 Method

The input for our method is a ground truth of a healthy subject, which is a
set of spatial probabilities for white matter, gray matter, and csf as shown in
Figure 1. We generate new spatial probabilities for tumor and edema, and modify
the healthy probabilities to account for mass effect and infiltration. The new
set of probabilities is used to simulate MR images given training data that is
obtained from real brain MRI with tumors. The probability that a particular
location contains contrast agent is computed to determine regions that appear
highlighted in T1w MRI.

The brain tumor MRI simulation system includes the following steps:

1. Selection of a MRI of a healthy subject with probabilistic tissue segmenta-
tion. This provides the initial healthy ground truth that will be transformed
into pathological ground truth.



Fig. 1. The input for our phantom generation framework: ground truth for a
healthy subject. From left to right: axial view of the spatial probabilities for
white matter, gray matter, and csf.

2. Selection of a region for the initial tumor probability that describes the initial
state of the tumor. Tumor growth is then simulated through deformation and
infiltration.

3. Computation of a deformation field using a biomechanical model. The prob-
abilistic maps and the DT-MRI are warped using the deformation.

4. Modification of the DT-MRI to account for destruction of white matter
fibers.

5. Simulation of tumor and edema infiltration using the modified DT-MRI.
6. Simulation of the process of accumulation of contrast agent in fluid and

tumor regions.
7. Generation of multi-modal MRI given the final healthy tissue, tumor, and

edema probability maps.

2.1 Tumor Mass Effect

Given an initial tumor region that is obtained through user interaction, the
growth of the tumor is modeled as a deformation process. The initial tumor
region can also be automatically drawn at random given some prior knowledge of
the spatial distribution. Meningiomas, for example, often appear near the brain
periphery. The initial tumor region can have arbitrary shape and influences the
resulting deformation. In the initial tumor region, the tumor probabilities are set
to be one, ptumor(x) = 1 and tissue or fluid probabilities are set to be zero. The
set of spatial probabilities, with the addition of the new spatial tumor probability
are deformed according to a biomechanical model.

We have chosen to use the linear elastic finite element model used in [6,5].
The external force for the system is a radial force that originates from the initial
tumor region, and this force weakens by distance.

2.2 Tumor and Edema Infiltration

We use the registered and reoriented DT-MRI to simulate the tissue infiltration
process, similar to the approach done by Clatz et al.[7]. However, registration
and reorientation are generally insufficient to account for the mass effect. White
matter fibers around tumor tend to be displaced, and as observed by Lu et al.[8],
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Fig. 2. Visualization of the diffusion tensor MRI through the axial views of the
3D Mean Diffusivity (MD) and Fractional Anisotropy (FA) images. The modified
DT-MRI has higher MD and lower FA in the regions surrounding tumor, which
models the destruction of the fibers. The MD image shows that the ventricle
near the tumor is slightly deformed. The FA image shows that the white matter
fibers near the tumor region are pushed away.

in regions near the tumor the mean diffusivity (MD) tends to be increased while
the fractional anisotropy (FA) tends to be decreased. This effect can be seen as
a reflection of the destruction of white matter fibers due to tumor growth.

The influence of tumor mass effect on DT-MRI is modeled using a combi-
nation of image warping and non-linear interpolation. The DT-MRI is warped
following the strategy described in [9], where a rigid rotation is applied to each
individual tensors. The rigid rotation for each tensor is computed based on the
local warping property. The destruction of white matter fibers is simulated by
interpolating each individual tensor with an isotropic tensor that has higher
mean diffusivity. Figure 2 shows the registered DT-MRI before and after the
modification that models the influence of tumors.

The interpolation between a warped tensor D and its isotropic version E
is calculated using the geodesic interpolation strategy proposed by Fletcher et
al.[10]. The isotropic tensor E is formulated to have two times the determinant
value of D, E = (2|D|) 1

3 I3×3. The weight α for the interpolation between D
and E is inversely proportional to the amount of deformation. We use α(x) =
exp(−K(x)

2σ2
K

) where K(x) = max(1, |J(x)|)− 1 with J being the Jacobian matrix
of the spatial coordinate mapping function and σK is the rough estimate of
the amount of deformation that destroys fibers. The modified tensor we use for
computing infiltration is D′(x) = interpolate(D(x) : α, E(x) : (1 − α)). With
our formulation of α, volume expansion destroys fibers while volume compression
does not change the original tensors. This is done because we observed that in
real tumor DT-MRI some fibers can appear condensed without being destroyed.

The spatial probability that a particular location is infiltrated by pathological
cells, pinfiltrated = φ, is evolved using the modified DT-MRI as follows:

∂φ

∂t
= div(a D′ ∇φ) + b φ(1− φ)



Fig. 3. Axial view of the generated probabilities related to contrast enhance-
ment. From left to right: probability for highlighted csf or tumor, probability for
non-highlighted tumor, and probability for non-highlighted csf.

The first term is the DT-MRI guided diffusion, with an additional parameter
a that depends on the tissue type. White matter is more likely to diffuse than
white matter, while csf is not likely to be infiltrated at all. The second term is the
growth term, with b being a constant. The diffusion tensors D′ are normalized so
that the trace of the tensors is within the range of [0, 1]. The initial values for φ
is chosen to be higher for regions with high tumor and white matter probability,
φ(x, t = 0) = pwhite(x) ptumor(x). The evolution is stopped when the volume of
infiltrated brain voxels is higher than a fraction of the brain tissue volume.

Tumor may not only deform tissue, but also infiltrate nearby tissue. We
model this by attributing the early stages of infiltration to tumor and the
later stages to edema. The probability of infiltrated tumor or edema is the
probability that a location is both infiltrated and part of brain tissue. More
precisely, ptumor(x) = pwarped tumor + φ(x, tearly) ptissue(x) and pedema(x) =
(φ(x, tfinal) − φ(x, tearly)) ptissue(x). The probability of observing brain tissue
is ptissue(x) = pwhite(x) + pgray(x). The value tfinal is the time where evolution
stops, and tearly is a time value earlier in the process, tearly < tfinal. The choice
for the value of tearly depends on the type of tumor being modeled. For example,
meningiomas tend to have less tumor infiltration compared to glioblastomas.

2.3 Generation of MR Image Intensities

One of the particular challenges in segmenting brain tumor from MRI is the in-
consistencies in the contrast enhanced T1w image. Due to the biological process,
the contrast agent is almost always accumulated in regions other than tumor,
mainly in the cortical csf and the blood vessels. Additionally, the necrotic parts
of the tumor do not accumulate the contrast agent at all. Tumor necrosis are
typically found in the core tumor regions.

Our method models the accumulation of the contrast agent in the active
tumor tissue and the cortical csf in order to generate more challenging images.
The spatial probability for the accumulation of contrast agent, pacc = η is evolved
using the following reaction diffusion equation:

∂η

∂t
= div(u∇η) + I{x ∈ Xsource} vη − I{x ∈ Xsink} wη



where v and w are constants and I is the indicator function. The value of u
depends on the tissue type at location x, contrast agent is modeled to be more
likely to spread in csf than in tumor tissue. Xsource and Xsink are the sets of
points that act as sources or sinks respectively, the points are chosen at random.
Locations with high csf probability and low distance to brain boundary are more
likely to be source points. Within tumor, the outer regions are more likely to
be source points while the core regions are more likely to be sink points. We
initialize η so that the voxels in the source regions are equally likely to have
accumulated contrast agent or to have no contrast agent at all, η(x, t = 0) =
I{x ∈ Xsource} 0.5.

The probability that a voxel would appear highlighted in contrast enhanced
T1w MRI is the probability that the voxel is csf or tumor and has accumulated
contrast agent, penhanced(x) = pacc (pcsf (x) + ptumor(x)). Figure 3 shows the
generated enhancement probabilities. Our model accounts for the fact that cor-
tical csf and active tumor regions are highlighted and that necrosis regions are
not enhanced. However, it does not account for the fact that blood vessels can
also appear enhanced.

Given the modified spatial probabilities of the healthy ground truth, the MR
images are generated as linear combinations of a set of mean intensities for each
class:

Im(x) =
Nm∑
i=1

pCi(x) µi

where m is the modality, Nm is the number of classes, Ci is one of the classes
used for that modality, and µi is the mean intensity for class Ci. The mean class
intensities are obtained from real brain tumor MRI. For T1w and T2w images,
the set of classes C is composed of white matter, gray matter, csf, tumor, and
edema. For the contrast enhanced T1w image, the set of classes C is composed
of white matter, gray matter, non-enhancing csf, non-enhancing tumor, edema,
and the class for all contrast enhanced voxels.

3 Results

The synthetic brain tumor MRI is shown together with an example of a real
brain tumor MRI in Figure 4. In both cases, tumor deforms other structures
and edema infiltrates brain tissue. The contrast enhanced T1w MR images also
show complex highlight patterns. Figure 5 shows the ground truth for the syn-
thetic MRI. Ground truth is presented as a set of probability maps for tissue
and pathology, similar to the one provided by BrainWeb [11] for healthy sub-
jects. This has significant advantage over binarization since validation can use
probabilistic statistical analysis rather than simple volume comparison.

4 Discussion and Conclusion

We have presented a method for generating synthetic multi-modal MR images
with brain tumors that present similar difficulties as real brain tumor MR im-



Fig. 4. The synthetic MR images compared to real MR images of a subject with
meningioma and surrounding edema. Top: axial view of the synthetic MR images
generated using our method. Bottom: axial view of real MR images. From left
to right: contrast enhanced T1w, T1w, and T2w images.

Fig. 5. Axial view of the ground truth for the synthetic MR images. From left
to right: the class probabilities for white matter, gray matter, csf, tumor, and
edema.

ages. Using sets of such images with variations of tumor size, location, extent of
surrounding edema, and enhancing regions, segmentation methods can be tested
on images that include most of the challenges for segmentation. The synthetic
MRI and the ground truth allows for the validation of the segmentation of the
whole brain, which includes white matter, gray matter, csf, tumor, and edema.
This capability is novel as most validations done so far were focused on tumor
only but not on infiltrated tissue and on deformed healthy tissue.

A possible extension to the method we proposed is the inclusion of vessel in-
formation to determine additional regions where contrast agent tend to accumu-
late. Blood vessel information can also be combined together with deformation
and infiltration to generate more precise simulation of the tumor growth and the
development of necrosis. This could lead to development of a texture model for
the tumor and edema regions.

It is important to note that our goal is to generate sufficiently realistic MR
images that are difficult to segment. The accurate modeling of tumor and edema



growth is beyond the scope of our current work. Such an effort would require
the modeling of the complex interactions between the deformation process, the
infiltration process, and the development of blood vessels [12]. Here, we focus
on the generation of test images that empirically simulate pathology as seen in
real images, with the main purpose to use simulated images and ground truth
for validation and cross-comparison.

The method presented here may also be applied for multi-focal lesions, for
example in cases of vascular strokes or multiples sclerosis. Such cases generally
present multiple regions with small scale local deformation and tissue infiltration,
which can be generated using our framework.
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