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Abstract 
 

Automated MRI (Magnetic Resonance Imaging) 
brain tumor segmentation is a difficult task due to the 
variance and complexity of tumors. In this paper, a 
statistical structure analysis based tumor segmentation 
scheme is presented, which focuses on the structural 
analysis on both tumorous and normal tissues. Firstly, 
3 kinds of features including intensity-based, 
symmetry-based and texture-based are extracted from 
structural elements. Then a classification technique 
using AdaBoost that learns by selecting the most 
discriminative features is proposed to classify the 
structural elements into normal tissues and abnormal 
tissues. Experimental results on 140 tumor-contained 
brain MR images achieve an average accuracy of 
96.82% on tumor segmentation. 
 
1. Introduction 
 

Automated MRI brain tumor segmentation provides 
useful information for medical diagnosis and surgical 
planning. However, it is a difficult task due to the large 
variance and complexity of tumor characteristics in 
images, such as sizes, shapes, locations and intensities. 
So in practice, segmentation of brain tumor continues 
to depend on manual tracing and delineating. Many 
image processing techniques have been proposed for 
MRI brain tumor segmentation, such as deformable 
model [1], fuzzy connectedness [2] and atlas-guided 
method [3]. Most of the previously-reported work falls 
into the category of pattern recognition methods [4-6]. 
The key issue of successful pattern recognition 
methods is to extract effective features. Intensity-based 
statistical features are the most straightforward and 
have been widely used [4]. But due to the complexity 
of the pathology in human brain and the high quality 
required by clinical diagnosis, only intensity features 
can not achieve acceptable result. Thus many texture 
features have been presented for tumor segmentation. 

Co-occurrence matrix [5] and wavelet-based texture 
features [6] are often used and achieve promising 
results. The problem in most previous work is the lack 
of effective feature selection strategies. Texture 
features are usually in large dimensions, but not each 
dimension can provide useful information for the 
segmentation.       

In this paper, a statistical structure analysis method 
is presented and applied to MRI brain tumor 
segmentation. Firstly, MR images are divided into 
small structure elements, and then three different kinds 
of features are extracted from each element, which 
quantify the intensity, symmetry, and texture 
properties of different tissues. Secondly the AdaBoost 
algorithm is performed to select the most 
discriminative features and classify tumor and normal 
structures. AdaBoost introduced in 1995 by Freund 
and Schapire [7], has been applied to solving many 
machine learning problems. Xin Yuan, et al. [8] used 
AdaBoost to select texture features for 
microcalcification detection in mammography; Oriol 
Pujol, et al. [9] presented an ultrasound vessel 
segmentation method based on AdaBoost feature 
selection; Anant Madabhushi, et al. [10] applied 
AdaBoost to prostatic adenocarcinoma detection. 
However, the application of AdaBoost in medical 
image analysis is still rare, especially in MRI brain 
tumor segmentation. We apply AdaBoost to our 
problem due to its merit of the feature selective ability. 
Compared with other feature selection methods such as 
PCA, the features selected by AdaBoost have specific 
physical meanings and lower computing cost.  

In the following section, the statistical structure 
analysis method is firstly presented in section 2, 
including the structure elements division, feature 
extraction, selection and classification. Section 3 
applies the presented method on tumor segmentation 
and experimental results are shown and discussed. 
Finally, the conclusion is given in section 4. 
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2. Methodology 
 

The main idea of our method is to view the image 
as structure elements rather than pixels, because it is 
difficult to determine which tissue a pixel represents if 
you only focus on the pixel, but it is much easier when 
the structure information of the pixel’s neighborhood 
is considered. In this paper, each pixel together with a 
small square neighborhood is defined as a structure 
element, which is called ‘block’.  Further steps are all 
based on the blocks. For training process, firstly, 3 
kinds of features are extracted block by block in one 
image. Secondly, AdaBoost algorithm is applied to 
select the most discriminative features and design a 
classifier to categorize the blocks into normal and 
tumorous groups. When a new image comes, only 
those selected features are extracted and the trained 
classifier is used to categorize the tumor in the image. 
The training and detection process flow of the 
proposed method is shown in figure 1. It should be 
noticed that the input images are preprocessed 
beforehand, including skull stripping which eliminates 
the skull from the brain image and scale normalization 
to adjust the intensity scale of the input images.   

 
 
2.1. Block size  

The block size must be chosen carefully. If it is too 
small, the block cannot show the characteristics of 
structures; if it is too big, it will include too many 
kinds of structures and also increase the computing 
cost. In this paper, the basic rule to select the block 
size is to make sure the blocks which locate within 
white and gray matters include gyri, because gyri 
contain important texture information of white and 
gray matters.  

The block size is determined as follows: first, erode 
the skull stripped T2 MR brain image to find a curve 
that is parallel to the contour of the brain. The intensity 
signal along the curve is shown in Figure 2, in which 
the peaks are gyri in the image. Then the mean 

distance M of every two neighbor peaks is calculated, 
and the size of the block is defined as M× M.  

In the experiment on 140 MR brain images from 10 
adults, we found that the result varies little (25 ± 1 
pixels), so it is reasonable to use fixed block size rather 
than a variable one. Furthermore, the fixed block size 
is easy for computing and further processing such as 
feature extraction and classification. 

 
 
2.2. Feature extraction 
2.2.1 Intensity-based features 

10 intensity-based statistical features are extracted 
from each block, including the mean intensity, 
maximum intensity, minimum intensity, range 
(maximum intensity minus minimum intensity), central 
pixel’s intensity, variance, standard variance, median 
intensity, skewness, and kurtosis. The intensity values 
directly reflect the physical characteristics of tissues in 
MRI, however, different tissues may have overlapping 
of intensity values. In order to achieve good 
segmentation performance, other information such as 
anatomic knowledge should also be considered. 
 
2.2.2 Symmetry-based features 

A remarkable characteristic of normal brain MR 
images is the symmetry of two cerebral hemispheres. 
The brain image with tumor will turn asymmetric 
because tumor usually occurs in one cerebral 
hemisphere and holds the normal structure’s place. The 
simplest way to detect the asymmetry is subtracting 
one hemisphere from the other pixel by pixel. 
However, the human brain is not exactly symmetric, 
and there are always some slight variances. Thus in 
this paper, an asymmetry map S is calculated based on 
the original MR image I.  

( , ) ( , )
( , ) min | ( , ) ( , ) |

k l N i j
S i j I i j I k l

′ ′∈
= −    (1) 

(i’, j’) is the symmetric pixel of (i, j); N (i’, j’) is a 
small neighborhood of pixel (i’, j’), defined by 
equation (2); δ is the radius of N, which is a small 
value selected empirically.  

 ( , ) {( , ) | ( , ),( , ) }N i j k l k l i j δ′ ′ ′ ′= ≤    (2) 

Figure 2. (Left) The detected curve (white curve) that 
parallels to the brain contour. (Right) The intensity 

signal along the curve, * marks the peak point. 

Figure 1. (Left) The training process flow 
(Right)The tumor segmentation process flow 
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The symmetry-based feature is defined as the 
asymmetry map S value of the central pixel in each 
block.  

 
2.2.3 Texture-based features 

In normal MR brain images, the relative positions of 
different tissues are generally fixed, so there are 
certain texture patterns within one tissue and among 
different tissues, such as the gyrus, which is important 
for detecting white and gray matters. Homogeneous 
texture descriptor (HTD) in MPEG-7 is applied to this 
work to represent the block texture [11]. Since HTD 
can capture the most salient features of a texture 
pattern, different texture patterns in one image can be 
distinguished by it. 

HTD is extracted by Gabor filter banks which 
partition the frequency space with equal angle of 30 
degrees in angular direction and with octave division 
in radial direction. According to some previous results, 
the best numbers of angular and directional parameters 
are 6 and 5 respectively, resulting in 30 channels in 
total.  

In each channel, the following 2-D Gabor function 
is applied to filter the image: 

2 2

, 2 2

( ) ( )( , ) exp[ ] exp[ ]
2 2s

s r

s rGρ γ
ρ θ

ω ω θ θω θ
σ σ

− − − −
=   (3) 

where { 0 2 s
sω ω −= , s = 0, 1, 2, 3, 4} are the center 

frequencies in the radial direction, and 0ω is the center 
frequency of the highest frequency channel, specified 
by 3/4. The corresponding bandwidths are { 0 2 s

sB B −= , 
s = 0, 1, 2, 3, 4}, and 0B is the largest bandwidth 
specified by 1/2. { 30r rθ = ×o , r = 0, 1, 2, 3, 4, 5} are 
the center angles in the angular direction. In 
addition, /(2 2ln 2)

s sBρσ = , where 
rθ

σ  is a constant 

30 /(2 2ln 2)o . 
After filtering, the first and second moments in 30 

frequency channels are computed, to compose the 
HTD represented as a 60-dimensional vector.  

 
Accordingly, 3 kinds of features are extracted, 

which describe the structure’s information of intensity, 
symmetry and texture. These features certainly have 
some redundance, but the purpose of this step is to find 
the potential useful features. In the next step, the 
feature selection will be performed to reduce the 
redundance. 
 
2.3. AdaBoost 

As the feature extraction strategy mentioned above, 
3 kinds of features are extracted. However, not all the 
features are equally effective. AdaBoost learns the 

classification by selecting only those individual 
features that can best discriminate among classes. 
Furthermore it provides a final classifier as well as the 
feature selection strategy.   

 The AdaBoost algorithm takes as input a training 
set (x1, y1), …, (xm, ym), where each xi belongs to the 
feature space X, and each label yi is in label set Y = {-1, 
+1}. -1 represents normal structures, and +1 represents 
tumorous structures. AdaBoost calls a given weak 
classifiers repeatedly in a series of rounds t = 1, …, T. 
One of the main ideas of the algorithm is to maintain a 
distribution or a set of weights over the training set. 
The weight of this distribution on training example i 
on round t is denoted by Dt(i). Initially, all weights are 
set equally. On each round, the most effective weak 
classifier is selected based on the current distribution, 
then the weights of incorrectly classified examples are 
increased so that the weak classifier is forced to focus 
on the hard examples. The final classifier is created by 
combining the weak classifier selected on each round. 
The outline for AdaBoost is given as below [7].    
Given 1 1( , ), , ( , )m mx y x yL  where , { 1, 1}i ix X y Y∈ ∈ = − +  
 Initialize 1( ) 1/D i m= . 
 For t = 1, …, T: choose the classifier ht: 

{ 1, 1}X → − +  with minimum classification 

error
1

( )
m

t i t i i
i

h x yε ω
=

= −∑ ; 

 (1/ 2) ln[(1 ) / ]t t tα ε ε= − ; 1( ) [ ( )exp( ( ))]/t t t i t i tD i D i y h x Zα+ = −  
where tZ  is a normalization factor (chosen so that 1tD +   
will be a distribution). 

 Output the final classifier: 
1

( ) ( ( )).
T

t t
t

H x sign h xα
=

= ∑  

If on each round, only one feature is used to do the 
classification, the algorithm is also a feature selection 
process. In this work, ht  is defined as equation (4) 

1, ( )
( )

1,
t i t

t i

f x
h x

otherwise
< Ρ⎧

= ⎨−⎩
     (4) 

where tf  is the feature selected on the tth round, and it 
should be set to 0 on the next round; Pt is the threshold 
with the minimum classification error for tf .  

 
3. Experimental results 
 

We conducted our experiments on MR images from 
10 different patients with gliomas. Each patient has 3 
volumes of MR images, T1, T2, and FLAIR. Each 
volume contains 24 slices in axial plain with 5 mm 
slice thickness. MR imaging was performed on 3.0T 
Siemens devices. The imaging conditions of different 
protocols are: T1 weighted (TR=1680ms, TE=13ms, 
TI =800ms), T2 weighted (TR=5800ms, TE=103ms) 
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and FLAIR weighted (TR=9000ms, TE=100ms, 
TI=2500ms).  

According to section 2, firstly the images are 
divided into small structure elements (blocks), and 
then 3 kinds of features are extracted from each block. 
It should be noticed that all the features are extracted 
respectively from multi-protocol MR images, T1, T2 
and FLAIR, so the dimension number should be 
multiplied by 3. In total, a 213-dimensional feature 
vector is extracted from each block. 

Half of the experimental images are selected 
randomly as the training set and another half constitute 
the test set. The ground truth is the tumor contour 
delineated by experienced doctors. From all the 
training images, 40000 blocks (20000 positive and 
20000 negative) are extracted to train the AdaBoost 
classifier. Positive means normal tissues and negative 
means tumorous tissues. In order to test the classifier, 
40000 blocks (20000 positive and 20000 negative) are 
extracted from the images in test set. 

The training and test error curves of the AdaBoost 
classifier as a function of the boosting round number 
are shown in figure 3. The curves indicate that along 
with the increasing of rounds, the training error tends 
toward zero, but after the number of rounds exceeds 40, 
the test error does not change much any more, which 
means the left features can not provide more 
information for classification. So when processing a 
new image, we only need to extract 40 selected 
features, and use the classifier created by the first 40 
rounds of AdaBoost algorithm. 

 
 
In all the 40 selected features, there are 13 intensity-

based features, 1 symmetry-based feature, and 26 
texture-based features. It proves that the 3 kinds of 
features extracted in our work are all useful for the 
classification. Besides, the distribution of the 40 
features in different protocols, T1, T2, and FLAIR, are 
9, 12, 19 respectively. It means FLAIR provides the 
most information for tumor segmentation, T2 provides 
less and T1 provides the least. This result is in 

accordance with the conclusion in medical imaging, 
that FLAIR and T2 are more sensitive in pathological 
discrimination than T1. The distribution of the selected 
features is shown in table 1.  

 
 Table 1. The distribution of selected features 

Number of Features T1 T2 FLAIR Total

Intensity Features 2 5 6 13 

Symmetry Features 0 0 1 1 

Texture Features 7 7 12 26 

Total 9 12 19 40 

 
On each round, AdaBoost selects a weak classifier 

with the minimum classification error in current 
distribution. Each weak classifier has a weight which 
determines its effectiveness in the final strong 
classifier. One weak classifier is produced by one 
feature, so the weight value also represents the 
importance of the feature for segmentation. 3 features 
with the highest weights selected by AdaBoost 
(denoted by F1, F2, and F3) together with the original 
MR images are illustrated in figure 4 respectively.  F1 
is the texture feature extracted from FLAIR image with 

sω =3/4 and o90rθ = . F2 is the maximum intensity 
value extracted from T1 image. F3 is the median 
intensity value extracted from T2 image. Tumorous 
tissues have relatively high F1 values but most 
necrotic tissue included inside the tumor and cerebral 
fluid are relatively low. F2 is able to discriminate the 
necrotic tissue and F3 provides the information about 
cerebral fluid. So these 3 features contribute irrelevant 
and complementary information to the tumor 
segmentation. 

 

 
  

Figure 3. (Lower) AdaBoost training error curve
(Upper) Test error curve FLAIR               T1                    T2 

F1                   F2                  F3 
Figure 4. Original MR images(upper line) and 

3 most effective features selected by AdaBoost 
F1, F2 and F3(lower line) 
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Using the 40 selected features, the block 
classification accuracy on the test set by our algorithm 
is 98.74%. We compared this result with kNN (k 
nearest neighbors) algorithm and SVM (Support 
Vector Machine), which are widely used in medical 
image analysis. On the same training and test set, 
classification accuracies achieved by AdaBoost, kNN 
and SVM are shown in table 2. While using the 40 
selected features, the accuracy on the test set by 
AdaBoost is 98.74%, which is better than 98.48% by 
kNN (choose k=7 which achieves the best result while 
ranging from 1~15) and 98.69% by SVM. The 
differences among three methods are not remarkable, 
but AdaBoost performs slightly better. The reason is 
that AdaBoost set different weights to different 
features, but kNN and SVM deal with all the features 
equally. Especially in this problem, features have 
different dimensions and physical meanings, setting 
appropriate weight to each feature may achieve good 
results. If all the 213 features are used without 
selection, the classification result of AdaBoost has no 
change, but the accuracies of both kNN and SVM 
decrease significantly. The phenomenon shows that the 
redundancy and correlation exist in the 213 features, 
and influence the classification. The feature selection 
by AdaBoost is able to eliminate this kind of influence, 
and in the same time increase the efficiency of 
computing.    

 
Table 2. The classification accuracy of AdaBoost, 

kNN and SVM 
Classification 

accuracy 
With feature 

selection 
Without feature 

selection 

AdaBoost 98.74% 98.55% 

kNN 98.48% 95.47% 

SVM 98.69% 96.46% 

 
Some tumor segmentation results by the method 

presented in this paper are shown in figure 5. It can be 
observed that the results are very close to the 
delineations by doctors, which means our method is 
effective in MRI brain tumor segmentation. The 
correct rate, false positive rate (FP) and false negative 
rate (FN) of tumor segmentation are defined as below: 

'false positive pixel s numberFP
tumor size

=     (5) 

'false negative pixel s numberFN
tumor size

=    (6) 

correct rate FP FN= +             (7) 
The average correct rate by the presented method is 

96.82%, with FP of 1.3% and FN of 3.69%. The main 

factor influencing the accuracy is the presence of 
edema, which leads to high FN value, because the 
edema usually occurs beside the tumor and has similar 
appearance to the white matter. Both tumor and edema 
are abnormal tissues, so doctors are inclined to include 
the edema when delineating the tumor contours. We 
compared our method to ACM (Active Contour Model) 
based and fuzzy connectedness based segmentation 
methods. The segmentation results on the same test set 
are shown in table 3. ACM is widely used in image 
segmentation, and the principle of which is to evolve 
the contour curve until it achieves the lowest energy. 
Fuzzy connectedness based segmentation method 
firstly calculate the fuzzy connected component of 
each pixel to the seed point using both intensity and 
space information, and then segment the fuzzy 
connected component image by region growing or 
threshold. In this paper, the seed point and the optimal 
segmenting threshold are manually selected. In table 3, 
it can be observed that our method performs better 
than both ACM and fuzzy connectedness based 
methods in tumor segmentation. The FN of our method 
is much lower than the other two methods. Because 
ACM and fuzzy connectedness methods both rely on 
some edge information between tumor and normal 
tissues, but the presence of edema obscure the edge 
between tumorous and normal tissues. The above 
comparison proves the effectiveness of the structure 
analysis in our method, which is able to discriminate 
tumor and normal tissues by comprehensive 
information.          

 
Table 3. The segmentation accuracy of our method, 

ACM and fuzzy connectedness based method 
Segmentation 

Accuracy 
FP FN Correct 

rate 
Our Method 1.3% 3.69% 96.82%

ACM 1.84% 7.51% 90.65%
Fuzzy Connectedness 2.95% 5.02% 92.04%

 
4. Conclusions 
 

Automated MRI brain tumor segmentation is a 
useful technique for diagnosis. In this paper, a 
statistical structure analysis method and its application 
to MRI brain tumor segmentation is presented. 

The method mainly includes 3 steps: structure 
elements subdivision, feature extraction, feature 
selection and classification. Experimental results 
demonstrate the features selected by our method can 
contribute effective and complementary information to 
discriminating tumor and normal tissues. The selected 
features include intensity, symmetry and texture based 
features extracted from multi-protocol MR images. By 
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the comparisons with kNN and SVM methods, it 
shows that feature selection reduces the dimensionality 
of the feature space and improves the performance of 
the classifier. The proposed method performs better 
than the existing segmentation methods such as ACM 
and fuzzy connectedness based methods, and achieves 
very accurate segmentation results. In the future, the 
application of the presented method to multi-tissue 
segmentation will be considered, and the information 
of new imaging techniques such as fMRI will be added 
into the scheme to achieve more accurate results.     
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Figure 5. (Left column) Original FLAIR image; 
(Middle column) Tumor segmentation result by 

our method; (Right column) Ground truth 
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