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Random Walks for Image Segmentation

Leo Grady

Abstract— A novel method is proposed for performing multi- it first reaches each of th& seed points? It will be shown
label, interactive image segmentation. Given a small number that this calculation may be performed exactly without the
of pixels with user-defined (or pre-defined) labels, one can gimation of a random walk. By performing this calculation
analytically and quickly determine the probability that a random - . e
walker starting at each unlabeled pixel will first reach one of we aS?{'Q” aK-tuple vector to each P'Xe' that specifies the
the pre-labeled pixels. By assigning each pixel to the label for Probability that a random walker starting from each unsdede
which the greatest probability is calculated, a high-quality image pixel will first reach each of theX seed points. A final
segmentation may be obtained. Theoretical properties of this segmentation may be derived from thdéeuples by selecting
algorithm are developed along with the corresponding connec- ¢4 aach pixel the most probable seed destination for a rando

tions to discrete potential theory and electrical circuits. This lker. By biasing th d ker t id . h
algorithm is formulated in discrete space (i.e., on a graph) using W&'K€l. By biasing theé rancom walker 1o avoid crossing sharp

combinatorial analogues of standard operators and principles intensity gradients, a quality segmentation is obtaineat th
from continuous potential theory, allowing it to be applied in respects object boundaries (including weak boundariesj |

arbitrary dimension on arbitrary graphs. uniform image (e.qg., all black) or, as will be proved in Senti
Index Terms— Image segmentation, interactive segmentation, 1V, an image of pure noise, a segmentation will be obtained
graph theory, random walks, combinatorial Dirichlet problem,  that roughly corresponds to Voronoi cells for each set olisee
harmonic functions, Laplace equation, graph cuts, boundary points. We term this segmentation theutral segmentation
completion since the image is neutral (i.e., devoid of meaningful cotjte
In our approach, we treat an image (or volume) as a purely
|. INTRODUCTION discrete object — a graph with a fixed number of vertices and
er%ges. Each edge is assigned a real-valued weight corgispon
e - .
o : . . ing to the likelihood that a random walker will cross that edg
of localizing regions of an image relative to content (e.g .
. X : (e.g., a weight of zero means that the walker may not move
image homogeneity). However, recent image segmentatlgp A
. . . .. .along that edge). The advantage of formulating the problem o
approaches have provided interactive methods that intlglici ) . .
. . . . a graph is that purely combinatorial operators may be usad th
define the segmentation problem relative to a partictdak . ) 7 . T
require no discretization and therefore incur no discation

of content localization. This approach to image segmenati o . :
. . errors or ambiguities. Formulation of the algorithm on apgra
requires user (or preprocessor) guidance of the segmamtati - .
. . . also allows the application of the algorithm to surface nessh
algorithm to define the desired content to be extracted. o . .
A practical interactive segmentation algorithm must pdevi or space-variant images [2], [3]. Regardless of the dinuerssi
P 9 g of the data, we will use the terpixel throughout this paper to

]:ac)bljilritqutzlltlerz: dj():eFZit ;?&?;rtat'gg’ rﬁénfgt?;ne(ivltiﬁg’ei)c)f%fer to the basic picture element in the context of its istign
) y o p " y s€g Yhlues. In contrast, the termodewill be used in the context
interaction, 4) Intuitive segmentations. The random watie

gorithm introduced here exhibits all of these desired djeali of al graph-theoretical dISCUSSI.On' . . .
; ) : . though the present algorithm is motivated in terms of
We note that this algorithm was first presented in a shortenecﬁ . e
form as a conference paper [1]. The random walker al or'thrr%ndom walks, an adequate sampling from this distribution
Pap ' W 90mIh id be completely infeasible for segmentation problerins o

requires the solution of a sparse, symmetric positive-defin. . . ;
system of linear equations which may be solved quick nterest. Fortunately, it has been previously establigdgds]

X . at the probability a random walker first reaches a seed poin
through a variety of methods. The algorithm may perform fas . o :
. : ; . R exactly equals the solution to the Dirichlet problem [6] lwit
editing by using the previous solution as the initializatiof

an iterative matrix solver. An arbitrary segmentation mispa boundary conditions at the locations of the seed points and
. : Iy segn the seed point in question fixed to unity while the others are
be achieved through enough user interaction.

) . set to zero. For a popular account of this connection, see [7]
In this paper, we present a novel approacliktavay image

. . . U . The development of a fully discrete calculus [8] has allowed
segmentation given user-definededsindicating regions of for the connection between random walks on graphs [9] and
the image belonging td< objects. Each seed specifies a,. . i
location with a user-defined label. The algorithm labels Uiscrete potential theory [10] to be made completely explic

. ) . . . The solution to thecombinatorial Dirichlet problem on
unseeded pixel by resolving the question: Given a rand P

. . ; . . arbitrary graph is given exactly by the distribution of
walker starting at this location, what is the probabilitath electric potentials on the nodes of an electrical circuithwi

resistors representing the inverse of the weights (i.ee, th
Published in: IEEE Trans. on Pattern Analysis and Machintelligence, weights represeronductanceand the “boundary conditions”
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and discrete potential theory, one may calculate the pitityab gradients or texture gradients, as appropriate to thecpdati

z$, that a random walker starting at pixe} first reaches problem). The present random walker approach follows from
a seed with labelk, by solving the circuit theory problem this second tradition in computer vision in which desirable
that corresponds to a combinatorial analog of the Dirichlbehavioral properties of an interactive segmentationrilga
problem [5]. Ground (i.e., fix the potential to zero) all seedre identified and a particular physical process is proposed
points belonging to labels other thanand establish a unit that exhibits the required characteristics. In this cabe, t
voltage source with ground that fixes thdabeled seeds to characteristics that we try to capture in an interactive- seg
have a unit potential. The electric potentials established mentation algorithm are: 1) Location of weak (or missing)
each unseeded node provide the probabilities that a walkeundaries, 2) Noise robustness, 3) Ability to identify tipé
originating from that node will first reach the seed with labeobjects simultaneously, 4) Fast computation (and editiBy)

s. These electric potentials may be calculated through tleoidance of small/trivial solutions (i.e., an avoidanckao
solution of a system of sparse linear equations, as deskciribe “small cut” phenomenon).

section lI-G. The full K-tuple may be calculated by finding This paper is organized as follows. Section Il reviews the
the potentials established through switching “on” (prawid relationship of this work to previous approaches. Sectibn |

a unit voltage source to) each labeled collection of nodgs/es a simple weighting function, derives the set of linear
and “off” (grounding) the remaining labeled nodes. Therefo equations that must be solved and provides implementa&en d
K —1 systems of linear equations must be solved. By linearitgils. Section IV establishes theoretical properties aactiSn
(i.e., the principle of superposition in circuit theoryhet V examines behavioral properties of the algorithm. Sectibn
potentials so calculated must sum to unity. This allows us provides segmentation results and we conclude in Sectibn VI
avoid solving for one of the systems by subtracting the suwith a summary of the algorithm presented and a discussion
of the calculated potentials from unity to find the last enitry of future work.

the full K-tuple. A function that solves the Dirichlet problem

for a given set of boundary conditions is knowntesmonic. Il. PRIOR WORK

Figure | illustrates the harmonic functions (and subsetjuen

segmentation) obtained for4ax 4 graph with unit weights in our review to supervised and/or graph-based algorithms. Ad

the pr(_a_sence of thre_e seeds with different Iabels_,. ditional work on random walks and combinatorial harmonic
Additional properties of our approach that will be estaby;nctions will also be discussed.

lished in Section IV-C include:

Image segmentation is a vast topic. Therefore, we limit

1) Each segment is guaranteed to be connected to s@edsupervised segmentation
points with the same label, i.e., there are no isolated
regions of a particular label that contain no seed pointgn

2) TheK-tuple of probabilities at each pixel is equal to th

Supervised segmentation algorithms typically operateeund
e of two paradigms for guidance: 1) Specification of pieces
. . ) . %f the boundary of the desired object or a nearby complete
W¢|ghted average .Of tha'-tuples of nelghborlng pixels, boundary that evolves to the desired boundary, 2) Spedcificat
3 \_/rv;:h th? V\_/e|g?ts %Nen by v_va;lk«_ar bla_lses. of a small set of pixels belonging to the desired object and
) The solution for the potentials is unique. %ossibly) a set of pixels belonging to the background. We

4 T_he egpgcged segmetntatmnl for an |mage of pu.reb:10| te also that any of the automatic segmentation algorithms
given by Independent, equal-mean, random vana es’nlnsfght be considered supervised by subsequent user selectio
equal to that obtained in the neutral segmentation.

of the desired segment. However, if the desired object is
A rich tradition of work in image segmentation has focusedot a complete segment, a secondary clustering/segmamtati
on the establishment of appropriate image (object) modelgorithm must be employed to split or merge the automatic
and the development of algorithms focused on finding tlsegments.
parameters for these models (e.g., [11]). For example, theThe intelligent scissors algorithm [15] treats the image as
FRAME model of [12] provides a method for both synthesia graph where each pixel is associated with a node and a
and analysis of image textures. A different line of researdonnectivity structure is imposed. This technique reguttres
in computer vision has first established the desired behavigser to place points along the boundary of the desired abject
of an algorithm and then set out to identify a PDE or othdDijkstra’s algorithm is then used to compute the shorteth pa
physical process that exhibits the desired behavior. Irh susetween the user-defined points and this path is treated as
approaches, an image is typically viewed as a domain withe object boundary. The algorithm is simple to implement,
material properties (metric) induced by the image conteonu very fast and may be used to obtain an arbitrary boundary
which the PDE or other physical process is simulated. Netabith enough points. Unfortunately, a low-contrast or noisy
examples of research along this second line of work incluéé®@undary may require the specification of many points and
anisotropic diffusion for image filtering [13] and normal@ the algorithm is inapplicable to 3D boundaries.
cuts for image segmentation [14]. In such approaches, theAlthough the family of active contours and level sets is
primary focus is typically on the characteristic behavidr darge [16], a user is generally asked to place a contour near
the process and the manner in which the image contehée desired boundary and the algorithm evolves the boundary
induces a metric is left as a task-specific question (e.¢p,alocal energy minimum. Many different terms in the energy
this information may come from intensity gradients, coloiunctional may be used to achieve different effects or emplo
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(b) Probability that a random walker starting from each ndidst

reaches seed

(c) Probability that a random walker starting from each ndidst (d) Probability that a random walker starting from each ndist
reaches seedl o reaches seed 3

Fig. 1. lllustration of the approach to segmentation. Withe¢hseed points representing three different labels (ddnbt, L2, L3), alternately fix the

potential of each label to unity (i.e., with a voltage soutieel to ground) and set to zero (i.e., ground) the remainirdeaoThe electric potentials calculated

represent the probability that a random walker startingaghenode first reaches the seed point currently set to ungyré 1(a) shows the initial seed points

and the segmentation resulting from assigning each nodekie that corresponds to its greatest probability. Fosttation, all the weights (resistors) were

set to unity. In the case of an image, these resistors would foection of the intensity gradient. The reader can verifgttthe probabilities at each node

sum to unity (up to rounding).
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domain knowledge for the problem. The main problems witsach watershed basin as a “supernode” in a coarse graph
level set methods are difficulty of implementation (ofter re¢o which graph cuts in applied [23]. We note that the Lazy
quiring specification of several free parameters) and ditfic Snapping approach of [23] additionally proposes intevacti
in fixing an incorrect solution, especially if the desirechtmur tools for dividing watershed basins that may have incolyect
does not correspond to a local energy minimum. Although timeerged the foreground and background regions. The primary
early paper by Kass, Witkin and Terzopoulos [17] incorpedat goal of these two approaches is to increase the computitiona
user interaction, the active contours/level sets commiwapt speed of graph cuts by intelligently reducing the number of
pears to have trended away from this aspect. From a thealretitodes in the graph. As stated in [22], the objective is to
standpoint, these methods are defined in the continuum grdduce the same segmentation result as regular graph cuts
achieve a local energy minimum, leading to difficulties iy introducing a heuristic that greatly speeds the compu-
trying to theoretically predict or understand the progextof tation. Therefore, the benefits and difficulties of the graph
a practical solution. cuts algorithm listed above also apply to these approaches,
The graph cuts [18], [19] technique has been developedth an added uncertainty about the role of the coarsening
as a method for interactive, seeded, segmentation. As witherator in the final result (i.e., the final segmentationas n
intelligent scissors, graph cuts views the image as a grapdnger guaranteed to be the minimum cut). Additionally,hbot
weighted to reflect intensity changes. A user marks sorapproaches to increasing the computational speed of graph ¢
nodes as foreground and others as background and thecalld equally be applied to the present algorithm with smil
gorithm performs a max-flow/min-cut analysis to find theomputational gains.
minimum-weight cut between the source and the sink. A The second direction of extension to the graph cuts algo-
feature of this algorithm is that an arbitrary segmentati@y rithm followed from the iterative estimation of a color mdde
be obtained with enough user interaction and it generalizgth the graph cuts algorithm [24]. This iterative color nebd
easily to 3D and beyond. However, although performing welNas later coupled with an alteration of the user interface to
in many situations, there are a few concerns associated wifeate the GrabCuts algorithm [25]. The GrabCuts approach
this technique. For example, since the algorithm retures thsks the user to draw a box around the object to be segmented
smallest cut separating the seeds, the algorithm will oftéimd employs the color model as priors (“t-links”) to obviate
return the cut that minimally separates the seeds from the need for explicit specification of foreground seeds. The
rest of the image, if a small number of seeds are usegtided color model is of clear value in the application of
Therefore, a user may need to continue placing seedsciflor image segmentation and the “box-interface” requires
order to overcome this “small cut” problem. Additionallyjess user interaction. Although the approach does perform
the K-way graph cuts problem is NP-Hard, requiring use afell in the domain of color image segmentation, the itegativ
a heuristic to obtain a solution. Although one may find gature of the algorithm does increase the computationalgsur
solution within a bound of the optimal multiway cut [20], theof the algorithm (requiring a solution to the max-flow/min-
problem becomes more difficult and one cannot be sure th@ problem on each iteration) and there is no longer a
the optimal cut is achieved. Finally, multiple “smallestu guarantee of optimality (the algorithm is terminated when
may exist in the image that are quite different from eachothehe iterations stagnate). For grayscale images, the GtabCu
Therefore, a small amount of noise (adjusting even a singigstem essentially becomes standard graph cuts with aetiang
pixel) could cause the contour returned by the algorithm tgser interface. However, it appears that the “box-interfas
change drastically. Mathematically, we note that the presenot always sufficient to capture the desired object, sindédn
algorithm may be considered asrelaxation of the binary editing of the results with standard graph cuts is often irequ
values of the potential function in graph cuts. AlthoughsthiAs with the multilevel extensions described above, it would
may appear to constitute a minor modification of graph cutse possible to merge the novel aspects of the GrabCuts system
in fact the motivation, theoretical properties, practioehavior (the iterative color image model and “box-interface”) witte
and method of solution are all quite different. The graprs cutandom walker algorithm described here. Since the graph cut
approach of [18] differs from the present work by including algorithm of [18] forms the heart of the GrabCuts system, and
priors term on the intensity of the foreground and backgdourulfils the same role as the present approach, we will focus on
(with a consequent additional parameter). Although we wihe relative strengths and weaknesses of these two algith
not further discuss it here, such a modification to the random
walker algorithm may also be achieved [21].
. The grgph cuts §egnjenta'Fion algorithm has bee'n eXte”(ée.dGraph-based methods of image segmentation
in two different directions in order to address issues of
speed, color images and the user interaction. The first typeEarly papers of Zahn [26] and Wu and Leahy [27] are
of extension to the graph cuts algorithm has focused on spegdong the first approaches to apply graph theory to problems
increases by coarsening the graph before applying the graphimage analysis. However, recent interest largely appear
cuts algorithm. This coarsening has been accomplisheddn t®@ have been spurred by Shi and Malik's introduction of the
manners: 1) By applying a standard multilevel approach andrmalized cuts algorithm [14]. Most subsequent algorghm
solving subsequent, smaller graph cuts problems in a fixedve focused on the spectral properties of the graph (e.g.,
band to produce the final, full-resolution segmentatior],[22 [28], [29]), although the isoperimetric algorithm [30] atite
By applying a watershed algorithm to the image and treatir@yvendsen-Wang algorithm [31] are notable exceptions.
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C. Random walks and combinatorial harmonic functions I1l. EXPOSITION OF THE ALGORITHM

) ) _ o . Although the random walker algorithm was motivated in
Harmonic functions defined on graphs with given Dirichlefe introduction by placing random walkers at pixels and

boundary conditions have seen recent interest in many aRing which seeds they first arrive at, such a method of
plications, including image filtering [32], image colori@m  ompytation would be completely impractical. Fortunately
[33] and machine learning [34]. Although purely combin&ibr estaplished connections between random walks and pdtentia
harmonic functions were studied as early as 1945 by Eckmatrhléory (or circuit theory, on a graph) provide us with a
[35], the earliest use of combinatorial harmonic functidmst  simple, convenient method for analytically computing the
the author is aware of was an application to circuit layoyfesired probabilities. This section describes three aspEc
given by Kodres [36]. Combinatorial harmonic functions @erthe algorithm: Generating the graph weights, establiskfieg
also famously employed by Tutte for graph drawing [37]. FQfystem of equations to solve the problem and the practical
an excellent collection of current knowledge on combinator yetails of implementation.
harmonic functions, see [10]. We begin by defining a precise notion for a graphgrph
Random walks first appeared in computer vision in th@4] consists of a pailG = (V, E) with vertices (nodes)
early work of Wechsler and Kidode for texture discriminatiov € V andedgese € E C V x V. An edge,e, spanning
[38]. More recently, the average hitting time of a randonwo vertices,v; andv;, is denoted by;;. A weighted graph
walk from an object boundary has been studied as a measasgigns a value to each edge callageight. The weight of an
to characterize object shape [39]. The isoperimetric graghlge,e;;, is denoted byw(e;;) or w;;. Thedegreeof a vertex
partitioning algorithm introduced in [40] was shown to havés d; = )" w(e;;) for all edgese;; incident onv;. In order to
an interpretation in terms of random walks in the sense thaterpretw;; as the bias affecting a random walker’s choice,
hitting times are computed from all nodes to a designatek require thaty;; > 0. The following will also assume that
node and these values are thresholded to produce a partitiain graph is connected and undirected (i, = wj;).
that has various beneficial theoretical properties. This@gch
was recently applied to automatic image segmentation [30]
by choosing the designated node randomly and recursiv@ty
partitioning until a measure of partition quality is victal In order to represent the image structure (given at the

Recently, various steady-state properties of random walRiels) by random walker biases (i.e., edge weights), one
have also been used to define automatic clustering algasithiftust define a function that maps a change in image inten-
Harel and Koren [41] employ the notion of escape probagiti Sities to edge weights. This is a common feature of graph
on subgraphs to iteratively weaken graph edges and evintugsed algorithms for image analysis and several weighting
break the graph into disconnected components. ¥eral. functions are commonly used in the literature [14], [20B]{4
[42] use the notions of average first-passage time and awerdglditionally, it was proposed in [46] to use a function that
commute time to replace traditional shortest-path digtancMaximizes the entropy of the resulting weights. In this work
between nodes in a graph and show that standard clustei¥fyhave preferred (for empirical reasons) the typical Ganss
algorithms (e.g., K-means) produce better results whetieabp Weighting function given by
to these_ re-welghFed graph_s. Both of these methods refiresen wij = exp (—B(gi — gj)z), 1)
automatic clustering algorithms (as opposed to the seeded
method here) and require either extensive computationswbere g; indicates the image intensity at pixél The value
produce pairwise random walk quantities for each pair of 3 represents the only free parameter in this algorithm.
nodes, or employ a heuristic method of employing subgraptiée have found it useful to normalize the square gradients
to restrict the computation. The advantage of examining thigi — gj)Q Ve;; € E before application of (1). Of course, (1)
probabilities that random walkers first arrive at predefinegbuld be modified to handle color or general vector-valued da
traps (given by the seed points) considered here is thwt replacing(g; — g;)? with ||g; — g;||* for a vector-valued
the probabilities may be computed quickly and the varioys. Additionally, for problem-specific domains, (1) could be
properties of noise robustness and harmonic functions, (e/godified to apply to texture information, filter coefficierus
mean-value theorem, etc.) examined in Section IV-C may béer image features.
used to characterize the algorithm’s behavior. Furtheemor
these approaches require the specification of additiora fr . . .
parameters beyond what are necessary in the present approatc Combinatorial Dirichlet problem

Newman uses concepts from random walks to introduce aIn the introduction, we noted that the combinatorial Dirich

notion of “betweenness” on the nodes on a graph by considiit Problem has the same solution as the desired random
ing a node’s “betweenness” measure to be equal to how oft¥Alker probabilities [4], [5], [10]. In this section, we riew

a random walk starting at any pair of nodes passes thro combinatorial Dirichlet problem and show how to find its
the node, averaged across all pairs [43]. Such a measuréqition. _ _

shown to offer more intuitive behavior over other methods of 1he Dirichlet integral may be defined as

“betweenness” computation at the cost of an expensive xnatri 1 9
inversion. Du] = 5/@ |Vu|*dQ, )

Edge weights
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for a field v and regionQ) [6]. This integral arises in many V; = (. Note thatV,, contains all seed points, regardless of
physical situations, including heat transfer, electristaand their label. We may assume without loss of generality that th

random walks. nodes inL and z are ordered such that seed nodes are first
A harmonic function is a function that satisfies theaplace and unseeded nodes are second. Therefore, we may decompose
equation equation (6) into
V2u = 0. ()
T T LM B T M
The problem of finding a harmonic function subject to its Dlzy] = ) Es¥e [BT LU:| L”U] =
boundary values is called thBirichlet problem. The har- 1, . S .
monic function that satisfies the boundary conditions mini- 3 (eyLyzar + 2B wy + 2 Luzy), (7)

mizes the Dirichlet integral, since the Laplace equatiothés
Euler-Lagrange equation for the Dirichlet integral [6].
Define the combinatorial Laplacian matrix [47] as

wherexp andxzy correspond to the potentials of the seeded
and unseeded nodes respectively. Differentiatig,;] with
respect tary and finding the critical point yields

d; if i =7,

T
Lij = ¢ —w;; if v; andv; are adjacent nodes (4) Loy B ou, ®
0 otherwise which is a system of linear equations withy;| unknowns.
If the graph is connected, or if every connected component
where L;; is indexed by vertices; andv;. contains a seed, then equation (8) will be nonsingular [51].
Define them x n edge-nodencidence matrix as Denote the probability (potential) assumed at nage for
41 ifi=k each Iabelf, by z¢. Define the set of labels for the seed points
Ao =d 1 W=k 5) as a fu'nctlonQ(vj) = s, Yu; € Vi, wheres € Z,0 <s<
€15k v K. Define the|Vy,| x 1 vector (wherd - | denotes cardinality)
0  otherwise for each labels, at nodev; € Vy as
for every vertexv, and edgee;;, where eache;; has been 1 if Qv;) = s
arbitrarily assigned an orientation. As with the Laplacian ;:{ ) / ’ 9)
matrix above,A.,,., is used to indicate that the incidence 0 if Q(vj) # 5.

matrix is indexed by edge;; and nodev;. As an operatorA Therefore, for labels, the solution to the combinatorial

may be interpreted as a combinatorial gradient operator apffichlet problem may be found by solving
AT as a combinatorial divergence [48], [8] by virtue of the

s _ T, s
equivalent role ofd andGrad as the coboundary operator on Lya® = —-B"m’, (10)
the space of 0-cochains or O-forms, respectively (see [@9] o one label or
more information). LuX = —BTM, (11)

We define then xm constitutive matrix, C, as the diagonal
matrix with the weights of each edge along the diagonal. As far all labels, whereX hasK columns taken by each® and
the continuum setting, the isotropic combinatorial Lajsac M has columns given by each”. Since the probabilities at
is the composition of the combinatorial divergence operatgny node will sum to unity, i.e.,
with the combinatorial gradient operataf, = AT A. The s
constitutive matrix may be interpreted as representing @ime Z T =1Vvi €V, (12)
in the sense that it defines a weighted inner product on the °
vector space of 1-cochains (i.e., functions defined on tige el &
set). In this sense, the combinatorial Laplacian genemliZn€ total number of labels.
to the combinatorial Laplace-Beltrami operator [50] Vie= o
ATCA. The case of a trivial metric, (i.e., equally weighted®- Circuit analogy
unit valued, edges) reduces @= I and L = AT A. Although the algorithm was motivated in terms of random
With these definitions in place, we can determine howalks, it is well known that there are many equivalences
to solve for the harmonic function that finds probabilibetween random walks and electrical circuits [5]. Spedlfica
ties/potentials on unseeded nodes, while keeping the seadillustrated in Figure I, the solution to (10) may be inter-
nodes fixed. A combinatorial formulation of the Dirichletpreted as a circuit simulation. Consider the three fundaahen
integral (2) is equations of circuit theory (Kirchhoff’s current and vaa

1 ’ 1, 1 ) law and Ohm’s law), which may be written in the above
Dla] = 5(Az)" C(Az) = Sz" Le = 5 > wij(i —7;)°, notation as

— 1 sparse linear systems must be solved, wHérs

2
e;EE .
(6) Atz =  f (Kirchhoff’s Current Law) (13)
and a combi_natorig! harmonic i; a functienthat m_inimize_s Cp = =z (Ohm's Law) (14)
(6). SincelL is positive semi-definite, the only critical points p — Az+b (Kirchhoff's Voltage Law)  (15)

of D[x] will be minima.
Partition the vertices into two setg), (marked/seed nodes)for a vector of branch currents, current sourcesf, voltage
andVy (unseeded nodes) such thal; UVy =V andVy, N sources,b and potential drops (voltagesp. These three
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equations may be combined into the linear system in the image is expected to be of constant value (e.g., inten-
T T sity, color, texture). Although simplistic, such modelsnan
ATCAr + ACh = f, . (16) popular and surprisingly effective. However, three proide
Ly =f—A"Cb, (17)  immediately present themselves:

which is equivalent to (10), witlf = 0 (no current sources) 1) The image may be corrupted with noise.
and the role of the voltage sources taken by the user-defined) Neighboring (touching) objects may have tisame

seeds. We note that (6) may also be interpretegaser in value, resulting in low-contrast or absent boundaries.
the circuit theory context and (17) represents the regultin 3) Ambiguity exists when there are more piecewise con-
minimization performed by the physical world. stant regions than seed groups (labels) in the image.

The random walker algorithm may be viewed as a proposal
to address these issues. Almost any image segmentation ap-
proach (even region growing or thresholding) may be used

Since diffusion processes have such a significant historyti |ocalize correct segments in a piecewise constant image
computer vision and such a process may be described byhat does not suffer from the above problems. Clearly, in
random walk (i.e., Brownian motion), it is useful to examinguch an image, the random walker algorithm introduced here
the relationship between a diffusion process and the pres@uld also produce the correct segmentation. However, the
approach. behavior of the random walker algorithm in the presence of

The fundamental difference between a diffusion equatiRe three difficulties outlined above distinguishes it frother
and the Laplace equation of (28) is that diffusion represenipproaches. The behavior of the algorithm in response sethe
a transient process occurring in time, while a Laplace equ@ree confounding factors is detailed in Section V.
tion describes a steady-state distribution. This stréagivard The weighting function of (1) implies that the image has
relationship is illustrated by examining the equationstbgr: piecewise constant intensity. Although such a simple midel

D. Relationship to diffusion

du ) o . reasonable in many grayscale images, other models such as a
=V (Diffusion equation) (18) piecewise constant texture or color may be used to define the
0=V2y (Laplace equation) (19) affinities in place of (1) where appropriate.

In fact, a circuit analogy of the diffusion process also appe E. Numerical practicalities
in Perona and Malik’s classic paper [13]. The two circuit’
formulations differ in that the voltage sources (used tordefi Many good sources exist on the solution to large, sparse,
the steady-state potentials) are replaced by capacitargeti Symmetric, linear systems of equations (e.g., [52]. A direc
to values representing an initial condition (used to defire tmethod, such a&U' decomposition with partial pivoting has
transient potentials after a predefined amount of time h# advantage that the computation necessary to solveg11) i
passed). In the case of two labels (i.e., a single souraagro ONnly negligibly increased over the amount of work required
pair) and infinite time the two formalisms can be made to gi@ solve (10). Unfortunately, current medical data volumes
the same results (up to a shift and scale) if one seed is takerfrgauently exceed256 x 256 x 256 ~ 16e° voxels, and
an infinite source of random walkers (diffusive particlesfia hence require the solution of an equal number of equations.
the other seed as an infinite sink of random walkers (difeusiy-urthermore, there is no reason to believe that the resaluti
particles). will not continue to increase. The memory capabilities oimo
Despite the mathematical similarities between the Laplaé@ntemporary computers do not have enough memory to allow
and diffusion equations, these algorithms are very differe @h LU decomposition with such a large number of equations.
Specifically, diffusion is typically employed as an image The standard alternative to the class of direct solvers
enhancement algorithm in which the original grayscale amlufor large, sparse systems is the class of iterative solvers
are taken as initial conditions and the solution is stoppfeet a [53]. These solvers have the advantages of a small memory
a predetermined amount of time. In contrast, we describg@gluirement and the ability to represent the matrix-vector
seeded segmentation algorithm that makes no use of initiyltiplication as a function. For a lattice, the matdix, has
conditions and examines the steady-state distributionosf p& Circulant nonzero structure (although the coefficients ar

tentials in order to define segmentation boundaries. changing), one may avoid storing the matrix entirely. laste
a vector of weights may be stored (or computed on the fly,

if memory is at a premium) and the operatidgz;, may be
performed very cheaply. Furthermore, sparse matrix ojperat

In contrast to several popular image segmentation algdike those required for conjugate gradients) may be efiitye
rithms (e.g., [11]), the random walker segmentation apghoaparallelized [54], [55], e.g., for use on a GPU [56], [57].
presented here is not derived explicitly from an image mod@&ecause of the relationship of (10) to a finite differences
However, an implicit image model exists in the approachpproach to solving the Dirichlet problem on a hypercube
and it is therefore useful to examine the algorithm from thidomain, the techniques of numerical solution to PDEs may
standpoint. also be applied. Most notably, the algebraic multigrid rodth

Piecewise constant image models have existed from 8], [59] achieves near-optimal performance for the sofut
earliest days of computer vision. In such a model, each bbjéc equations like (10). Additionally, use of a small world

E. Image model
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c) Resulting segmentation

(g) Label 4 probabilities

ape probabilities ape probabilities

Fig. 2. Overview of segmentation computation. a) Original imémbe segmented. b) User-placed seeds indicating a desgeteatation into four objects.
d-g) Probabilities (potentials) obtained by solving (16} £ach label. c) Segmentation obtained by assigning ea@ fuixthe label for which a random
walker is most likely to reach first. Each system required thas three seconds to solve using MATLAB.

topology [60] might significantly improve the computation 2) Obtain a setV,,;, of marked (labeled) pixels withK
speed. labels, either interactively or automatically.

The Graph Analysis Toolbox [61] for MATLAB may be 3) Solve (11) outright for the potentials or solve (10) for
used to easily build weighted image graphs and solve the each label except the final ong, (for computational
requisite system of linear equations. Specialty code ttopar efficiency). Setw; =13 _ ;.
the random walker segmentation will be made available upon4) Obtain a final segmentation by assigning to each node,
publication on the author's webpage. Although MATLAB v;, the label corresponding tmax, (7).
has efficient, C++ (MEX), direct solvers for sparse lineaCode is available (in MATLAB) on the author’s webpage at:
systems, the preconditioned conjugate gradient method nhig:/mww.cns.bu.edurigrady/random _walker _matlab _code.zip
written in highly inefficient MATLAB code. Therefore, for We note that other options might be explored for assigning
research purposes we recommend using the MATLAB codelabel to each pixel based on the potentials (e.g., applying
provided (sufficient for512 x 512 images, on present-daya clustering algorithm to thé<-dimensional vectors at each
technology). A more industrial use will require implemdiga node). Figure 2 displays all of the steps in this process from
of conjugate gradients or multigrid code in C++. Fortunatelseed acquisition to calculation of the potentials (prolitzs)
good references exist for these methods (with source codeM the resulting segmentation.

[52] that allow for a straightforward implementation. Ugin I interactive editing of the segmentation were needed, (i.e
MATLAB'’s direct solver, solution of (10) for &56 x 256 through the addition/deletion of seeds), one could start at
image with two randomly placed seed points requi2l step 2 in the above procedure with the new seed set and
seconds on an Intel Xeon 2.40GHz processor with 1GB afe the previous solution as the starting point for an iterat
RAM. matrix solver for the new system (10). In general, the presio
solution will be “close” to the desired solution, requiringuch

G. Algorithm summary less time to compute.

To summarize, the steps of the algorithm are: IV. THEORETICAL PROPERTIES OF THE ALGORITHM

1) Using (1), map the image intensities to edge weights in Although a new technique was presented for interactive
the lattice. image segmentation, it is necessary to explore what may be
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predicted about its behavior, both analytically and pcady. not depend on the choice of nodesv;. The termx(i, j) is

In this section, we examine theoretical properties of thdefined as

algorithm, exploring connectedness and the expected ehav .

in the presenpce of noise. Specifically, we will F;how that the x(i, j) = Z H w(e), (22)
segments will be connected and that one can generally expect AILTT(i,5) e€TT(i.5)

the algorithm to behave robustly in the presence of noisghereTT'(i,j) is used to represent the set of edges defining
We begin by detailing four mathematically equivalent waya 2-tree, such that node, is in one component and; is

of viewing how the algorithm assigns labels to each unseedadanother. A2-tree is defined to be a tree with one edge
pixel and then employ the most convenient analogy to provemoved. It should not be surprising that there exists an

the desired theoretical propositions. analogy with a tree algorithm, since trees have been a major
part of circuit theory dating all the way back to Kirchhof2l6
A. Analogies In addition to solution by (8), it is known [10] that the

tential of a nodey, given {0, 1} labels at nodes; andv;

. . . . po
There are four mathematically equivalent ways of V|eW|n5e pectively, may also be computed (albeit impracticaig)

how the random walker algorithm assigns an unseeded pixe

to a label, given a weighted graph: R CY )L S Vi) (23)
1) If a random walker leaving the pixel is most likely to ! T ’
first reach a seed bearing label assign the pixel to where
label s. Xgt) = > T w, (24)
2) If the seeds are alternately replaced by grounds/unit Al TT(i,j,t) e€TT(i,5)

voltage sources, assign the pixel to the label for whigQ taken over the sum of all 2-trees such thatand v; are
its seeds being “on” produces the greatest electriGg gifferent components ang, is in the same component as
potential. o v;. Therefore, we note that*(i,j,t) = x(i,7) — x(j, ).
3) Assign the plxellto the label for vyhlch its seeds ha‘fﬁor a fixedwv;,v;, it is clear thatr, x(i,7) and p(i, j) are
the_ largest eff_ectlve cc_)nductance (i.e., smallest effecti.stants, regardless of whether or not ivjsor v; that are
resistance) with the pixel. _ “on” or “off”. Denoting z! andz’ as the probabilities obtained
4) I a 2-tree is drawn randomly from the graph (Withe o via solution to (8)) fom; set to unity andy; set to
probability given by the product of weights in the 2y nity respectively (while the other node is set to zerognth

tree), assign the pixel to the label for which the pixehe apove equations yield that the following expressiors ar
is most likely to remain connected to. See section 'V'Qquivalent

for definition of a 2-tree.
The first way of viewing the algorithm provides the motiva- x(j:t) > X(Z,f% (25)
tion and the second provides the implementation, as ittextr xt > x], (26)
in Figure I. We examine the third and fourth analogies in the p(i,t) > p(j, 1). (27)

next section.

Since the segmentation is computed from the potentials by
assigning the pixel to the label for which it has greatest
. o potential (probability), the equivalence of (26) with (2&)d

Theeffective conductancéetween nodes; andvj, p(i,j),  (27) show that these two quantities are also sufficient to
equals the current flow between nodgsandwv; when a unit gefine the same segmentation. In other words, the third and
voltage is applied across nodesv;. Alternately, the Dirichlet ¢q,rth analogies given in Section IV-A are shown to be true.
integral of (6) equals the effective conductance betwee®s0 |, {he following sections we use all of these viewpoints to

labeled ‘1’ (i.e., “on”) and those labeled ‘0" (i.e., “off [L0].  heoretically examine the behavior of the algorithm.
Therefore, given a solution to (8) with nodes v; used as

the source/sink, the effective conductance betwgeandv;, )
p(i,j), may be computed conveniently by[z] = p(i,j) = C. Properties
«” Lz, wherez is intended to include both,; andzy from  We begin by giving two properties that are combinatorial

B. Effective conductance and 2-trees

(7). analogues of properties of continuous harmonic functi@js [
It was shown in [10] that the effective conductance betwe@md may be seen directly by viewing the solution to the com-

two nodesyw;, v; is given by binatorial Dirichlet problem as a solution to the combimgto

o T Laplace equation (with Dirichlet boundary conditions),es

plisj) = x@,7) (20)  the potential of each unseeded node must satisfy
wherer is a constant for the graph defined as zd = d% Z wleiy)as, (28)
T = Z H w(e), (21) ¢ij €8
All trees e€T where thez? € V' (i.e., may include seed points).

whereT is a set of edges defining a connected tree and thel) A potential0 < z{ < 1, Vi,s (maximum/minimum
sum is over all possible trees in the graph. Note thatoes principle).
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2) The potential of each unseeded node assumes fhieof of this lemma, rendering the subsequent proofs invalid.
weighted average of its neighboring nodes (the meaHere, we use the equivalences of (25), (26) and (27) to peovid
value theorem). similar statements.

We use these properties to first examine the connectedned$ the graph weights are uniform (i.e., obtained from a uni-
of the segmentation and show, intuitively, that the segmare fO'M image), we term the resulting segmentation neetral
always connected to a seed. This property demonstrates ggmentation. For simplicity, we take(e;;) = 1,Ve;; € E,
we can expect the segmentation to avoid the noisy or fra?nce multiplication of all weights by a constant does néeif
mented segmentations that sometimes result from appiicatf’® resulting solution, as may be seen by (8). By, (23), we

of other algorithms. know that

ng > == |TT(j,t)| = x(j,t) > x(i,t) = |TT(,t)],
Proposition 1 If the final segmentation is determined from the o (3
potentials using the rule: node; is assigned to segment, Where|TT'(i,?)| indicates the number of 2-trees within one
only if 25 > x{ Vf +# s, then each node assigned to segmentcomponent and, in the other and;; represents the potential

is connected through a path of nodes also assigned to segnféhtthe neutral segmentation at node with v; set “on”. In
s to at least one of the seed points with label the following propositions, boldface will be used to indea

random variables.

A restatement of this proposition is that the connected com-

ponents generated by the final segmentation must contairP&eposition 2 If the set of weightsw;;, are independent

least one seed point bearing that label. random variables with equal meam, then E[x(j,t)] >
Proof: Note, this proof is similar to that given in [3] for E[x(é,t)] if and only ifn; > nj.

connectedness using the isoperimetric algorithm. Proof: The variablex (i, t) defines a sum of the product

The result follows if it can be shown that any connecteg n;_ o equal-mean, independent variables (i.e., forhe 2
subset,P C Vi, assigned to segmentmust be connected to edges in a 2-tree) 'I"herefore '

at least one node that is also labeked

A block matrix form of (28) may be written E[x(4,t)] = u'N 2 |TT(j, )], (32)
Lpa} = —Rpa, (29) E[x (i, )] = pNH|TT(i,1)). (33)
wherez® = [z, 2%]7, L has been decomposed into the blockconsequently,
form EDx(; )] > Ex(é, )], (34)
L= |bp Bt (30)
“|RE Lp|” holds if and only if

and P denotes the set complement Bfin V. For example, |TT(j,t)] > |TT(i,t)], (35)

in the case Oﬂz = {vi} in (28), Lp = di and —Rpry = which is known to hold for the neutral segmentation by (31).
Dei e W(ei)Ts. -

If 23 > 2}, Vf # s, thenzp—2f, > 0and—Ly' Rp(a3— Consequently, in the expected case, the segmentation will
#L) > 0. The entries of? » are nonpositive by definition df.  be the same as for the neutral segmentation. Since the same
Since L is an M-matrix, any block diagonal submatrix of antechnique as above may be used to verify the following two
M-matrix is also an M-matrix, and the inverse of an M-matriyropositions, the proofs are left to the reader.
has nonnegative entries (see [63] for the previous thrds)fac
then—L ;' R has nonnegative entries and therefore, safne  Proposition 3 If the set of weights,w;;, are indepen-

P must be greater tham{r € P. Furthermore, since the entriesdent random variables with corresponding meang, then

of Rp are zero for nodes not connectedpthe nodes in®  E[x(j,t)] > E[x(i,t)] if and only if 2 > z when the
satisfying the inequality must be connected to a node.irm weights are set tav;; = p;;.

We note that it is possible, although it almost never occurs

in practice, thatr; = x{ i.e., the potentials for two labelsProposition 4 If w;; = k;;y;;, where thek;; are (not
are equal at a node. In this case, one may enforce thecessarily equal) constants agg; are independent random
continuity property by assigning a connected component wériables, such thay;; > 0 and Ely;;] = p, Ve;; € E, then
isopotential nodes to a label taken by a neighbor of the s&ix(j,t)] > E[x(¢,t)] if and only if i > 2] when the

As demonstrated in the proof of Proposition 1, thet of weights are set tav;; = k;;.

(seedless) isopotential nodes must have at least one eighb . .
with a potential both greater and lesser than the isopatenti ~'OPOSition 3 suggests that the means of random weights
nodes. provide an indicator of the expected segmentation and Propo

In the original conference paper, proofs of several prop ftion 4 indic_ates that equal-mee_m, multiplicativ_e noisé (
sitions concerning noise were given that rested on the pr& £ weights) Is not expected to disrupt the solution. We also
of a lemma concerning the ratio of random variables. It has
subsequently been determined that a flaw exists in the atigin we thank Dr. Kurt Majewski for bringing this to our attention
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Fig. 3. lllustration of why the segmentation obeys weak imagenblaries. Consider thes x 7 image consisting of just one hard boundary with a hole,
represented by the thick black line, and two seed pointseplat the white and black circles at the far ends of the imageanflom walker starting at the
pixel next to the weakness in the boundary (the center of ttmva) has3 out of 4 chances on its initial step to enter into the region thatkslyi to be
labeled as belonging to the black circle. Since the same hnldson the other side of the weak boundary, there will be apstieop in the probabilities and
consequently, the segmentation will respect the boundaey) though it is weak.

Seeds 3
- — _L |
Ty
-~
=
(a) Original (b) Segmentation

Fig. 4. Demonstration of the algorithm response to weak bates of different types, large/small regions and noncomegions on a synthetic image

consisting of only black and white pixels. a) A synthetic irmagas created to designate four areas of different size eshag convexity by drawing black

lines. Sections of the line were then completely erased to verath contrast at those locations. b) Seeding and resusiggnentation (visualized by shaded
regions). Despite missing boundary information, the alfaritaccurately localizes the boundaries. Note that a 4-acteddattice was employed as the
underlying graph.

consider use of the means of random weights to provide atere r represents the residual. Since neithernor x are

initial guess for a problem with noise. random,E[Bm| = —Bm, and E[Lyx] = Lyxz = —Bm.

ConsequentlyE[r] = 0 and the proposition holds. [ ]
We note that Proposition 5 applies to arbitrary random

Proposition 5 Given a solution toLyx® = —Bm?® with iables. Alth hit] Ik h Il residuabe
w;; = k;; for some, not necessarily equal, constahfsthis variables. Although it is well-known that a small residual

solution provides an expected residual of zero for the gra;ﬂ'?t necessa}rlly_ indicate a smaII. error [52], it is usually a

where the weights are random variableg;;, with means reasonable indicator and, more importantly, forms the -stop

Elyi;] = kij 7 ping criterion for many iterative solvers. Therefore, wenca
1y] — Mg

conclude that if one has obtained a non-random solution to
Proof: Denote the terms of (8) obtained by setting = (8), it will generally provide a good starting point for soig

1ui; as Lyz = —Bm (where the labels has been ignored the system after noise has been added.

since it is assumed to be fixed) and the terms of (8) in the V. BEHAVIORAL PROPERTIES

randomized case abyx = —Bm. Then, . . . .
In this section, we demonstrate three pragmatic properties

Ly(z—x)=(—Bm)— Lyz=r, (36) of the random walker algorithm — weak boundary detection,
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.
Background

.
Foreground

(a) Original (b) Graph cuts (c) Random walker (d) Probabilities

Fig. 5. Comparison of random walker algorithm to graph cutsafaveak boundary with small seeds. Note that a 4-connectgzhgras used in these
experiments. a) Original (synthetic) image created with galial black line with a section completely erased. b) Gragh salution — Since surface area
of seeds is smaller than the weak boundary, the smallest cumaigi surrounds the seeds. ¢) Random walker solution. d)dhitities associated with the
random walker algorithm offer a notion of segmentation canfick at each pixel.

noise robustness and the assignment of ambiguous regionsontrast to graph cuts, the random walker algorithm also
provides a “confidence” value of the segmentation in terms of

. the random walker probabilities, as Figure 5 also illussat
A. Weak boundaries

We will prefer the term objecboundaryto the traditional g Noise robustness
computer vision termedge (e.g., “edge detection”) to avoid The theoretical results of Section IV-C detail how the

fgr}gjﬁ'opovv\é:tnh tr;e eg%iﬁggogt:: g;aEZt(?;‘gﬁi ?ghggrl]lqksva"gxlpected probabilities (and hence, the resulting segrienta
gon g g anp ' P Should behave in response to i.i.d. randomness of the vaight

motivation for this algorithm is that weak object boundarleAlthough the weighting function (1) does not translatedi.i

will be found when they are part of a consistent boundagandomness of the pixel values to i.i.d. randomness of the
This behavior may be explained by considering Figure 3. P L

n. ) . -
a four-connected lattice, consider the walker staring iggkw we|ghts, the_behawor of_t_he seg_mentatl_ons emmn_call;apeh
- . as if the weights were i.i.d. This practical behavior migkt b
at the center of the four arrows in Figure 3. This walker has . . o . ) .
L : . explained by Proposition 5, which applies to arbitrary (e.g
three initial steps that keep it on one side of the boundady an’ " .
: non-independent) random variables.
only one step that crosses the boundary. Since other nodes on. : .
igure 6 characterizes the response of the algorithm to

that side of the boundary are all very likely to reach seed one.

(filled circle), this walker is also very likely to first reaceed noise. In this experiment, an image consisting of two nested
. irals was seeded with one seed in each spiral and bacldyroun
one. For the same reasons, a walker on the other side of he

. . . seeds placed in the center (outside the spirals). Incrgasin
weak boundary is also very likely to first reach seed two (opén . . . . ;
. ) - amounts of additive noise was then introduced into the image
circle). Consequently, the walker at the arrows finds the firs .
, . L and the response of the algorithm was tracked. For each

seed (filled circle) and the walker on the opposite side of the . . : !
) . . noise level, one hundred experiments were run in which the
boundary weakness finds seed two (open circle). This behavio .
orrupted image was generated and the results were recorded

may also be explained from a circuit perspective. Althoug(,fél : . .
. . : ure 6 shows three images for each noise level: 1) A
the resistance in the boundary weakness is low, nearly a"g

the current from one seed to the other must pass through {ﬁgresentatwe corrupted image, 2) The "average” seg ta

o ol ained from application of the algorithm, 3) The segmenta
boundary weakness, resulting in a large voltage drop ower ttion variability. An “average” segmentation was calcudhisy
resistor (by Ohm’s Law). Practical behavior of the algarith '

in response to weak boundaries is displayed in Figure 3 ape aning the pixel to the label for which it was most often

Figure 4. Figure 4 shows the segmentation obtained foraSS|gned over the one hundred trials. Segmentation vityabi

synthetic image with four areas of varying sizes and cortlyexio.?a pixel was measur.ed by calcula}tmg the percentage of the
. I ; tn?ls for which the pixel was assigned the label from the
with missing boundary sections and few seeds. We note tfja]

no obvious “metrication artifacts” are present, despite férct ir?tveer::‘i?e (;ﬁ?[ge:rt]z“%c\’l Wg:]cglngtg peerrﬁzntaegde trngvF\)/eigtﬂm ziltg
that these results were obtained using a 4-connectedelattic y P g PP n

the underlying structure. (black).

The graph cuts algorithm of [18] is also capable of findin ) .
weak boundaries. However, since graph cuts searches for%,,eAmblguous unseeded regions
minimum cut, the graph cuts algorithm is more susceptible The analytical properties of the random walker algorithm
to the “small cuts” problem in the presence of weak (i.emay be used to examine its behavior in deciding ambiguous
costly) boundaries. Figure 5 compares the graph cuts acabkes in which the number of piecewise constant regions
random walker algorithms in a simple, foreground/backgtbu exceeds the number of seed/label groups (i.e., unseeded
segmentation with a weak boundary and small seeds. giecewise constant regions must be each assigned a label).
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@@

(a) Original image

(b) Original segmentation N /

Fig. 6. This figure shows the characteristic response of ligparithm to noise. (a) An image consisting of two nested $piveas seeded with one seed in
each spiral and two background seeds in the center (outsédspirals). (b) The initial (correct) segmentation. Insieg amounts of additive noise were then
introduced into the image and the response of the algoriths tveeked. For each noise level, one hundred experiments maré which the corrupted
image was generated and the results were recorded. Top: Asepative corrupted image, Middle: The “average” segmientatbtained from application
of the algorithm, Bottom: The segmentation variability. An &sage” segmentation was calculated by assigning the pixédetdabel for which it was most
often assigned over the one hundred trials. Segmentatioabiléy of a pixel was measured by calculating the perceatafjthe trials for which the pixel
was assigned the label from the “average” segmentation, mgth percentage mapped to high intensity (white) and low graege mapped to low intensity
(black).

- Seed 2 Seed 2 Seed 2
@ (b)
«—Border . <« Border - Border .
(d) (e) ®

Fig. 7. This figure shows how ambiguous, unseeded regionssaignad to neighboring regions. (a,d) If the ambiguous regimres more surface area with
one region, it is assigned to that region. (b,e) If the amhiguegion is closer in intensity to a neighboring regionsifagsigned to that region. (c,f) If the
ambiguous region is precisely centered between two regidtisraspect to both surface area and intensity, that regiativided in half. If more ambiguous
regions are present (in a piecewise constant image), the amisgegion will have the average probability of its neigisheveighted by shared surface area
and intensity difference.
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Fig. 8. Examples of segmentations on medical and non-medicaksn&le stress that the edge weights are based upon inteiffétgntes alone, although
more advanced intensity/texture analysis could be used artecplar problem domain. The thick, gray lines (chosen toimie contrast) represent the seed
points and the thick black lines represent the segment boi@sddNote that the processed images were whitened in ordacdentuate the seeds and the
segmentation boundary. The same parameter vglue 900) and 4-connected lattice topology were used for all segrtiena

In the case where no piecewise constant region has muttespite the different characteristics of the images. Eigr
ple seed/label groups, we may make the simplifying (arghows the results of applying the segmentation algorithia to
reasonable, e.g., Figure 2) assumption that all pixels in3® cardiac CT dataset.

piecewise constant region may be treated as having the samé/e note that a systematic study of the sensitivity of the
potential/probability in the solution to (8). By the meaalwe segmentation to the seed locations/quantities was urkeerta
property of harmonic functions, the potential/probapiiiiside in a recent conference paper [64]. The overall result of
an unseeded region will be the average of its neighboritigis study was that the segmentation results were generally
regions, weighted by the contrast between the regions and #itable to perturbations of the seed locations/quantities.
level of shared surface area. Therefore, an ambiguousrregiuitively, perturbations had a greater effect when the ienag
that shares an equal surface area with two seeded regidns Vgitemed difficult” to segment (e.g., the image included a
be assigned to the region for which it has a lower contrasarge amount of noise and/or had missing or low-contrast
However, if an ambiguous region has the same contrast withundaries) and showed a lesser effect when the segmentatio
two seeded regions, it will be assigned to the seeded regiask “seemed straightforward” to segment (i.e., the image
with which it shares a greater boundary. If the contrast amathibited greater conformity to the piecewise constantetjod
the shared surface area of an ambiguous region with tiimwever, even for images that “seemed difficult” to segment,
seeded regions are equal, the simplifying assumption of @e algorithm exhibited generally stable behavior to seed
equipotential within the region breaks down. In such a cadegations/quantities.

the ambiguous region would be divided in half with respect to

the two labels. Figure 7 illustrates the behavior of the cand VII. CONCLUSION
walker algorithm in these three scenarios. We have presented a novel algorithm for general image
segmentation based on a small set of pre-labeled pixelseThe
VI. ALGORITHMIC RESULTS pre-labeled pixels may be given either interactively or-gen
) ) erated automatically for a particular purpose. The alponit
A. Segmentation of real images functions by assigning each unseeded pixel to the label of

Figure 8 shows the segmentation results on several mélde seed point that a random walker starting from that pixel
ical and non-medical images. Only grayscale images wekeuld be most likely to reach first, given that it is biased
considered here for ease of publication clarity, but coldao avoid crossing object boundaries (i.e., intensity grats).
images could be easily handled by modifying (1) to refleGince the algorithm is formulated on a general graph, and
color changes instead of intensity changes. The images gmdduces segmentations based on the separation of geantiti
seeds were chosen to demonstrate the general applicadilitydefined at the nodes (i.e., potentials), the graph (latticay
the interactive segmentation approach on objects of varyirepresent any dimension or topology.
uniformity, size, shape, and contrast. In each segmentdtie We have demonstrated this approach on real images and
value of the one free parametét,in (1), was kept constant, shown that it provides a unique, quality, solution that isust
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(a) Original cardiac CT volume

(b) Segmented aorta

Fig. 9. Segmentation on a 3D, 6-connected, lattice withoytraadification
of the algorithm. Seeds were placed on a single slice, camgisf a mark
inside the aorta and a ring of background seeds around thedeuta)
Original cardiac CT volume, b) Segmentation of the aorta isvshim high-
intensity pixels with the foreground/background seedsashin black and
white respectively.
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except at the extremely fast speed of the physical world.
Finally, since our variational problem is formulated on ayr,
there are no concerns about discretization errors or \@mit

in implementation that sometimes cause problems for other
variational approaches.

Future work will concentrate on a specialty solver, user
validation, the use of prior information in the segmentatnd
leveraging the theoretical results to produce a more éffect
weighting function.
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Finally, the algorithm simply requires solution to a sparse

symmetric, positive-definite system of equations, which
straightforward to implement and performs efficiently. Ad
ditionally, interactive editing of the segmentation gexigr
results in even faster computation time, since the previo

solution may be used as an initial solution for an iterativ

matrix solver.

The connections between random walks, combinatori
potential theory, trees and electric circuits allowed us
prove that the segments are guaranteed to be connected |

unfragmented), and that noise robustness may be expecj

Furthermore, the direct correspondence with analog é&ec
circuits opens the possibility for a hardware (e.g., VLS
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