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Random Walks for Image Segmentation
Leo Grady

Abstract— A novel method is proposed for performing multi-
label, interactive image segmentation. Given a small number
of pixels with user-defined (or pre-defined) labels, one can
analytically and quickly determine the probability that a random
walker starting at each unlabeled pixel will first reach one of
the pre-labeled pixels. By assigning each pixel to the label for
which the greatest probability is calculated, a high-quality image
segmentation may be obtained. Theoretical properties of this
algorithm are developed along with the corresponding connec-
tions to discrete potential theory and electrical circuits. This
algorithm is formulated in discrete space (i.e., on a graph) using
combinatorial analogues of standard operators and principles
from continuous potential theory, allowing it to be applied in
arbitrary dimension on arbitrary graphs.

Index Terms— Image segmentation, interactive segmentation,
graph theory, random walks, combinatorial Dirichlet problem,
harmonic functions, Laplace equation, graph cuts, boundary
completion

I. I NTRODUCTION

I MAGE segmentation has often been defined as the problem
of localizing regions of an image relative to content (e.g.,

image homogeneity). However, recent image segmentation
approaches have provided interactive methods that implicitly
define the segmentation problem relative to a particulartask
of content localization. This approach to image segmentation
requires user (or preprocessor) guidance of the segmentation
algorithm to define the desired content to be extracted.

A practical interactive segmentation algorithm must provide
four qualities: 1) Fast computation, 2) Fast editing, 3) An
ability to produce an arbitrary segmentation with enough
interaction, 4) Intuitive segmentations. The random walker al-
gorithm introduced here exhibits all of these desired qualities.
We note that this algorithm was first presented in a shortened
form as a conference paper [1]. The random walker algorithm
requires the solution of a sparse, symmetric positive-definite
system of linear equations which may be solved quickly
through a variety of methods. The algorithm may perform fast
editing by using the previous solution as the initialization of
an iterative matrix solver. An arbitrary segmentation may also
be achieved through enough user interaction.

In this paper, we present a novel approach toK-way image
segmentation given user-definedseedsindicating regions of
the image belonging toK objects. Each seed specifies a
location with a user-defined label. The algorithm labels an
unseeded pixel by resolving the question: Given a random
walker starting at this location, what is the probability that
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it first reaches each of theK seed points? It will be shown
that this calculation may be performed exactly without the
simulation of a random walk. By performing this calculation,
we assign aK-tuple vector to each pixel that specifies the
probability that a random walker starting from each unseeded
pixel will first reach each of theK seed points. A final
segmentation may be derived from theseK-tuples by selecting
for each pixel the most probable seed destination for a random
walker. By biasing the random walker to avoid crossing sharp
intensity gradients, a quality segmentation is obtained that
respects object boundaries (including weak boundaries). In a
uniform image (e.g., all black) or, as will be proved in Section
IV, an image of pure noise, a segmentation will be obtained
that roughly corresponds to Voronoi cells for each set of seed
points. We term this segmentation theneutral segmentation
since the image is neutral (i.e., devoid of meaningful content).

In our approach, we treat an image (or volume) as a purely
discrete object — a graph with a fixed number of vertices and
edges. Each edge is assigned a real-valued weight correspond-
ing to the likelihood that a random walker will cross that edge
(e.g., a weight of zero means that the walker may not move
along that edge). The advantage of formulating the problem on
a graph is that purely combinatorial operators may be used that
require no discretization and therefore incur no discretization
errors or ambiguities. Formulation of the algorithm on a graph
also allows the application of the algorithm to surface meshes
or space-variant images [2], [3]. Regardless of the dimensions
of the data, we will use the termpixel throughout this paper to
refer to the basic picture element in the context of its intensity
values. In contrast, the termnodewill be used in the context
of a graph-theoretical discussion.

Although the present algorithm is motivated in terms of
random walks, an adequate sampling from this distribution
would be completely infeasible for segmentation problems of
interest. Fortunately, it has been previously established[4], [5]
that the probability a random walker first reaches a seed point
exactly equals the solution to the Dirichlet problem [6] with
boundary conditions at the locations of the seed points and
the seed point in question fixed to unity while the others are
set to zero. For a popular account of this connection, see [7].
The development of a fully discrete calculus [8] has allowed
for the connection between random walks on graphs [9] and
discrete potential theory [10] to be made completely explicit
[5]. The solution to thecombinatorial Dirichlet problem on
an arbitrary graph is given exactly by the distribution of
electric potentials on the nodes of an electrical circuit with
resistors representing the inverse of the weights (i.e., the
weights representconductance) and the “boundary conditions”
given by voltage sources fixing the electric potential at the
“boundary nodes”.

In light of the connection between random walks on graphs
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and discrete potential theory, one may calculate the probability,
xs

i , that a random walker starting at pixelvi first reaches
a seed with labels, by solving the circuit theory problem
that corresponds to a combinatorial analog of the Dirichlet
problem [5]. Ground (i.e., fix the potential to zero) all seed
points belonging to labels other thans and establish a unit
voltage source with ground that fixes thes-labeled seeds to
have a unit potential. The electric potentials establishedat
each unseeded node provide the probabilities that a walker
originating from that node will first reach the seed with label
s. These electric potentials may be calculated through the
solution of a system of sparse linear equations, as described in
section III-G. The fullK-tuple may be calculated by finding
the potentials established through switching “on” (providing
a unit voltage source to) each labeled collection of nodes
and “off” (grounding) the remaining labeled nodes. Therefore,
K−1 systems of linear equations must be solved. By linearity
(i.e., the principle of superposition in circuit theory), the
potentials so calculated must sum to unity. This allows us to
avoid solving for one of the systems by subtracting the sum
of the calculated potentials from unity to find the last entryin
the full K-tuple. A function that solves the Dirichlet problem
for a given set of boundary conditions is known asharmonic.
Figure I illustrates the harmonic functions (and subsequent
segmentation) obtained for a4× 4 graph with unit weights in
the presence of three seeds with different labels.

Additional properties of our approach that will be estab-
lished in Section IV-C include:

1) Each segment is guaranteed to be connected to seed
points with the same label, i.e., there are no isolated
regions of a particular label that contain no seed points.

2) TheK-tuple of probabilities at each pixel is equal to the
weighted average of theK-tuples of neighboring pixels,
with the weights given by walker biases.

3) The solution for the potentials is unique.
4) The expected segmentation for an image of pure noise,

given by independent, equal-mean, random variables, is
equal to that obtained in the neutral segmentation.

A rich tradition of work in image segmentation has focused
on the establishment of appropriate image (object) models
and the development of algorithms focused on finding the
parameters for these models (e.g., [11]). For example, the
FRAME model of [12] provides a method for both synthesis
and analysis of image textures. A different line of research
in computer vision has first established the desired behavior
of an algorithm and then set out to identify a PDE or other
physical process that exhibits the desired behavior. In such
approaches, an image is typically viewed as a domain with
material properties (metric) induced by the image content upon
which the PDE or other physical process is simulated. Notable
examples of research along this second line of work include
anisotropic diffusion for image filtering [13] and normalized
cuts for image segmentation [14]. In such approaches, the
primary focus is typically on the characteristic behavior of
the process and the manner in which the image content
induces a metric is left as a task-specific question (e.g.,
this information may come from intensity gradients, color

gradients or texture gradients, as appropriate to the particular
problem). The present random walker approach follows from
this second tradition in computer vision in which desirable
behavioral properties of an interactive segmentation algorithm
are identified and a particular physical process is proposed
that exhibits the required characteristics. In this case, the
characteristics that we try to capture in an interactive seg-
mentation algorithm are: 1) Location of weak (or missing)
boundaries, 2) Noise robustness, 3) Ability to identify multiple
objects simultaneously, 4) Fast computation (and editing), 5)
Avoidance of small/trivial solutions (i.e., an avoidance of a
“small cut” phenomenon).

This paper is organized as follows. Section II reviews the
relationship of this work to previous approaches. Section III
gives a simple weighting function, derives the set of linear
equations that must be solved and provides implementation de-
tails. Section IV establishes theoretical properties and Section
V examines behavioral properties of the algorithm. SectionVI
provides segmentation results and we conclude in Section VII
with a summary of the algorithm presented and a discussion
of future work.

II. PRIOR WORK

Image segmentation is a vast topic. Therefore, we limit
our review to supervised and/or graph-based algorithms. Ad-
ditional work on random walks and combinatorial harmonic
functions will also be discussed.

A. Supervised segmentation

Supervised segmentation algorithms typically operate under
one of two paradigms for guidance: 1) Specification of pieces
of the boundary of the desired object or a nearby complete
boundary that evolves to the desired boundary, 2) Specification
of a small set of pixels belonging to the desired object and
(possibly) a set of pixels belonging to the background. We
note also that any of the automatic segmentation algorithms
might be considered supervised by subsequent user selection
of the desired segment. However, if the desired object is
not a complete segment, a secondary clustering/segmentation
algorithm must be employed to split or merge the automatic
segments.

The intelligent scissors algorithm [15] treats the image as
a graph where each pixel is associated with a node and a
connectivity structure is imposed. This technique requires the
user to place points along the boundary of the desired object.
Dijkstra’s algorithm is then used to compute the shortest path
between the user-defined points and this path is treated as
the object boundary. The algorithm is simple to implement,
very fast and may be used to obtain an arbitrary boundary
with enough points. Unfortunately, a low-contrast or noisy
boundary may require the specification of many points and
the algorithm is inapplicable to 3D boundaries.

Although the family of active contours and level sets is
large [16], a user is generally asked to place a contour near
the desired boundary and the algorithm evolves the boundary
to a local energy minimum. Many different terms in the energy
functional may be used to achieve different effects or employ
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(a) Seed points with segmentation (b) Probability that a random walker starting from each nodefirst
reaches seedL1

(c) Probability that a random walker starting from each nodefirst
reaches seedL2

(d) Probability that a random walker starting from each nodefirst
reaches seedL3

Fig. 1. Illustration of the approach to segmentation. With three seed points representing three different labels (denoted L1, L2, L3), alternately fix the
potential of each label to unity (i.e., with a voltage sourcetied to ground) and set to zero (i.e., ground) the remaining nodes. The electric potentials calculated
represent the probability that a random walker starting at each node first reaches the seed point currently set to unity. Figure 1(a) shows the initial seed points
and the segmentation resulting from assigning each node the label that corresponds to its greatest probability. For illustration, all the weights (resistors) were
set to unity. In the case of an image, these resistors would be afunction of the intensity gradient. The reader can verify that the probabilities at each node
sum to unity (up to rounding).
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domain knowledge for the problem. The main problems with
level set methods are difficulty of implementation (often re-
quiring specification of several free parameters) and difficulty
in fixing an incorrect solution, especially if the desired contour
does not correspond to a local energy minimum. Although the
early paper by Kass, Witkin and Terzopoulos [17] incorporated
user interaction, the active contours/level sets community ap-
pears to have trended away from this aspect. From a theoretical
standpoint, these methods are defined in the continuum and
achieve a local energy minimum, leading to difficulties in
trying to theoretically predict or understand the properties of
a practical solution.

The graph cuts [18], [19] technique has been developed
as a method for interactive, seeded, segmentation. As with
intelligent scissors, graph cuts views the image as a graph,
weighted to reflect intensity changes. A user marks some
nodes as foreground and others as background and the al-
gorithm performs a max-flow/min-cut analysis to find the
minimum-weight cut between the source and the sink. A
feature of this algorithm is that an arbitrary segmentationmay
be obtained with enough user interaction and it generalizes
easily to 3D and beyond. However, although performing well
in many situations, there are a few concerns associated with
this technique. For example, since the algorithm returns the
smallest cut separating the seeds, the algorithm will often
return the cut that minimally separates the seeds from the
rest of the image, if a small number of seeds are used.
Therefore, a user may need to continue placing seeds in
order to overcome this “small cut” problem. Additionally,
the K-way graph cuts problem is NP-Hard, requiring use of
a heuristic to obtain a solution. Although one may find a
solution within a bound of the optimal multiway cut [20], the
problem becomes more difficult and one cannot be sure that
the optimal cut is achieved. Finally, multiple “smallest cuts”
may exist in the image that are quite different from each other.
Therefore, a small amount of noise (adjusting even a single
pixel) could cause the contour returned by the algorithm to
change drastically. Mathematically, we note that the present
algorithm may be considered as arelaxation of the binary
values of the potential function in graph cuts. Although this
may appear to constitute a minor modification of graph cuts,
in fact the motivation, theoretical properties, practicalbehavior
and method of solution are all quite different. The graph cuts
approach of [18] differs from the present work by including a
priors term on the intensity of the foreground and background
(with a consequent additional parameter). Although we will
not further discuss it here, such a modification to the random
walker algorithm may also be achieved [21].

The graph cuts segmentation algorithm has been extended
in two different directions in order to address issues of
speed, color images and the user interaction. The first type
of extension to the graph cuts algorithm has focused on speed
increases by coarsening the graph before applying the graph
cuts algorithm. This coarsening has been accomplished in two
manners: 1) By applying a standard multilevel approach and
solving subsequent, smaller graph cuts problems in a fixed
band to produce the final, full-resolution segmentation [22], 2)
By applying a watershed algorithm to the image and treating

each watershed basin as a “supernode” in a coarse graph
to which graph cuts in applied [23]. We note that the Lazy
Snapping approach of [23] additionally proposes interactive
tools for dividing watershed basins that may have incorrectly
merged the foreground and background regions. The primary
goal of these two approaches is to increase the computational
speed of graph cuts by intelligently reducing the number of
nodes in the graph. As stated in [22], the objective is to
produce the same segmentation result as regular graph cuts
by introducing a heuristic that greatly speeds the compu-
tation. Therefore, the benefits and difficulties of the graph
cuts algorithm listed above also apply to these approaches,
with an added uncertainty about the role of the coarsening
operator in the final result (i.e., the final segmentation is no
longer guaranteed to be the minimum cut). Additionally, both
approaches to increasing the computational speed of graph cuts
could equally be applied to the present algorithm with similar
computational gains.

The second direction of extension to the graph cuts algo-
rithm followed from the iterative estimation of a color model
with the graph cuts algorithm [24]. This iterative color model
was later coupled with an alteration of the user interface to
create the GrabCuts algorithm [25]. The GrabCuts approach
asks the user to draw a box around the object to be segmented
and employs the color model as priors (“t-links”) to obviate
the need for explicit specification of foreground seeds. The
added color model is of clear value in the application of
color image segmentation and the “box-interface” requires
less user interaction. Although the approach does perform
well in the domain of color image segmentation, the iterative
nature of the algorithm does increase the computational burden
of the algorithm (requiring a solution to the max-flow/min-
cut problem on each iteration) and there is no longer a
guarantee of optimality (the algorithm is terminated when
the iterations stagnate). For grayscale images, the GrabCuts
system essentially becomes standard graph cuts with a changed
user interface. However, it appears that the “box-interface” is
not always sufficient to capture the desired object, since further
editing of the results with standard graph cuts is often required.
As with the multilevel extensions described above, it would
be possible to merge the novel aspects of the GrabCuts system
(the iterative color image model and “box-interface”) withthe
random walker algorithm described here. Since the graph cuts
algorithm of [18] forms the heart of the GrabCuts system, and
fulfils the same role as the present approach, we will focus on
the relative strengths and weaknesses of these two algorithms.

B. Graph-based methods of image segmentation

Early papers of Zahn [26] and Wu and Leahy [27] are
among the first approaches to apply graph theory to problems
in image analysis. However, recent interest largely appears
to have been spurred by Shi and Malik’s introduction of the
normalized cuts algorithm [14]. Most subsequent algorithms
have focused on the spectral properties of the graph (e.g.,
[28], [29]), although the isoperimetric algorithm [30] andthe
Swendsen-Wang algorithm [31] are notable exceptions.
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C. Random walks and combinatorial harmonic functions

Harmonic functions defined on graphs with given Dirichlet
boundary conditions have seen recent interest in many ap-
plications, including image filtering [32], image colorization
[33] and machine learning [34]. Although purely combinatorial
harmonic functions were studied as early as 1945 by Eckmann
[35], the earliest use of combinatorial harmonic functionsthat
the author is aware of was an application to circuit layout
given by Kodres [36]. Combinatorial harmonic functions were
also famously employed by Tutte for graph drawing [37]. For
an excellent collection of current knowledge on combinatorial
harmonic functions, see [10].

Random walks first appeared in computer vision in the
early work of Wechsler and Kidode for texture discrimination
[38]. More recently, the average hitting time of a random
walk from an object boundary has been studied as a measure
to characterize object shape [39]. The isoperimetric graph
partitioning algorithm introduced in [40] was shown to have
an interpretation in terms of random walks in the sense that
hitting times are computed from all nodes to a designated
node and these values are thresholded to produce a partition
that has various beneficial theoretical properties. This approach
was recently applied to automatic image segmentation [30]
by choosing the designated node randomly and recursively
partitioning until a measure of partition quality is violated.

Recently, various steady-state properties of random walks
have also been used to define automatic clustering algorithms.
Harel and Koren [41] employ the notion of escape probabilities
on subgraphs to iteratively weaken graph edges and eventually
break the graph into disconnected components. Yenet al.
[42] use the notions of average first-passage time and average
commute time to replace traditional shortest-path distances
between nodes in a graph and show that standard clustering
algorithms (e.g., K-means) produce better results when applied
to these re-weighted graphs. Both of these methods represent
automatic clustering algorithms (as opposed to the seeded
method here) and require either extensive computations to
produce pairwise random walk quantities for each pair of
nodes, or employ a heuristic method of employing subgraphs
to restrict the computation. The advantage of examining the
probabilities that random walkers first arrive at predefined
traps (given by the seed points) considered here is that
the probabilities may be computed quickly and the various
properties of noise robustness and harmonic functions (e.g.,
mean-value theorem, etc.) examined in Section IV-C may be
used to characterize the algorithm’s behavior. Furthermore,
these approaches require the specification of additional free
parameters beyond what are necessary in the present approach.

Newman uses concepts from random walks to introduce a
notion of “betweenness” on the nodes on a graph by consider-
ing a node’s “betweenness” measure to be equal to how often
a random walk starting at any pair of nodes passes through
the node, averaged across all pairs [43]. Such a measure is
shown to offer more intuitive behavior over other methods of
“betweenness” computation at the cost of an expensive matrix
inversion.

III. E XPOSITION OF THE ALGORITHM

Although the random walker algorithm was motivated in
the introduction by placing random walkers at pixels and
noting which seeds they first arrive at, such a method of
computation would be completely impractical. Fortunately,
established connections between random walks and potential
theory (or circuit theory, on a graph) provide us with a
simple, convenient method for analytically computing the
desired probabilities. This section describes three aspects of
the algorithm: Generating the graph weights, establishingthe
system of equations to solve the problem and the practical
details of implementation.

We begin by defining a precise notion for a graph. Agraph
[44] consists of a pairG = (V,E) with vertices (nodes)
v ∈ V and edgese ∈ E ⊆ V × V . An edge,e, spanning
two vertices,vi andvj , is denoted byeij . A weighted graph
assigns a value to each edge called aweight. The weight of an
edge,eij , is denoted byw(eij) or wij . Thedegreeof a vertex
is di =

∑

w(eij) for all edgeseij incident onvi. In order to
interpretwij as the bias affecting a random walker’s choice,
we require thatwij > 0. The following will also assume that
our graph is connected and undirected (i.e.,wij = wji).

A. Edge weights

In order to represent the image structure (given at the
pixels) by random walker biases (i.e., edge weights), one
must define a function that maps a change in image inten-
sities to edge weights. This is a common feature of graph
based algorithms for image analysis and several weighting
functions are commonly used in the literature [14], [20], [45].
Additionally, it was proposed in [46] to use a function that
maximizes the entropy of the resulting weights. In this work
we have preferred (for empirical reasons) the typical Gaussian
weighting function given by

wij = exp (−β(gi − gj)
2), (1)

where gi indicates the image intensity at pixeli. The value
of β represents the only free parameter in this algorithm.
We have found it useful to normalize the square gradients
(gi − gj)

2 ∀eij ∈ E before application of (1). Of course, (1)
could be modified to handle color or general vector-valued data
by replacing(gi − gj)

2 with ||gi − gj ||
2 for a vector-valued

gi. Additionally, for problem-specific domains, (1) could be
modified to apply to texture information, filter coefficientsor
other image features.

B. Combinatorial Dirichlet problem

In the introduction, we noted that the combinatorial Dirich-
let problem has the same solution as the desired random
walker probabilities [4], [5], [10]. In this section, we review
the combinatorial Dirichlet problem and show how to find its
solution.

The Dirichlet integral may be defined as

D[u] =
1

2

∫

Ω

|∇u|2dΩ, (2)
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for a field u and regionΩ [6]. This integral arises in many
physical situations, including heat transfer, electrostatics and
random walks.

A harmonic function is a function that satisfies theLaplace
equation

∇2u = 0. (3)

The problem of finding a harmonic function subject to its
boundary values is called theDirichlet problem . The har-
monic function that satisfies the boundary conditions mini-
mizes the Dirichlet integral, since the Laplace equation isthe
Euler-Lagrange equation for the Dirichlet integral [6].

Define the combinatorial Laplacian matrix [47] as

Lij =











di if i = j,

−wij if vi andvj are adjacent nodes,

0 otherwise,

(4)

whereLij is indexed by verticesvi andvj .
Define them × n edge-nodeincidence matrix as

Aeijvk
=











+1 if i = k,

−1 if j = k,

0 otherwise,

(5)

for every vertexvk and edgeeij , where eacheij has been
arbitrarily assigned an orientation. As with the Laplacian
matrix above,Aeijvk

is used to indicate that the incidence
matrix is indexed by edgeeij and nodevk. As an operator,A
may be interpreted as a combinatorial gradient operator and
AT as a combinatorial divergence [48], [8] by virtue of the
equivalent role ofA andGrad as the coboundary operator on
the space of 0-cochains or 0-forms, respectively (see [49] for
more information).

We define them×m constitutive matrix , C, as the diagonal
matrix with the weights of each edge along the diagonal. As in
the continuum setting, the isotropic combinatorial Laplacian
is the composition of the combinatorial divergence operator
with the combinatorial gradient operator,L = AT A. The
constitutive matrix may be interpreted as representing a metric
in the sense that it defines a weighted inner product on the
vector space of 1-cochains (i.e., functions defined on the edge
set). In this sense, the combinatorial Laplacian generalizes
to the combinatorial Laplace-Beltrami operator [50] viaL =
AT CA. The case of a trivial metric, (i.e., equally weighted,
unit valued, edges) reduces toC = I andL = AT A.

With these definitions in place, we can determine how
to solve for the harmonic function that finds probabili-
ties/potentials on unseeded nodes, while keeping the seed
nodes fixed. A combinatorial formulation of the Dirichlet
integral (2) is

D[x] =
1

2
(Ax)T C(Ax) =

1

2
xT Lx =

1

2

∑

eij∈E

wij(xi − xj)
2,

(6)
and a combinatorial harmonic is a functionx that minimizes
(6). SinceL is positive semi-definite, the only critical points
of D[x] will be minima.

Partition the vertices into two sets,VM (marked/seed nodes)
andVU (unseeded nodes) such thatVM ∪ VU = V andVM ∩

VU = ∅. Note thatVM contains all seed points, regardless of
their label. We may assume without loss of generality that the
nodes inL and x are ordered such that seed nodes are first
and unseeded nodes are second. Therefore, we may decompose
equation (6) into

D[xU ] =
1

2

[

xT
MxT

U

]

[

LM B

BT LU

] [

xM

xU

]

=

1

2

(

xT
MLMxM + 2xT

UBT xM + xT
ULUxU

)

, (7)

wherexB andxU correspond to the potentials of the seeded
and unseeded nodes respectively. DifferentiatingD[xU ] with
respect toxU and finding the critical point yields

LUxU = −BT xM , (8)

which is a system of linear equations with|VU | unknowns.
If the graph is connected, or if every connected component
contains a seed, then equation (8) will be nonsingular [51].

Denote the probability (potential) assumed at node,vi, for
each label,s, by xs

i . Define the set of labels for the seed points
as a functionQ(vj) = s, ∀vj ∈ VM , wheres ∈ Z, 0 < s ≤
K. Define the|VM |×1 vector (where| · | denotes cardinality)
for each label,s, at nodevj ∈ VM as

ms
j =

{

1 if Q(vj) = s,

0 if Q(vj) 6= s.
(9)

Therefore, for labels, the solution to the combinatorial
Dirichlet problem may be found by solving

LUxs = −BT ms, (10)

for one label or
LUX = −BT M, (11)

for all labels, whereX hasK columns taken by eachxs and
M has columns given by eachms. Since the probabilities at
any node will sum to unity, i.e.,

∑

s

xs
i = 1,∀vi ∈ V, (12)

only K − 1 sparse linear systems must be solved, whereK is
the total number of labels.

C. Circuit analogy

Although the algorithm was motivated in terms of random
walks, it is well known that there are many equivalences
between random walks and electrical circuits [5]. Specifically,
as illustrated in Figure I, the solution to (10) may be inter-
preted as a circuit simulation. Consider the three fundamental
equations of circuit theory (Kirchhoff’s current and voltage
law and Ohm’s law), which may be written in the above
notation as

AT z = f (Kirchhoff’s Current Law), (13)

Cp = z (Ohm’s Law), (14)

p = Ax + b (Kirchhoff’s Voltage Law), (15)

for a vector of branch currents,z, current sources,f , voltage
sources,b and potential drops (voltages),p. These three
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equations may be combined into the linear system

AT CAx + AT Cb = f, (16)

Lx = f − AT Cb, (17)

which is equivalent to (10), withf = 0 (no current sources)
and the role of the voltage sources taken by the user-defined
seeds. We note that (6) may also be interpreted aspower in
the circuit theory context and (17) represents the resulting
minimization performed by the physical world.

D. Relationship to diffusion

Since diffusion processes have such a significant history in
computer vision and such a process may be described by a
random walk (i.e., Brownian motion), it is useful to examine
the relationship between a diffusion process and the present
approach.

The fundamental difference between a diffusion equation
and the Laplace equation of (28) is that diffusion represents
a transient process occurring in time, while a Laplace equa-
tion describes a steady-state distribution. This straightforward
relationship is illustrated by examining the equations together:

du

dt
= ∇2u (Diffusion equation), (18)

0 = ∇2u (Laplace equation). (19)

In fact, a circuit analogy of the diffusion process also appears
in Perona and Malik’s classic paper [13]. The two circuit
formulations differ in that the voltage sources (used to define
the steady-state potentials) are replaced by capacitors charged
to values representing an initial condition (used to define the
transient potentials after a predefined amount of time has
passed). In the case of two labels (i.e., a single source/ground
pair) and infinite time the two formalisms can be made to give
the same results (up to a shift and scale) if one seed is taken as
an infinite source of random walkers (diffusive particles) and
the other seed as an infinite sink of random walkers (diffusive
particles).

Despite the mathematical similarities between the Laplace
and diffusion equations, these algorithms are very different.
Specifically, diffusion is typically employed as an image
enhancement algorithm in which the original grayscale values
are taken as initial conditions and the solution is stopped after
a predetermined amount of time. In contrast, we describe a
seeded segmentation algorithm that makes no use of initial
conditions and examines the steady-state distribution of po-
tentials in order to define segmentation boundaries.

E. Image model

In contrast to several popular image segmentation algo-
rithms (e.g., [11]), the random walker segmentation approach
presented here is not derived explicitly from an image model.
However, an implicit image model exists in the approach
and it is therefore useful to examine the algorithm from this
standpoint.

Piecewise constant image models have existed from the
earliest days of computer vision. In such a model, each object

in the image is expected to be of constant value (e.g., inten-
sity, color, texture). Although simplistic, such models remain
popular and surprisingly effective. However, three problems
immediately present themselves:

1) The image may be corrupted with noise.
2) Neighboring (touching) objects may have thesame

value, resulting in low-contrast or absent boundaries.
3) Ambiguity exists when there are more piecewise con-

stant regions than seed groups (labels) in the image.

The random walker algorithm may be viewed as a proposal
to address these issues. Almost any image segmentation ap-
proach (even region growing or thresholding) may be used
to localize correct segments in a piecewise constant image
that does not suffer from the above problems. Clearly, in
such an image, the random walker algorithm introduced here
would also produce the correct segmentation. However, the
behavior of the random walker algorithm in the presence of
the three difficulties outlined above distinguishes it fromother
approaches. The behavior of the algorithm in response to these
three confounding factors is detailed in Section V.

The weighting function of (1) implies that the image has
piecewise constant intensity. Although such a simple modelis
reasonable in many grayscale images, other models such as a
piecewise constant texture or color may be used to define the
affinities in place of (1) where appropriate.

F. Numerical practicalities

Many good sources exist on the solution to large, sparse,
symmetric, linear systems of equations (e.g., [52]. A direct
method, such asLU decomposition with partial pivoting has
the advantage that the computation necessary to solve (11) is
only negligibly increased over the amount of work required
to solve (10). Unfortunately, current medical data volumes
frequently exceed256 × 256 × 256 ≈ 16e6 voxels, and
hence require the solution of an equal number of equations.
Furthermore, there is no reason to believe that the resolution
will not continue to increase. The memory capabilities of most
contemporary computers do not have enough memory to allow
an LU decomposition with such a large number of equations.

The standard alternative to the class of direct solvers
for large, sparse systems is the class of iterative solvers
[53]. These solvers have the advantages of a small memory
requirement and the ability to represent the matrix-vector
multiplication as a function. For a lattice, the matrixLU has
a circulant nonzero structure (although the coefficients are
changing), one may avoid storing the matrix entirely. Instead,
a vector of weights may be stored (or computed on the fly,
if memory is at a premium) and the operationLUxs

U may be
performed very cheaply. Furthermore, sparse matrix operations
(like those required for conjugate gradients) may be efficiently
parallelized [54], [55], e.g., for use on a GPU [56], [57].
Because of the relationship of (10) to a finite differences
approach to solving the Dirichlet problem on a hypercube
domain, the techniques of numerical solution to PDEs may
also be applied. Most notably, the algebraic multigrid method
[58], [59] achieves near-optimal performance for the solution
to equations like (10). Additionally, use of a small world
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(a) Original (b) Seeds indicating four objects (c) Resulting segmentation

(d) Label 1 probabilities (e) Label 2 probabilities (f) Label 3 probabilities (g) Label 4 probabilities

Fig. 2. Overview of segmentation computation. a) Original image to be segmented. b) User-placed seeds indicating a desired segmentation into four objects.
d-g) Probabilities (potentials) obtained by solving (10) for each label. c) Segmentation obtained by assigning each pixel to the label for which a random
walker is most likely to reach first. Each system required lessthan three seconds to solve using MATLAB.

topology [60] might significantly improve the computation
speed.

The Graph Analysis Toolbox [61] for MATLAB may be
used to easily build weighted image graphs and solve the
requisite system of linear equations. Specialty code to perform
the random walker segmentation will be made available upon
publication on the author’s webpage. Although MATLAB
has efficient, C++ (MEX), direct solvers for sparse linear
systems, the preconditioned conjugate gradient method is
written in highly inefficient MATLAB code. Therefore, for
research purposes we recommend using the MATLAB code
provided (sufficient for512 × 512 images, on present-day
technology). A more industrial use will require implementation
of conjugate gradients or multigrid code in C++. Fortunately,
good references exist for these methods (with source code)
[52] that allow for a straightforward implementation. Using
MATLAB’s direct solver, solution of (10) for a256 × 256
image with two randomly placed seed points required2.5
seconds on an Intel Xeon 2.40GHz processor with 1GB of
RAM.

G. Algorithm summary

To summarize, the steps of the algorithm are:

1) Using (1), map the image intensities to edge weights in
the lattice.

2) Obtain a set,VM , of marked (labeled) pixels withK
labels, either interactively or automatically.

3) Solve (11) outright for the potentials or solve (10) for
each label except the final one,f (for computational
efficiency). Setxf

i = 1 −
∑

s<f xs
i .

4) Obtain a final segmentation by assigning to each node,
vi, the label corresponding tomaxs (xs

i ).
Code is available (in MATLAB) on the author’s webpage at:
http://www.cns.bu.edu/˜lgrady/random walker matlab code.zip .

We note that other options might be explored for assigning
a label to each pixel based on the potentials (e.g., applying
a clustering algorithm to theK-dimensional vectors at each
node). Figure 2 displays all of the steps in this process from
seed acquisition to calculation of the potentials (probabilities)
and the resulting segmentation.

If interactive editing of the segmentation were needed (i.e.,
through the addition/deletion of seeds), one could start at
step 2 in the above procedure with the new seed set and
use the previous solution as the starting point for an iterative
matrix solver for the new system (10). In general, the previous
solution will be “close” to the desired solution, requiringmuch
less time to compute.

IV. T HEORETICAL PROPERTIES OF THE ALGORITHM

Although a new technique was presented for interactive
image segmentation, it is necessary to explore what may be
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predicted about its behavior, both analytically and practically.
In this section, we examine theoretical properties of the
algorithm, exploring connectedness and the expected behavior
in the presence of noise. Specifically, we will show that the
segments will be connected and that one can generally expect
the algorithm to behave robustly in the presence of noise.
We begin by detailing four mathematically equivalent ways
of viewing how the algorithm assigns labels to each unseeded
pixel and then employ the most convenient analogy to prove
the desired theoretical propositions.

A. Analogies

There are four mathematically equivalent ways of viewing
how the random walker algorithm assigns an unseeded pixel
to a label, given a weighted graph:

1) If a random walker leaving the pixel is most likely to
first reach a seed bearing labels, assign the pixel to
label s.

2) If the seeds are alternately replaced by grounds/unit
voltage sources, assign the pixel to the label for which
its seeds being “on” produces the greatest electrical
potential.

3) Assign the pixel to the label for which its seeds have
the largest effective conductance (i.e., smallest effective
resistance) with the pixel.

4) If a 2-tree is drawn randomly from the graph (with
probability given by the product of weights in the 2-
tree), assign the pixel to the label for which the pixel
is most likely to remain connected to. See section IV-B
for definition of a 2-tree.

The first way of viewing the algorithm provides the motiva-
tion and the second provides the implementation, as illustrated
in Figure I. We examine the third and fourth analogies in the
next section.

B. Effective conductance and 2-trees

Theeffective conductancebetween nodesvi andvj , ρ(i, j),
equals the current flow between nodesvi andvj when a unit
voltage is applied across nodesvi, vj . Alternately, the Dirichlet
integral of (6) equals the effective conductance between nodes
labeled ‘1’ (i.e., “on”) and those labeled ‘0’ (i.e., “off”)[10].
Therefore, given a solution to (8) with nodesvi, vj used as
the source/sink, the effective conductance betweenvi andvj ,
ρ(i, j), may be computed conveniently byD[x] = ρ(i, j) =
xT Lx, wherex is intended to include bothxM andxU from
(7).

It was shown in [10] that the effective conductance between
two nodes,vi, vj is given by

ρ(i, j) =
τ

χ(i, j)
, (20)

whereτ is a constant for the graph defined as

τ =
∑

All trees

∏

e∈T

w(e), (21)

whereT is a set of edges defining a connected tree and the
sum is over all possible trees in the graph. Note thatτ does

not depend on the choice of nodesvi, vj . The termχ(i, j) is
defined as

χ(i, j) =
∑

All TT (i,j)

∏

e∈TT (i,j)

w(e), (22)

whereTT (i, j) is used to represent the set of edges defining
a 2-tree, such that nodevi is in one component andvj is
in another. A2-tree is defined to be a tree with one edge
removed. It should not be surprising that there exists an
analogy with a tree algorithm, since trees have been a major
part of circuit theory dating all the way back to Kirchhoff [62].

In addition to solution by (8), it is known [10] that the
potential of a nodevt, given {0, 1} labels at nodesvi andvj

respectively, may also be computed (albeit impractically)via

x
j
t =

ρ(i, j)χ∗(i, j, t)

τ
, (23)

where
χ∗(i, j, t) =

∑

All TT (i,j,t)

∏

e∈TT (i,j)

w(e), (24)

is taken over the sum of all 2-trees such thatvi and vj are
in different components andvt is in the same component as
vj . Therefore, we note thatχ∗(i, j, t) = χ(i, j) − χ(j, t).
For a fixedvi, vj , it is clear thatτ , χ(i, j) and ρ(i, j) are
constants, regardless of whether or not it isvi or vj that are
“on” or “off”. Denoting xi

t andx
j
t as the probabilities obtained

(e.g., via solution to (8)) forvi set to unity andvj set to
unity, respectively (while the other node is set to zero), then
the above equations yield that the following expressions are
equivalent

χ(j, t) > χ(i, t), (25)

xi
t > x

j
t , (26)

ρ(i, t) > ρ(j, t). (27)

Since the segmentation is computed from the potentials by
assigning the pixel to the label for which it has greatest
potential (probability), the equivalence of (26) with (25)and
(27) show that these two quantities are also sufficient to
define the same segmentation. In other words, the third and
fourth analogies given in Section IV-A are shown to be true.
In the following sections we use all of these viewpoints to
theoretically examine the behavior of the algorithm.

C. Properties

We begin by giving two properties that are combinatorial
analogues of properties of continuous harmonic functions [6]
and may be seen directly by viewing the solution to the com-
binatorial Dirichlet problem as a solution to the combinatorial
Laplace equation (with Dirichlet boundary conditions), where
the potential of each unseeded node must satisfy

xs
i =

1

di

∑

eij∈E

w(eij)x
s
j , (28)

where thexs
j ∈ V (i.e., may include seed points).

1) A potential 0 ≤ xs
i ≤ 1, ∀ i, s (maximum/minimum

principle).
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2) The potential of each unseeded node assumes the
weighted average of its neighboring nodes (the mean-
value theorem).

We use these properties to first examine the connectedness
of the segmentation and show, intuitively, that the segments are
always connected to a seed. This property demonstrates that
we can expect the segmentation to avoid the noisy or frag-
mented segmentations that sometimes result from application
of other algorithms.

Proposition 1 If the final segmentation is determined from the
potentials using the rule: nodevi is assigned to segment,s,
only if xs

i > x
f
i ∀f 6= s, then each node assigned to segments

is connected through a path of nodes also assigned to segment
s to at least one of the seed points with labels.

A restatement of this proposition is that the connected com-
ponents generated by the final segmentation must contain at
least one seed point bearing that label.

Proof: Note, this proof is similar to that given in [3] for
connectedness using the isoperimetric algorithm.

The result follows if it can be shown that any connected
subset,P ⊆ VU , assigned to segments must be connected to
at least one node that is also labeleds.

A block matrix form of (28) may be written

LP xs
P = −RP xs

P
, (29)

wherexs = [xs
P , xs

P
]T , L has been decomposed into the block

form

L =

[

LP RP

RT
P LP

]

, (30)

and P denotes the set complement ofP in V . For example,
in the case ofP = {vi} in (28), LP = di and −RP xs

P
=

∑

eij∈E w(eij)x
s
j .

If xs
P > x

f
P ∀f 6= s, thenxs

P −x
f
P > 0 and−L−1

P RP (xs

P
−

x
f

P
) > 0. The entries ofRP are nonpositive by definition ofL.

SinceL is an M-matrix, any block diagonal submatrix of an
M-matrix is also an M-matrix, and the inverse of an M-matrix
has nonnegative entries (see [63] for the previous three facts),
then−L−1

P R has nonnegative entries and therefore, somexs
i ∈

P must be greater thanxf
i ∈ P . Furthermore, since the entries

of RP are zero for nodes not connected toP , the nodes inP
satisfying the inequality must be connected to a node inP .
We note that it is possible, although it almost never occurs
in practice, thatxs

i = x
f
i , i.e., the potentials for two labels

are equal at a node. In this case, one may enforce the
continuity property by assigning a connected component of
isopotential nodes to a label taken by a neighbor of the set.
As demonstrated in the proof of Proposition 1, theset of
(seedless) isopotential nodes must have at least one neighbor
with a potential both greater and lesser than the isopotential
nodes.

In the original conference paper, proofs of several propo-
sitions concerning noise were given that rested on the proof
of a lemma concerning the ratio of random variables. It has
subsequently been determined that a flaw exists in the original

proof of this lemma1, rendering the subsequent proofs invalid.
Here, we use the equivalences of (25), (26) and (27) to provide
similar statements.

If the graph weights are uniform (i.e., obtained from a uni-
form image), we term the resulting segmentation theneutral
segmentation. For simplicity, we takew(eij) = 1,∀eij ∈ E,
since multiplication of all weights by a constant does not affect
the resulting solution, as may be seen by (8). By, (23), we
know that

ηi
t > η

j
t ⇐⇒ |TT (j, t)| = χ(j, t) > χ(i, t) = |TT (i, t)|,

(31)
where|TT (i, t)| indicates the number of 2-trees withvi in one
component andvt in the other andηi

t represents the potential
for the neutral segmentation at nodevt with vi set “on”. In
the following propositions, boldface will be used to indicate
random variables.

Proposition 2 If the set of weights,wij , are independent
random variables with equal mean,µ, then E[χ(j, t)] >

E[χ(i, t)] if and only if ηi
t > η

j
t .

Proof: The variableχ(i, t) defines a sum of the product
of N−2 equal-mean, independent variables (i.e., for theN−2
edges in a 2-tree). Therefore,

E[χ(j, t)] = µ(N−2)|TT (j, t)|, (32)

E[χ(i, t)] = µ(N−2)|TT (i, t)|. (33)

Consequently,

E[χ(j, t)] > E[χ(i, t)], (34)

holds if and only if

|TT (j, t)| > |TT (i, t)|, (35)

which is known to hold for the neutral segmentation by (31).

Consequently, in the expected case, the segmentation will
be the same as for the neutral segmentation. Since the same
technique as above may be used to verify the following two
propositions, the proofs are left to the reader.

Proposition 3 If the set of weights,wij , are indepen-
dent random variables with corresponding meansµij , then
E[χ(j, t)] > E[χ(i, t)] if and only if xi

t > x
j
t when the

weights are set towij = µij .

Proposition 4 If wij = kijyij , where the kij are (not
necessarily equal) constants andyij are independent random
variables, such thatyij > 0 and E[yij ] = µ,∀eij ∈ E, then
E[χ(j, t)] > E[χ(i, t)] if and only if xi

t > x
j
t when the

weights are set towij = kij .

Proposition 3 suggests that the means of random weights
provide an indicator of the expected segmentation and Propo-
sition 4 indicates that equal-mean, multiplicative noise (of
the weights) is not expected to disrupt the solution. We also

1We thank Dr. Kurt Majewski for bringing this to our attention.
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Fig. 3. Illustration of why the segmentation obeys weak image boundaries. Consider the16 × 7 image consisting of just one hard boundary with a hole,
represented by the thick black line, and two seed points placed at the white and black circles at the far ends of the image. A random walker starting at the
pixel next to the weakness in the boundary (the center of the arrows) has3 out of 4 chances on its initial step to enter into the region that is likely to be
labeled as belonging to the black circle. Since the same holdstrue on the other side of the weak boundary, there will be a sharp drop in the probabilities and
consequently, the segmentation will respect the boundary, even though it is weak.

(a) Original (b) Segmentation

Fig. 4. Demonstration of the algorithm response to weak boundaries of different types, large/small regions and nonconvexregions on a synthetic image
consisting of only black and white pixels. a) A synthetic image was created to designate four areas of different size, shape and convexity by drawing black
lines. Sections of the line were then completely erased to remove all contrast at those locations. b) Seeding and resultingsegmentation (visualized by shaded
regions). Despite missing boundary information, the algorithm accurately localizes the boundaries. Note that a 4-connected lattice was employed as the
underlying graph.

consider use of the means of random weights to provide an
initial guess for a problem with noise.

Proposition 5 Given a solution toLUxs = −Bms with
wij = kij for some, not necessarily equal, constantsk, this
solution provides an expected residual of zero for the graph
where the weights are random variables,yij , with means
E[yij ] = kij .

Proof: Denote the terms of (8) obtained by settingwij =
µij as LUx = −Bm (where the labels has been ignored
since it is assumed to be fixed) and the terms of (8) in the
randomized case asLUx = −Bm. Then,

LU (x − x) = (−Bm) − LUx = r, (36)

where r represents the residual. Since neitherm nor x are
random,E[Bm] = −Bm, and E[LUx] = LUx = −Bm.
Consequently,E[r] = 0 and the proposition holds.

We note that Proposition 5 applies to arbitrary random
variables. Although it is well-known that a small residual does
not necessarily indicate a small error [52], it is usually a
reasonable indicator and, more importantly, forms the stop-
ping criterion for many iterative solvers. Therefore, we can
conclude that if one has obtained a non-random solution to
(8), it will generally provide a good starting point for solving
the system after noise has been added.

V. BEHAVIORAL PROPERTIES

In this section, we demonstrate three pragmatic properties
of the random walker algorithm — weak boundary detection,
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(a) Original (b) Graph cuts (c) Random walker (d) Probabilities

Fig. 5. Comparison of random walker algorithm to graph cuts for a weak boundary with small seeds. Note that a 4-connected graph was used in these
experiments. a) Original (synthetic) image created with a diagonal black line with a section completely erased. b) Graph cuts solution — Since surface area
of seeds is smaller than the weak boundary, the smallest cut minimally surrounds the seeds. c) Random walker solution. d) Probabilities associated with the
random walker algorithm offer a notion of segmentation confidence at each pixel.

noise robustness and the assignment of ambiguous regions.

A. Weak boundaries

We will prefer the term objectboundaryto the traditional
computer vision termedge (e.g., “edge detection”) to avoid
confusion with the edge set of the graph (e.g.,eij ∈ E). Unlike
region growing approaches, one aspect of the random walker
motivation for this algorithm is that weak object boundaries
will be found when they are part of a consistent boundary.
This behavior may be explained by considering Figure 3. On
a four-connected lattice, consider the walker staring its walk
at the center of the four arrows in Figure 3. This walker has
three initial steps that keep it on one side of the boundary and
only one step that crosses the boundary. Since other nodes on
that side of the boundary are all very likely to reach seed one
(filled circle), this walker is also very likely to first reachseed
one. For the same reasons, a walker on the other side of the
weak boundary is also very likely to first reach seed two (open
circle). Consequently, the walker at the arrows finds the first
seed (filled circle) and the walker on the opposite side of the
boundary weakness finds seed two (open circle). This behavior
may also be explained from a circuit perspective. Although
the resistance in the boundary weakness is low, nearly all
the current from one seed to the other must pass through the
boundary weakness, resulting in a large voltage drop over the
resistor (by Ohm’s Law). Practical behavior of the algorithm
in response to weak boundaries is displayed in Figure 3 and
Figure 4. Figure 4 shows the segmentation obtained for a
synthetic image with four areas of varying sizes and convexity
with missing boundary sections and few seeds. We note that
no obvious “metrication artifacts” are present, despite the fact
that these results were obtained using a 4-connected lattice as
the underlying structure.

The graph cuts algorithm of [18] is also capable of finding
weak boundaries. However, since graph cuts searches for the
minimum cut, the graph cuts algorithm is more susceptible
to the “small cuts” problem in the presence of weak (i.e.,
costly) boundaries. Figure 5 compares the graph cuts and
random walker algorithms in a simple, foreground/background
segmentation with a weak boundary and small seeds. In

contrast to graph cuts, the random walker algorithm also
provides a “confidence” value of the segmentation in terms of
the random walker probabilities, as Figure 5 also illustrates.

B. Noise robustness

The theoretical results of Section IV-C detail how the
expected probabilities (and hence, the resulting segmentation)
should behave in response to i.i.d. randomness of the weights.
Although the weighting function (1) does not translate i.i.d.
randomness of the pixel values to i.i.d. randomness of the
weights, the behavior of the segmentations empirically behaves
as if the weights were i.i.d. This practical behavior might be
explained by Proposition 5, which applies to arbitrary (e.g.,
non-independent) random variables.

Figure 6 characterizes the response of the algorithm to
noise. In this experiment, an image consisting of two nested
spirals was seeded with one seed in each spiral and background
seeds placed in the center (outside the spirals). Increasing
amounts of additive noise was then introduced into the image
and the response of the algorithm was tracked. For each
noise level, one hundred experiments were run in which the
corrupted image was generated and the results were recorded.
Figure 6 shows three images for each noise level: 1) A
representative corrupted image, 2) The “average” segmentation
obtained from application of the algorithm, 3) The segmenta-
tion variability. An “average” segmentation was calculated by
assigning the pixel to the label for which it was most often
assigned over the one hundred trials. Segmentation variability
of a pixel was measured by calculating the percentage of the
trials for which the pixel was assigned the label from the
“average” segmentation, with high percentage mapped to high
intensity (white) and low percentage mapped to low intensity
(black).

C. Ambiguous unseeded regions

The analytical properties of the random walker algorithm
may be used to examine its behavior in deciding ambiguous
cases in which the number of piecewise constant regions
exceeds the number of seed/label groups (i.e., unseeded
piecewise constant regions must be each assigned a label).
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(a) Original image

(b) Original segmentation

Fig. 6. This figure shows the characteristic response of the algorithm to noise. (a) An image consisting of two nested spirals was seeded with one seed in
each spiral and two background seeds in the center (outside the spirals). (b) The initial (correct) segmentation. Increasing amounts of additive noise were then
introduced into the image and the response of the algorithm was tracked. For each noise level, one hundred experiments wererun in which the corrupted
image was generated and the results were recorded. Top: A representative corrupted image, Middle: The “average” segmentation obtained from application
of the algorithm, Bottom: The segmentation variability. An “average” segmentation was calculated by assigning the pixel tothe label for which it was most
often assigned over the one hundred trials. Segmentation variability of a pixel was measured by calculating the percentage of the trials for which the pixel
was assigned the label from the “average” segmentation, withhigh percentage mapped to high intensity (white) and low percentage mapped to low intensity
(black).

(a) (b) (c)

(d) (e) (f)

Fig. 7. This figure shows how ambiguous, unseeded regions are assigned to neighboring regions. (a,d) If the ambiguous region shares more surface area with
one region, it is assigned to that region. (b,e) If the ambiguous region is closer in intensity to a neighboring region, it is assigned to that region. (c,f) If the
ambiguous region is precisely centered between two regions with respect to both surface area and intensity, that region is divided in half. If more ambiguous
regions are present (in a piecewise constant image), the ambiguous region will have the average probability of its neighbors, weighted by shared surface area
and intensity difference.
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Fig. 8. Examples of segmentations on medical and non-medical images. We stress that the edge weights are based upon intensity differences alone, although
more advanced intensity/texture analysis could be used in a particular problem domain. The thick, gray lines (chosen to maximize contrast) represent the seed
points and the thick black lines represent the segment boundaries. Note that the processed images were whitened in order toaccentuate the seeds and the
segmentation boundary. The same parameter value (β = 900) and 4-connected lattice topology were used for all segmentations.

In the case where no piecewise constant region has multi-
ple seed/label groups, we may make the simplifying (and
reasonable, e.g., Figure 2) assumption that all pixels in a
piecewise constant region may be treated as having the same
potential/probability in the solution to (8). By the mean-value
property of harmonic functions, the potential/probability inside
an unseeded region will be the average of its neighboring
regions, weighted by the contrast between the regions and the
level of shared surface area. Therefore, an ambiguous region
that shares an equal surface area with two seeded regions will
be assigned to the region for which it has a lower contrast.
However, if an ambiguous region has the same contrast with
two seeded regions, it will be assigned to the seeded region
with which it shares a greater boundary. If the contrast and
the shared surface area of an ambiguous region with two
seeded regions are equal, the simplifying assumption of an
equipotential within the region breaks down. In such a case,
the ambiguous region would be divided in half with respect to
the two labels. Figure 7 illustrates the behavior of the random
walker algorithm in these three scenarios.

VI. A LGORITHMIC RESULTS

A. Segmentation of real images

Figure 8 shows the segmentation results on several med-
ical and non-medical images. Only grayscale images were
considered here for ease of publication clarity, but color
images could be easily handled by modifying (1) to reflect
color changes instead of intensity changes. The images and
seeds were chosen to demonstrate the general applicabilityof
the interactive segmentation approach on objects of varying
uniformity, size, shape, and contrast. In each segmentation, the
value of the one free parameter,β in (1), was kept constant,

despite the different characteristics of the images. Figure 9
shows the results of applying the segmentation algorithm toa
3D cardiac CT dataset.

We note that a systematic study of the sensitivity of the
segmentation to the seed locations/quantities was undertaken
in a recent conference paper [64]. The overall result of
this study was that the segmentation results were generally
stable to perturbations of the seed locations/quantities.In-
tuitively, perturbations had a greater effect when the image
“seemed difficult” to segment (e.g., the image included a
large amount of noise and/or had missing or low-contrast
boundaries) and showed a lesser effect when the segmentation
task “seemed straightforward” to segment (i.e., the image
exhibited greater conformity to the piecewise constant model).
However, even for images that “seemed difficult” to segment,
the algorithm exhibited generally stable behavior to seed
locations/quantities.

VII. C ONCLUSION

We have presented a novel algorithm for general image
segmentation based on a small set of pre-labeled pixels. These
pre-labeled pixels may be given either interactively or gen-
erated automatically for a particular purpose. The algorithm
functions by assigning each unseeded pixel to the label of
the seed point that a random walker starting from that pixel
would be most likely to reach first, given that it is biased
to avoid crossing object boundaries (i.e., intensity gradients).
Since the algorithm is formulated on a general graph, and
produces segmentations based on the separation of quantities
defined at the nodes (i.e., potentials), the graph (lattice)may
represent any dimension or topology.

We have demonstrated this approach on real images and
shown that it provides a unique, quality, solution that is robust
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(a) Original cardiac CT volume

(b) Segmented aorta

Fig. 9. Segmentation on a 3D, 6-connected, lattice without any modification
of the algorithm. Seeds were placed on a single slice, consisting of a mark
inside the aorta and a ring of background seeds around the outside. a)
Original cardiac CT volume, b) Segmentation of the aorta is shown in high-
intensity pixels with the foreground/background seeds shown in black and
white respectively.

to weak object boundaries and that the solution respects the
user’s pre-labeling choices. Furthermore, there is only a single
free parameter,β in (1), and all of the segmentations shown
in this paper were produced with the same choice of that
parameter. Of course, this approach could also be combined
with pre-filters (e.g., median) or post-filters (e.g., clustering the
probabilities) to produce enhanced, problem-specific results.
Finally, the algorithm simply requires solution to a sparse,
symmetric, positive-definite system of equations, which is
straightforward to implement and performs efficiently. Ad-
ditionally, interactive editing of the segmentation generally
results in even faster computation time, since the previous
solution may be used as an initial solution for an iterative
matrix solver.

The connections between random walks, combinatorial
potential theory, trees and electric circuits allowed us to
prove that the segments are guaranteed to be connected (i.e.,
unfragmented), and that noise robustness may be expected.
Furthermore, the direct correspondence with analog electric
circuits opens the possibility for a hardware (e.g., VLSI)
implementation of the algorithm, where the physics of the
circuit perform the same “computation” as the standard CPU,

except at the extremely fast speed of the physical world.
Finally, since our variational problem is formulated on a graph,
there are no concerns about discretization errors or variations
in implementation that sometimes cause problems for other
variational approaches.

Future work will concentrate on a specialty solver, user
validation, the use of prior information in the segmentation and
leveraging the theoretical results to produce a more effective
weighting function.
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