
www.elsevier.com/locate/ynimg
Technical Note
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Purpose: To automatically segment multiple sclerosis (MS) lesions into

three subtypes (i.e., enhancing lesions, T1 ‘‘black holes’’, T2 hyperin-

tense lesions).

Materials and methods: Proton density-, T2- and contrast-enhanced

T1-weighted brain images of 12 MR scans were pre-processed through

intracranial cavity (IC) extraction, inhomogeneity correction and

intensity normalization. Intensity-based statistical k-nearest neighbor

(k-NN) classification was combined with template-driven segmentation

and partial volume artifact correction (TDS+) for segmentation of MS

lesions subtypes and brain tissue compartments. Operator-supervised

tissue sampling and parameter calibration were performed on 2

randomly selected scans and were applied automatically to the

remaining 10 scans. Results from this three-channel TDS+ (3ch-TDS+)

were compared to those from a previously validated two-channel TDS+

(2ch-TDS+) method. The results of both the 3ch-TDS+ and 2ch-TDS+

were also compared to manual segmentation performed by experts.

Results: Intra-class correlation coefficients (ICC) of 3ch-TDS+ for all

three subtypes of lesions were higher (ICC between 0.95 and 0.96) than that

of 2ch-TDS+ for T2 lesions (ICC = 0.82). The 3ch-TDS+ also identified the

three lesion subtypes with high specificity (98.7–99.9%) and accuracy

(98.5–99.9%). Sensitivity of 3ch-TDS+ for T2 lesions was 16% higher than

with 2ch-TDS+. Enhancing lesions were segmented with the best sensitivity

(81.9%). ‘‘Black holes’’ were segmented with the least sensitivity (62.3%).

Conclusion: 3ch-TDS+ is a promising method for automated segmen-

tation of MS lesion subtypes.
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Introduction

Multiple sclerosis (MS) lesions undergo a complex evolution,

characterized by initial breakdown of the blood–brain barrier,

accompanied by demyelination, inflammation, axonal damage and,

in later stages, by reparatory processes such as astrocytosis and

limited remyelination (Guttmann et al., 1995; Bruck et al., 2002;

Barkhof and van Walderveen, 1999). Although the specificity of

MRI has not permitted complete discrimination of these pathologic

components, three main groups of lesions can be identified with

conventional MR imaging. These include acute lesions demon-

strating blood–brain barrier leakage on contrast-enhanced MR

imaging (enhancing lesions), chronic severely damaged lesions

that are hypointense, so-called ‘‘black holes’’ on T1-weighted MR

images (T1WI) and hyperintense T2 lesions (T2 lesions) on T2-

weighted MRI (T2WI).

Classification of MS lesions into these subtypes has achieved

wide acceptance and shown good clinical utility in clinical trials

(Barkhof et al., 2001; Paty and Li, 2001). The presence of

enhancing lesions is currently the most sensitive index of disease

activity in MS (Miller et al., 1993). Changes in both number and

volume of T2 and enhancing lesions are taken as outcome

measurements in drug trials (Molyneux et al., 1998). ‘‘Black

holes’’ have also been used as surrogate markers of destructive

pathology in clinical studies (Filippi et al., 2001). ‘‘Black holes’’ on

T1WI have been correlated with axonal loss in postmortem MRI

studies (Barkhof et al., 1998; Van Walderveen et al., 1998) as well

as with clinical severity measures in a clinical setting (Truyen et al.,

1996).

Over the years, automated methods of T2 lesion segmentation

have been studied intensively and have become established

methods for the analysis of disease expression on MRI in the
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context of clinical, cognitive and immunological aspects of MS

(Warfield et al., 2000; Kikinis et al., 1999; Guttmann et al., 1999;

Zijdenbos et al., 2002; Van Leemput et al., 2001; Weiner et al.,

2000; Wei et al., 2002). In contrast, only few technical reports have

described computer-assisted segmentation methods targeting en-

hancing lesions (Samarasekera et al., 1997; Bedell and Narayana,

1998; He and Narayana, 2002). In addition, manual delineation and

human-supervised semi-automated segmentation, such as local

thresholding (Rovaris et al., 1997; Filippi et al., 1998) and seed

growing (Filippi et al., 2001), have been used for the segmentation

of ‘‘black holes’’, and these methods may subject to operator bias

introduced by human interaction.

In previous work, we developed and validated automated

template-driven segmentation and combined it with a heuristic

partial volume correction algorithm (TDS+) (Warfield et al., 2000;

Wei et al., 2002) to identify and outline T2 lesions. In this study,

we have developed an automated three-channel TDS (3ch-TDS+)

MRI segmentation pipeline for the identification of MS lesion

subtypes. We compare the new 3ch-TDS+ method’s sensitivity,

specificity and accuracy for identifying and measuring T2 lesion

burden to that derived using 2ch-TDS+. Furthermore, we assess the

sensitivity, specificity and accuracy of 3ch-TDS+ for Gd-enhancing

lesions and T1 ‘‘black holes’’ with respect to manual segmentation.
Materials and methods

MRI acquisition

Twelve MRI scans were obtained from six patients with

clinically defined relapsing-remitting (RR) MS at two time points

with duration of approximately 5.6 months. The patients were

between 27 and 52 years old (mean age 40.5 years) and had EDSS
Fig. 1. Flowchart for the automated three-channel segmentation. Dashed boxes in

Abbreviations: 3ch-MRI = three-channel MRI consisted of proton density-weigh

intracranial cavity mask extraction; TDS+ = template-driven segmentation plus p
scores between 1 and 6 (mean EDSS score was 2.58 at the first and

3.92 at the second scan). Disease duration was between 5.4 and

11.1 years.

Whole-brain MR imaging was obtained on a 1.5-T MR system

(Siemens, Erlangen Germany). After patients were given an

intravenous bolus injection of 0.2 mmol/kg of gadolinium-DTPA,

PDWI and T2WI were acquired with a conventional dual spin-echo

sequence (TR/TE1/TE2: 2500 ms/30 ms/80 ms). Post-contrast T1-

weighted spin-echo images (contrast T1WI) TR/TE 625 ms/12 ms

were acquired after a 20-min post-injection delay. The head was

imaged with 46 contiguous 3-mm-thick axial sections. The nominal

voxel size was 0.9765 � 0.9765 � 3 mm3. Consent was obtained

after the nature of the procedure had been fully explained.

Image processing

MRI data were transferred to a Sun Ultra 80 workstation (Sun

Microsystems, Inc.). The combined strategies of injection of

contrast agent before the scanning of dual-echo and contrast

T1WI and careful head constraint limited the likelihood of head

movement between the two sequences. We did not observe head

displacement between dual-echo and contrast T1WI in this group

of subjects. PDWI, T2WI and contrast T1WI were natively well

aligned. No post-acquisition image registration was applied. The

image processing procedures are summarized by the flow chart in

Fig. 1 and described in detail hereafter.

Intracranial cavity (IC) identification

Masks of the IC were generated automatically from the PDWI

and T2WI. This IC extraction procedure combined non-parametric

intensity-based statistical (Parzen window) segmentation and

automated morphological operations (Kikinis et al., 1992).
dicate procedures performed only once and then used for all the subjects.

ted image, T2-weighted image and post-contrast T1-weighted image; IC =

artial volume artifact correction.
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Preprocessing using EM segmentation (Wells et al., 1996) for

inhomogeneity correction before the IC extraction procedure (Wu

et al., 2001) obviated the need for per-case expert-supervised

Parzen window tissue sampling and significantly improved the

automation of the IC identification for this group of brain images.

After the human-supervised Parzen window tissue sampling was

calibrated one time on two test scans, the Parzen window classifier

was saved for automated segmentation of ICs on the remaining 10

scans. Occasionally, minimal operator manual editing was con-

ducted on the resulting IC masks.

The IC masks were superimposed onto the PDWI, T2WI and

contrast T1WI MR images to exclude extracranial tissues, skull

and large vessels on the brain surface.

Intensity correction

After the IC masking procedure described in the previous

section, EM segmentation was applied to the IC portion of the

PDWI, T2WI and contrast T1WI for inhomogeneity correction and

intensity normalization. The EM segmenter has a component that

compensates for intra- and inter-scan intensity inhomogeneities

and normalizes the observed scan intensities (Wells et al., 1996;

Wu et al., 2001). Studies have shown the usefulness of applying

inhomogeneity correction exclusively to the IC portion of MR

images (Johnston et al., 1996; Mackiewich, 1995).

Statistical intensity-based k-nearest neighbor segmentation (k-NN)

Non-parametric k-nearest neighbor (k-NN) segmentation was

chosen for the initial image intensity-based statistical classification

of the intensity corrected and IC masked three-channel image data

into tissue classes. The k-NN rule is effective for multichannel MR

data and particularly suitable for this three-channel segmentation.

Previous studies also show that post-probability k-NN segmentation

is more accurate and stable than segmentation approaches based on a

priori statistical assumptions (Clarke et al., 1993; Vinitski et al.,

1997). Decoupling the image intensity correction step from the

statistical classification ofmultichannel data (as opposed to using the

EM approach of simultaneously estimating tissue class assignment

and bias field) has the advantage of reducing the complexity of the

interactive calibration procedure by limiting the number of

parameters (and their permutations) to be set for each step.

The k-NN segmentation was developed based on Friedman’s k-

NN algorithm (Friedman et al., 1975; Warfield, 1996). Two major

procedures were involved in this process: the one time operator-

supervised tissue sampling and the automated classification. Two

randomly chosen ‘‘calibration’’ scans were used to build a master

classifier and tune the algorithm’s parameters. The stored master

classifier and parameters were then applied for the automated

segmentation of the remaining 10 scans. An experienced operator

sampled approximately 20 pixels for each of seven categories

(Class 1: T1 hyperintense enhancing lesions; Class 2: T1

hypointense, cerebrospinal fluid (CSF)-like ‘‘black holes’’, note

the ‘‘black holes’’ with similar signal intensity as gray matter and

slightly lower than white matter are not included in Class 2 during

this step; Class 3: T1 isointense but T2WI and PDWI hyperintense

lesions (‘‘other T2 lesions’’); Class 4: normal appearing white

matter; Class 5: gray matter; Class 6: CSF; Class 7: background)

by simultaneously viewing spatially corresponding images from

the three different contrast channels of the two calibration scans.

All of the sample points were used to construct a master classifier
on the basis of the k-NN rules. The operator was able to

interactively select k value and the tissue training prototypes to

maximize the classification accuracy on the basis of classification

results. After the expert was satisfied with the classification on the

two calibration scans, the classifier was saved as a master classifier.

A k value of 3 was estimated and used throughout the 10 studied

scans. The master classifier was used as a three-dimensional (three

image contrasts) table to assign each voxel within the IC to one of

the seven possible categories based on Friedman’s k-NN algorithm

in the 10 scans without further expert intervention.

To ensure proper comparison, the identical tissue sample points

were engaged in both 2ch-TDS+ and the 3ch-TDS+ processing, the

master classifier for 2ch-TDS+ was derived from the existing

master classifier for 3ch-TDS+ by removing the intensity vector

from the third channel, and keeping only the intensity vectors from

PDWI and T2WI.

Template-driven segmentation and partial volume artifact

correction (TDS+)

Significant overlap in the signal intensity distribution of different

tissue or lesion classes is present in the feature space defined by the

contrast mechanisms of the three image channels. This overlap in

feature space leads to ambiguities in assigning tissue classes and

consequent misclassifications of pixels when using a signal-based

statistical classifier such as k-NN.

TDS+ (Warfield et al., 1995; Guttmann et al., 2000; Wei et al.,

2002) was adapted and applied to correct misclassifications on k-

NN segmented images and thereby improve the classification of

MS lesion subtypes by providing a priori anatomical probabilities

(Figs. 2 and 3). TDS+ employs a deformable digital anatomical

atlas to extract white matter masks for each individual brain using

non-linear registration. Based on the assumption that white matter

lesions (T2 lesions, enhancing lesions, or T1 ‘‘Black Holes’’) are

only within white matter regions, misclassified lesions outside the

white matter masks were relabeled; within white matter masks,

abnormal white matter areas misclassified as gray matter by k-NN

were also relabeled as lesions (Warfield et al., 1995) (Figs. 2 and

3). The method (Warfield et al., 2000) makes use of individual-

ization of an anatomical atlas to compensate for the MRI signal

intensity overlap of different tissue types. The atlas provides spatial

context (a priori probabilities of tissue class assignment), which

enables improved classification when different tissue classes have

similar or overlapping MRI signal intensities but different locations

in space. The amount of overlap of signal intensity can be

increased by decreased SNR. To perform well in the presence of

signal intensity overlap, we devised the joint signal and spatial

context probability density function estimation procedure. The

action of the probability density function estimation procedure

converges to the optimal estimate of tissue class distribution

accounting for both signal intensity and spatial location. Partial

volume effects near ventricles and subarachnoid CSF were

corrected relying on morphological operators (Wei et al., 2002).

Refining ‘‘black holes’’ segmentation

‘‘Black holes’’ (Class 2) identified by the above-described

procedure do not include areas of the white matter that are

hypointense with respect to healthy white matter but isointense with

respect to grey matter. Therefore, in a second step the classification

of ‘‘black holes’’ is refined to include subtly hypointense signal. A



Fig. 2. Segmentation and validation of T2 and Gd-enhancing lesions. One axial section of an MS patient’s brain and segmentation results are shown: proton

density-weighted image (a), T2-weighted image (b), contrast-enhanced T1-weighted image (c), tissue classification label maps after k-NN segmentation (d) and

after TDS+ (e). Tissue classes in panels d and e are color coded as follows: red, enhancing lesion; dark blue, ‘‘black holes’’; yellow, T2 lesion; light blue, CSF;

gray, gray matter; green, white matter; and black, background. Three types of misclassification are shown: false-positive enhancing lesions, for example, due to

choroid plexus and other vascular enhancement (short white arrows), false-negative misclassifications of subtle lesions as grey matter inside the white matter

(short black arrows), false-positive misclassification of grey matter as white matter ‘‘black holes’’ on the brain surface (long white arrows). Note that

misclassifications have been largely eliminated after 3ch-TDS+ compared to the results using k-NN alone. Identification of enhancing (red) and non-enhancing

T2 lesions by 3ch-TDS+ (f) and manual outlining by an expert (g) were compared using overlap analysis for enhancing lesions (h) and T2-lesions (i). Color

code in panel h: red, true-positive enhancing lesions; white, false-positive enhancing lesions; grey, true-negative enhancing lesions. Color code in panel i:

yellow, true-positive total T2 lesions; white, false-positive total T2 lesions; grey, true-negative total T2 lesions; purple, false-negative total T2 lesions.
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more sensitive k-NN classifier is obtained by adding training points

from mildly T1-hypointense WM regions and is selectively applied

to lesion classes (Classes 1, 2 and 3). One master classifier for this

second segmentation step was generated and stored for k-NN

segmentation of all the subjects. Fig. 3e shows the refined ‘‘black

holes’’ segmentation.

Statistical methods

Volumetric as well as overlap analyses were performed to

compare overall lesion volumes identified using either 3ch-TDS+

or 2ch-TDS+ to expert outlines performed on proton-density-

weighted MR images covering the entire brain. Similarly,
volumetric analysis was used to compare automated and manual

lesion burden estimates for lesion subtypes and overlap analysis

was used to assess sensitivity, specificity and accuracy of 3ch-

TDS+ for contrast-enhanced lesions and T1 ‘‘black holes’’ outlined

by experts on contrast T1WI (see Figs. 2 and 3). True-positive

(TP), true-negative (TN), false-positive (FP) and false-negative

(FN) pixels were assessed with a spatial-overlap method imple-

mented in-house using MATLAB 12.1 (MathWorks). TP pixels

were defined as the overlapping area of the results of 3ch-TDS+ or

2ch-TDS+ and expert outlines; TN pixels were defined as all IC

pixels not outlined as lesions by the experts; FP pixels were those

detected by 3ch-TDS+ or 2ch-TDS+, respectively, but not by

human experts; FN pixels were those identified by the experts as



Fig. 3. Segmentation and validation of ‘‘black holes’’ identified by 3ch-TDS+. ‘‘Black holes’’ appear hyperintense on both proton density-weighted (a) and T2-

weighted images (b), while they appear hypointense with a spectrum of intensities below that of normal appearing white matter on the contrast-enhanced T1-

weighted image (c). Results of k-NN segmentation (d) and TDS+ (e) are shown with following color coding: red, enhancing lesions; dark blue, ‘‘black holes’’;

yellow, other T2 lesions that are not enhancing or ‘‘black holes’’ on post-contrast T1-weighted images; light blue, CSF; gray, gray matter; green, white matter;

and black, background. Results of 3ch-TDS+ of ‘‘black holes’’ (dark blue in panel f) are compared with manual segmentation of ‘‘black holes’’ by an expert

(dark blue in panel g) using overlap analysis (h). Color coding for the overlap analysis in panel h: dark blue, true positive; white, false positive; purple, false

negative; gray, true negative.
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lesions but not by 3ch-TDS+ or 2ch-TDS+. Overlap analysis

accounts not only for volumetric, but also for spatial accuracy. The

sensitivity, specificity and accuracy of enhancing lesion, ‘‘black

holes’’ and total T2 lesion identification using 3ch-TDS+ or total T2

lesion identification for 2ch-TDS+ was calculated from TP, TN, FP

and FN, as customary (Zou et al., 2002; Anbeek et al., 2004):

Sensitivity = True-positive fraction = TP / (TP + FN); specificity =

True-negative fraction = TN / (TN + FP); Accuracy = Percentage

agreement = (TN + TP) / (TN + TP + FN + FP).

The relationship between volumetry derived through automat-

ed segmentation (2ch-TDS+ and 3ch-TDS+) and manual segmen-

tation was studied with correlation analysis (R2 correlation

coefficients and intra-class correlation coefficients). The volu-

metric comparison of lesion volume between the automated

segmentation and the gold standard were performed to evaluate

the correlations using scatter plots (Matlab 6.5.1, MathWorks)

and to assess the agreement and reliability using intra-class

correlation coefficient (ICC) (SPSS 12.0; Chicago, IL) as

previously reported by others (Admiraal-Behloul et al., 2005).

Similar analysis was performed to compare volumetric change

detection between automated segmentation methods and expert

outlining. Pairs of scans were available to assess T2 lesion

volume change over time (average inter-scan interval: 5.6

months) with 2ch-TDS+, 3ch-TDS+ and manual outlining. The

relationship between lesion volumes and measures of sensitivity,
specificity and accuracy was evaluated with scatter plots and

linear regression analysis.

For an objective evaluation, the manual outlining was performed

at another institute where the experts were blinded to the 3ch-TDS+

and the 2ch-TDS+. T2 lesions were traced on nine scans with

PDWI; enhancing lesions and ‘‘black holes’’ were outlined on

contrast T1WI in four and six scans, respectively. A total of 772 T2

lesions (confluent lesions were considered a single lesion), 51

contrast-enhancing lesions and 120 T1 ‘‘black holes’’ were

identified and manually outlined.

Results

Figs. 2 and 3 illustrate typical results of the 3ch-TDS+ applied

to T2WI, PDWI and contrast T1WI and compare them to the

results of manual outlining by multiple experts. k-NN segmenta-

tion captured most of the lesions; however, three types of

misclassification were evident: misclassification of choroid plexus

and other enhancing vascular structures as enhancing lesions,

misclassifications of subtle signal abnormalities of the white

matter as grey matter and misclassification of pixels on the cortical

surface as white matter lesions, in particular as T1 ‘‘black holes’’

(Figs. 2d and 3d). A significant portion of the misclassifications

were corrected for both the enhancing lesions (Fig. 2e) and the

black holes (Fig. 3e) by applying the TDS+ strategy. 3ch-TDS+
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showed a high degree of similarity to the manual segmentation

performed by experts (Figs. 2f, g, and 3f, g).

Figs. 4 and 5 provide a side-by-side comparison of 2ch-TDS+

and 3ch-TDS+. The addition of contrast T1WI as a third channel

appeared to improve the accuracy of detection of white matter

lesions and reduce false-positive misclassifications of cortical

regions as white matter lesions (Fig. 4). Notably, 3ch-TDS+ also

improved the classification of gray matter, white matter and CSF at

the upper convexity of the brain, an area that is error prone for 2ch-

TDS+ (Fig. 5).

Significant positive correlations were found between lesion

volume of the automated segmentations and the manual segmen-

tation (Fig. 6). We found high agreement (as measured by ICC)

between the manual segmentation and both the 2ch-TDS+ and 3ch-

TDS+ (ICC: 0.82–0.96). The volumetric agreement between

automated and manual segmentations was higher for all lesion

subtypes using 3ch-TDS+ (ICCs all above 0.95) than that for T2

lesion load using 2ch-TDS+ (ICC = 0.82). Among the three

subtypes, the segmentation of T2 lesions using 3ch-TDS+ had the

best agreement to the manual segmentation (ICC = 0.96).

The overlap analysis, a more stringent assessment of the quality

of assessment of both lesion size and special location, showed that

3ch-TDS+ identified the three lesion subtypes with high specificity

(98.7–99.9%) and accuracy (98.5–99.9%) with respect to the gold

standard. It also indicated an improved sensitivity of 16% for

segmentation of T2 lesions compared to 2ch-TDS+ (see Table 1).

Positive correlations (Fig. 7) were found between the magnitude of

T2 lesion load in brain white matter and the sensitivity and

accuracy of the T2 lesion segmentations using 2ch-TDS+

[significant for accuracy and trending towards significance (P =

0.06) for sensitivity] and 3ch-TDS+ (significant for both sensitivity

and accuracy) (Table 2). These findings are consistent with

previous studies (Anbeek et al., 2004; Admiraal-Behloul et al.,

2005) suggesting that better sensitivity and accuracy were

associated with bigger T2 lesion loads. The specificity and accuracy

in the identification of ‘‘black holes’’ were also associated with the

lesion volume of ‘‘black holes’’.

Because segmentation methods are often used in longitudinal

studies, we also assessed the agreement between estimates of lesion

volume change by automated segmentation compared with the

manual ‘‘gold standard’’. The correlation and the agreement to the

gold standard of lesion volume change over time were higher with

3ch-TDS+ (R2 = 0.715; ICC = 0.644) than with 2ch-TDS+ (R2 =

0.257; ICC = 0.499) (Fig. 8).
Fig. 4. T2 lesion segmentation with 2ch-TDS+ and 3ch-TDS+. Proton density-w

semiovale showing multiple hyperintense oval shaped plaque-like and punctate lesi

the same section. The results of 3ch-TDS+ demonstrate less false-negative (white
Discussion

We have developed an algorithm that provides quantitative

volumetric measurements of three types of MS lesions, as well as

segmentation of gray matter, white matter and CSF simultaneously.

Due to the complex misclassifications encountered, the studies of

enhancing lesions are very limited (Samarasekera et al., 1997;

Bedell and Narayana, 1998; He and Narayana, 2002). A fuzzy

connectivity algorithm has been used to remove enhancing blood

vessels (Samarasekera et al., 1997), and T2 lesion segmentation has

been utilized to constrain the enhancing lesion segmentation

(Bedell and Narayana, 1998; He and Narayana, 2002). A particular

MRI sequence has also been used to suppress enhancement within

vessels (Bedell and Narayana, 1998). Seed-growing, thresholding-

based techniques (Filippi et al., 2001) have been used for

segmentation of ‘‘black holes’’, which however is susceptible to

variations by seed selection and threshold settings (Filippi et al.,

1996). This investigation utilized a novel TDS+ strategy making use

of a deformable digital brain atlas to identify the white matter tissue

compartment and eliminate the confounding misclassifications.

TDS+ identified three types of MS lesions on intensity

normalized MR images obtained with an MRI acquisition protocol,

which included standard dual-echo and contrast T1WI, but was

designed to maximize the conspicuity of enhancing lesions by

injecting double the standard dose of Gd-DTPA and lengthening

the interval between contrast agent injection and post contrast

T1WI to 20 min. Currently, clinically used protocols often include

a shorter post-injection delay of 5 min. While TDS+ is adaptable to

a multitude of MRI acquisition protocols, the specific impact of

lesser contrast-to-noise between enhancing lesions and non-

enhancing WM needs to be assessed and validated on a protocol

by protocol basis. Although MRI acquisition and analysis are

traditionally discussed as independent steps in the morphometric

assessment of healthy and pathological brain structures, they are

intimately intertwined and constitute an integrated measurement

system. Variations in either acquisition or analysis procedures

(including MRI scanner and protocol variablilities in multicenter

studies and clinical treatment trials) are likely to modify sensitivity,

accuracy and specificity with respect to structures of interest and

require careful ad hoc validation. Nevertheless, the presented

results combined with our previous work with other MRI

acquisition protocols on multiple MRI scanners (Guttmann et al.,

1999; Wei et al., 2002) suggest that TDS+ is a highly adaptable

analytical approach suitable for use in multicenter clinical trials,
eighted image (a) and T2-weighted image (b) at the level of the centrum

ons in the white matter of an MS patient. 2ch-TDS+ (c) and 3ch-TDS+ (d) of

arrows) and false-positive (black arrows) T2 lesions.



Fig. 5. Improved segmentation of the brain’s upper convexity with 3ch-TDS+. Four consecutive axial sections of the upper convexity of the brain are shown:

proton density-weighted images (column one), T2-weighted images (column two) and contrast-enhanced T1-weighted images (column three), as well as results

of 2ch-TDS+ (fourth column) and 3ch-TDS+ (fifth column) are shown. Misclassified regions of gray matter (long arrow) and CSF (short arrows) observed in

2ch-TDS+ were segmented more accurately by 3ch-TDS+.
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provided adequate statistical modeling of potential sources of

variability such as differing SNR and CNR from scanner to

scanner.

The EM component of the TDS+ pipeline has previously been

shown to significantly diminish scan-to-scan variability of seg-

mentation results, and normalized ratios of lesions to total white

matter appear to confer added robustness when comparing results
obtained with a same MRI acquisition protocol on different

scanners (Guttmann et al., 1999). The addition of anatomical

knowledge through the template-driven component of TDS+ has

been previously shown to improve the accuracy of lesion detection

compared with expert outlining (Wei et al., 2002).

Our current TDS+ procedure does not include a spatial model

of the ventricles. Partial volume artifacts at the interface of the



Fig. 6. Scatter plots of lesion volume measurements illustrate the strong positive correlation between manual and automated segmentation (2ch-TDS+ and

3ch-TDS+). Compared to the 2ch-TDS+, the 3ch-TDS+ has stronger correlation and higher agreement with manual segmentation.
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lateral ventricles and white matter masks can introduce misclassi-

fications of enhanced choroid plexus as enhancing lesions even

after TDS refinement. In this study, we made use of morphologic

operators and connectivity principles to reduce this misclassifica-

tion. In the future, we expect that the integration of explicit

anatomical models of ventricles may reduce this source of

misclassification.

The reproducibility of 3ch-TDS+ was not studied due to the

impracticality of administering contrast agent twice within a short

interval. Studies of other automated methods have shown that inter-

scan variability within patients is mainly due to resampling errors
Table 1

Overlap analysis of automated segmentation with respect to manual

segmentation

Segmentation

methods

Type of lesions Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

2ch-TDS+ T2 lesions 60.0 99.1 98.8

3ch-TDS+ T2 lesions 70.0 98.7 98.5

Enhancing lesions 75.2 99.9 99.9

‘‘Black holes’’ 62.3 99.7 99.7
from repositioning (Guttmann et al., 1999; Gawne-Cain et al.,

1996). In a scan–rescan validation study, 2ch-TDS+ demonstrated

good reproducibility with inter-scan coefficients of variation for T2

lesion volume averaging 4.98% in 20 MS patients that had

undergone MRI exams twice within 30 min (Wei et al., 2002,

2004). The accuracy of pairwise change in T2 lesion volume over

time with respect to the results of expert outlining was higher for

3ch-TDS+ than for 2ch-TDS+ (Fig. 8). Systematic measurement

errors tend to cancel out when subtracting repeated measures from

an individual patient. This finding, suggests that 3ch-TDS+ is more

robust on repeated measures, than 2ch-TDS+. Although we were not

able to perform scan–rescan experiments within 30 min using

contrast-enhanced MRI (the contrast agent from the first scan would

not be completely cleared from the system within such a short

interval and would confound the second MRI assessment), we

expect that resampling errors, which are main contributors to scan–

rescan discrepancy, would be comparable for enhancing lesions and

‘‘black holes’’ (Guttmann et al., 1999; Wei et al., 2002, 2004). The

preliminary finding of improved accuracy of change detection using

3ch-TDS+ vs. 2ch-TDS+ suggests that 3ch-TDS+ is better suited for

longitudinal studies, such as clinical trials of novel treatments.

Future studies of reproducibility could be performed using a



Fig. 7. Relationship between sensitivity, specificity and accuracy of automated segmentation and lesion burden. The scatter plots show higher sensitivity of

automated segmentation above T2 lesion load of 10 cc. Lines represent results of linear regression analysis.
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modified protocol omitting contrast enhancement. However, the

differences in image contrast between enhanced and unenhanced

T1WI are likely to have an important impact on the performance of

3ch-TDS+, so that results with one protocol are not undisputably

comparable with results from the other. A second option would be to

wait 48 h between scans to ensure adequate clearance of the contrast

agent between the two measures, even though there is a realistic

chance that real biological change (e.g., new enhancing lesions or

change in strength of enhancement of existing lesions) would occur

in that interval.

It should be noted that there is no true gold standard for

studying segmentation of brain lesions. We used expert manual

segmentation results as the practical gold standard in order to

assess the accuracy of MS lesion segmentation, similarly to what

has been done in previous work (Wei et al., 2002; Ashton et al.,

2003; Anbeek et al., 2004; Admiraal-Behloul et al., 2005).
Table 2

Lesion load dependency of sensitivity, specificity and accuracy of

automated segmentation

Segmentation methods Type of lesions R2 SE R2 SP R2 AC

2ch-TDS+ T2 lesions 0.63 0.08 0.72*

3ch-TDS+ T2 lesions 0.80* 0.53 0.87**

Enhancing lesions 0.21 0.84 0.90

‘‘Black holes’’ 0.10 0.96** 0.96**

R2 = R2 correlation coefficient; SE = sensitivity; SP = specificity; AC =

accuracy.
* P < 0.05.
** P < 0.01.
Our evaluation indicated a high volumetric agreement between

the automated 3ch-TDS+, 2ch-TDS+ and the manual segmenta-

tion. We also used a strict pixel-by-pixel accuracy estimation that

takes into account not only volumetric agreement between the

automated segmentation and manual segmentation but also their

spatial overlap. Our results indicate that, compared with 2ch-

TDS+, 3ch-TDS+ has higher sensitivity for detecting T2 lesions

while maintaining similar accuracy and specificity. We noticed

that lesion volume estimates were systematically higher in the

3ch-TDS+ than the manual segmentation. This systematic bias is

likely due to different thresholds set in the two different

segmentation approaches because the calibration of the automated

approach was set by a different expert than those outlining the

lesions in order to ensure objective validation. Consensus

between the criteria used by the tissue training process and the

manual segmentation, or use of the experts’ manual segmentation

as training points can further reduce the systematic variability

(Anbeek et al., 2004). Sensitivity, specificity and accuracy, as

well as volumetric measures of agreement for the lesion subtypes

(enhancing lesions and ‘‘black holes’’), were higher for 3ch-TDS+

than corresponding metrics for T2 lesions using 2ch-TDS+. We

therefore conclude that overall 3ch-TDS+ is superior to 2ch-

TDS+.

Studies have shown that the sensitivity of segmentation

algorithms can vary as a function of lesion load and have ascribed

this relationship to small errors (in absolute volume) having a

relatively larger effect with respect to sensitivity when the total

lesion load the error refers to is also small. We also found that

lesion load had an impact on the sensitivity of both the 2ch-TDS+



Fig. 8. Accuracy of T2 lesion change estimates. Compared to the 2ch-TDS+, the scatter plots show the improved correlation between the 3ch-TDS+ and manual

segmentation for T2 lesion volume change over time on four MS patients scanned twice (average interval = 5.6 months).
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and the 3ch-TDS+. It appeared that sensitivity increased with

increasing lesion load to stabilize above a threshold around 10 cc.

This finding is particularly important when performing power

calculations and determining overall study design for different

phenotypes and stages of MS that have different average lesion

loads. According to our findings, the presented methods would

likely demonstrate better sensitivity in secondary progressive or

advanced relapsing-remitting patients, which typically present

higher lesion loads, than in patients with early MS or clinically

isolated syndromes (CIS). In this initial investigation, the average

sensitivity, specificity and accuracy were based on MR scans from

a limited number of MS patients with a broad range of EDSS

scores and lesion load. Larger studies would be needed to better

characterize lesion load and distribution variables impacting the

sensitivity of segmentation methods.

Pre- or post-contrast T1WI have been used to identify ‘‘black

holes’’ (Miller et al., 1998; Van Waesberghe et al., 1998). We use

post-contrast T1WI to identify ‘‘black holes’’ because some

‘‘black holes’’ on pre-contrast T1WI are presented as enhancing

lesions on contrast T1WI (Van Waesberghe et al., 1998). Chronic

non-enhancing ‘‘black holes’’ are more representative of chronic

degenerative damage, as opposed to transient edematous changes

(Van Walderveen et al., 1995). ‘‘Black holes’’ and ‘‘other T2

lesions’’ are hyperintense on T2WI, and most of enhancing

lesions are hyperintense on T2WI. In rare cases, enhancing lesions

are not hyperintense on T2WI. We derived the volume of T2

lesions in the 3ch-TDS+ by combining enhancing lesions, ‘‘black

holes’’ and ‘‘other T2 lesions’’, which may also include the non-

T2 hyperintense enhancing lesions, yet this fraction should be

minimal.

In conclusion, we have developed a 3ch-TDS+ that can be used

for additional automated segmentation of subtypes of MS lesions

with improved sensitivity and high specificity and accuracy.
Acknowledgments

The authors are grateful to Mariann Polgar-Turcsanyi and

Marlieke De Vos for their assistance. The authors thank Kelly H.

Zou for consultations on statistical issues. This work was supported
in parts by a grant from the U.S. National Multiple Sclerosis

Society (RG 3574-A-1); a grant form the Dutch Foundation for MS

Research (Voorschoten, The Netherlands); grants from the National

Institutes of Health (P41 RR13218-01; R01 NS35142; AGO9675;

P01 AG0495316; and 2R44MH57200-002) and a grant from the

Foundation for Neurological Diseases.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.neuroimage.2006.04.211.
References

Admiraal-Behloul, F., van den Heuvel, D.M., Olofsen, H., van Osch, M.J.,

van der Grond, J., van Buchem, M.A., Reiber, J.H., 2005. Fully

automatic segmentation of white matter hyperintensities in MR images

of the elderly. NeuroImage 28, 607–617.

Anbeek, P., Vincken, K.L., van Osch, M.J., Bisschops, R.H., van der

Grond, J., 2004. Probabilistic segmentation of white matter lesions in

MR imaging. NeuroImage 21, 1037–1044.

Ashton, E.A., Takahashi, C., Berg, M.J., Goodman, A., Totterman, S.,

Ekholm, S., 2003. Accuracy and reproducibility of manual and

semiautomated quantification of MS lesions by MRI. J. Magn. Reson.

Imaging 17, 300–308.

Barkhof, F., van Walderveen, M., 1999. Characterization of tissue damage

in multiple sclerosis by nuclear magnetic resonance. Philos. Trans. R.

Soc. London, Ser. B Biol. Sci. 354, 1675–1686.

Barkhof, F., McGowan, J.C., van Waesberghe, J.H., Grossman, R.I., 1998.

Hypointense multiple sclerosis lesions on T1-weighted spin echo

magnetic resonance images: their contribution in understanding multi-

ple sclerosis evolution. J. Neurol., Neurosurg. Psychiatry 64, S77–S79.

Barkhof, F., van Waesberghe, J.H., Filippi, M., et al., 2001. T(1)

hypointense lesions in secondary progressive multiple sclerosis: effect

of interferon beta-1b treatment. Brain 124, 1396–1402.

Bedell, B.J., Narayana, P.A., 1998. Automatic segmentation of gadolinium-

enhanced multiple sclerosis lesions. Magn. Reson. Med. 39, 935–940.

Bruck, W., Lucchinetti, C., Lassmann, H., 2002. The pathology of primary

progressive multiple sclerosis. Mult. Scler. 8, 93–97.

Clarke, L.P., Velthuizen, R.P., Phuphanich, S., Schellenberg, J.D., Arrington,

 doi:10.1016\j.neuroimage.2006.04.211 


Y. Wu et al. / NeuroImage 32 (2006) 1205–1215 1215
J.A., Silbiger, M., 1993. MRI: stability of three supervised segmentation

techniques. Magn. Reson. Imaging 11, 95–106.

Filippi, M., Rovaris, M., Campi, A., Pereira, C., Comi, G., 1996. Semi-

automated thresholding technique for measuring lesion volumes in

multiple sclerosis: effects of the change of the threshold on the

computed lesion loads. Acta Neurol. Scand. 93, 30–34.

Filippi, M., Horsfield, M.A., Hajnal, J.V., et al., 1998. Quantitative

assessment of magnetic resonance imaging lesion load in multiple

sclerosis. J. Neurol., Neurosurg. Psychiatry 64, S88–S93.

Filippi, M., Rovaris, M., Rocca, M.A., Sormani, M.P., Wolinsky, J.S.,

Comi, G., 2001. Glatiramer acetate reduces the proportion of new MS

lesions evolving into ‘‘black holes’’. Neurology 57, 731–733.

Friedman, J.H., Baskett, F., Shustek, L.J., 1975. An algorithm for finding

nearest neighbors. IEEE Trans. Comput. C-24, 1000–1006.

Gawne-Cain, M.L., Webb, S., Tofts, P., Miller, D.H., 1996. Lesion volume

measurement in multiple sclerosis: how important is accurate reposi-

tioning? J. Magn. Reson. Imaging 6, 705–713.

Guttmann, C.R., Ahn, S.S., Hsu, L., Kikinis, R., Jolesz, F.A., 1995. The

evolution of multiple sclerosis lesions on serial MR. Am. J. Neuro-

radiol. 16, 1481–1491.

Guttmann, C.R., Kikinis, R., Anderson, M.C., et al., 1999. Quantitative

follow-up of patients with multiple sclerosis using MRI: reproducibility.

J. Magn. Reson. Imaging 9, 509–518.

Guttmann, C.R., Benson, R., Warfield, S.K., et al., 2000. White matter

abnormalities in mobility-impaired older persons. Neurology 54,

1277–1283.

He, R., Narayana, P.A., 2002. Automatic delineation of Gd enhancements

on magnetic resonance images in multiple sclerosis. Med. Phys. 29,

1536–1546.

Johnston, B., Atkins, M.S., Mackiewich, B., Anderson, M., 1996.

Segmentation of multiple sclerosis lesions in intensity corrected

multispectral MRI. IEEE Trans. Med. Imaging 15, 154–169.

Kikinis, R., Shenton, M.E., Gerig, G., 1992. Routine quantitative analysis

of brain and cerebrospinal fluid spaces with MR imaging. J. Magn.

Reson. Imaging 2, 619–629.

Kikinis, R., Guttmann, C.R., Metcalf, D., et al., 1999. Quantitative follow-

up of patients with multiple sclerosis using MRI: technical aspects.

J. Magn. Reson. Imaging 9, 519–530.

Mackiewich, B., 1995. Intracranial boundary detection and radio frequency

correction in magnetic resonance images. Master’s thesis, Simon Fraser

Univ. Computer Science Dept., Burnaby, British Columbia.

Miller, D.H., Barkhof, F., Nauta, J.J., 1993. Gadolinium enhancement

increases the sensitivity of MRI in detecting disease activity in multiple

sclerosis. Brain 116, 1077–1094.

Miller, D.H., Grossman, R.I., Reingold, S.C., McFarland, H.F., 1998. The

role of magnetic resonance techniques in understanding and managing

multiple sclerosis. Brain 121, 3–24.

Molyneux, P.D., Filippi, M., Barkhof, F., et al., 1998. Correlations between

monthly enhanced MRI lesion rate and changes in T2 lesion volume in

multiple sclerosis. Ann. Neurol. 43, 332–339.

Paty, D.W., Li, D.K., 2001. Interferon beta-lb is effective in relapsing-

remitting multiple sclerosis: II. MRI analysis results of a multicenter,

randomized, double-blind, placebo-controlled trial (1993 [classical

article]). Neurology 57, S10–S15.

Rovaris, M., Filippi, M., Calori, G., et al., 1997. Intra-observer reproduc-

ibility in measuring new putative MR markers of demyelination and

axonal loss in multiple sclerosis: a comparison with conventional T2-

weighted images. J. Neurol. 244, 266–270.
Samarasekera, S., Udupa, J.K., Miki, Y., Wei, L., Grossman, R.I.,

1997. A new computer-assisted method for the quantification of

enhancing lesions in multiple sclerosis. J. Comput. Assist. Tomogr.

21, 145–151.

Truyen, L., van Waesberghe, J.H., van Walderveen, M.A., et al., 1996.

Accumulation of hypointense lesions (‘‘black holes’’) on T1 spin-echo

MRI correlates with disease progression in multiple sclerosis.

Neurology 47, 1469–1476.

Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.,

2001. Automated segmentation of multiple sclerosis lesions by model

outlier detection. IEEE Trans. Med. Imaging 20, 677–688.

Van Waesberghe, J.H., van Walderveen, M.A., Castelijns, J.A., et al., 1998.

Patterns of lesion development in multiple sclerosis: longitudinal

observations with T1-weighted spin-echo and magnetization transfer

MR. Am. J. Neuroradiol. 19, 675–683.

Van Walderveen, M.A., Barkhof, F., Hommes, O.R., et al., 1995.

Correlating MRI and clinical disease activity in multiple sclerosis:

relevance of hypointense lesions on short-TR/short-TE (T1-weighted)

spin-echo images. Neurology 45, 1684–1690.

Van Walderveen, M.A., Kamphorst, W., Scheltens, P., et al., 1998.

Histopathologic correlate of hypointense lesions on T1-weighted spin-

echo MRI in multiple sclerosis. Neurology 50, 1282–1288.

Vinitski, S., Gonzalez, C., Mohamed, F.B., Iwanaga, T., Kamil Khalili,

K., Mack, J., 1997. Improved intracranial lesion characterization by

tissue segmentation based on a 3D feature map. Med. Risk Manag.

37, 457–469.

Warfield, S.K., 1996. Fast k-NN classification for multichannel image data.

Pattern Recogn. Lett. 17, 713–721.

Warfield, S., Dengler, J., Zaers, J., et al., 1995. Automatic identification of

gray matter structures from MRI to improve the segmentation of white

matter lesions. J. Image Guid. Surg. 1, 326–338.

Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R., 2000. Adaptive,

template moderated, spatially varying statistical classification. Med.

Image Anal. 4, 43–55.

Wei, X., Warfield, S.K., Zou, K.H., et al., 2002. Quantitative analysis of

MRI signal abnormalities of brain white matter with high reproduc-

ibility and accuracy. J. Magn. Reson. Imaging 15, 203–209.

Wei, X., Guttmann, C.R., Warfield, S.K., Eliasziw, M., Mitchell, J.R., 2004.

Has your patient’s multiple sclerosis lesion burden or brain atrophy

actually changed? Mult. Scler. 10, 402–406.

Weiner, H.L., Guttmann, C.R., Khoury, S.J., et al., 2000. Serial magnetic

resonance imaging in multiple sclerosis: correlation with attacks,

disability, and disease stage. J. Neuroimmunol. 104, 164–173.

Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F., 1996. Adaptive

segmentation of MRI data. IEEE Trans. Med. 15, 429–443.

Wu, Y., Wells, W.M., Warfield, S.K., et al., 2001. Effect of gain field

inhomogeneity correction on automated segmentation of the intracranial

cavity. Proceedings of the 10th Annual Meeting of ISMRM, Glasgow,

p. 805.

Zijdenbos, A.P., Forghani, R., Evans, A.C., 2002. Automatic ‘‘pipeline’’

analysis of 3-D MRI data for clinical trials: application to multiple

sclerosis. IEEE Trans. Med. Imaging 21, 1280–1291.

Zou, K.H., Wells, W.M. III, Kaus, M.R., Kikinis, R., Jolesz, F.A.,

Warfield, S.K., 2002. Statistical validation of automated probabi-

listic segmentation against composite latent expert ground truth

in MR imaging of brain tumors. MICCAI 2002, 5th Interna-

tional Conference, Sept. 2002, Tokyo, Japan. Springer-Verlag, Berlin,

pp. 315–322.


	Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI
	Introduction
	Materials and methods
	MRI acquisition
	Image processing
	Intracranial cavity (IC) identification
	Intensity correction
	Statistical intensity-based k-nearest neighbor segmentation (k-NN)
	Template-driven segmentation and partial volume artifact correction (TDS+)
	Refining black holes segmentation
	Statistical methods

	Results
	Discussion
	Acknowledgment
	Supplementary data
	References


