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Probabilistic segmentation of white matter lesions in MR imaging
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A new method has been developed for fully automated segmentation of

white matter lesions (WMLs) in cranial MR imaging. The algorithm

uses information from T1-weighted (T1-w), inversion recovery (IR),

proton density-weighted (PD), T2-weighted (T2-w) and fluid attenu-

ation inversion recovery (FLAIR) scans. It is based on the K-Nearest

Neighbor (KNN) classification technique that builds a feature space

from voxel intensities and spatial information. The technique generates

images representing the probability per voxel being part of a WML. By

application of thresholds on these probability maps, binary segmenta-

tions can be obtained. ROC curves show that the segmentations achieve

both high sensitivity and specificity. A similarity index (SI), overlap

fraction (OF) and extra fraction (EF) are calculated for additional

quantitative analysis of the result. The SI is also used for determination

of the optimal probability threshold for generation of the binary

segmentation. Using probabilistic equivalents of the SI, OF and EF, the

probability maps can be evaluated directly, providing a powerful tool

for comparison of different classification results. This method for

automated WML segmentation reaches an accuracy that is comparable

to methods for multiple sclerosis (MS) lesion segmentation and is

suitable for detection of WMLs in large and longitudinal population

studies.

D 2004 Elsevier Inc. All rights reserved.

Keywords: Segmentation; White matter lesions; Multiple sclerosis
Introduction

In the last decade, many studies have focused on the

prevalence of cerebral white matter lesions (WMLs) in the

elderly population or in patients with cardiovascular risk factors.

In both patient groups, WMLs are a common finding on cranial

MR imaging. Population studies like the Cardiovascular Health

Study or the Rotterdam Scan Study have shown that WMLs are

associated with age, clinically silent stroke, higher systolic

blood pressure, lower forced expiratory volume in 1 s, hyper-

tension, atrial fibrillation, carotid and peripheral arterioscleroses,
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impaired cognition and depression (De Groot et al., 2000a,b;

Longstreth et al., 1996). Furthermore, it has been shown that

stroke patients with a large WML load have an increased risk

of hemorrhagic transformation, higher preoperative risk of a

disabling or fatal stroke during endarterectomy or intercerebral

hemorrhage during anticoagulation therapy (Briley et al., 2000).

The increased interest in WML research may improve diagnosis

and prognosis possibilities for patients with cardiovascular

symptoms.

Since WML patterns are very heterogeneous, ranging from

punctuate lesions in the deep white matter till large confluent

periventricular lesions, the scoring of WMLs is complicated and

it has been shown that different visual rating scales lead to

inconsistencies between WML studies (Mantyla et al., 1997).

Commonly used ordinal WML scoring methods, such as used in

the Cardiovascular Health Study or the Rotterdam Scan Study,

offer semiquantitative information on the prevalence of WMLs.

Exact spatial information is useful since it has been suggested

that specific WML patterns are associated with specific symp-

toms (Benson et al., 2002; Smith et al., 2000). Moreover, for

longitudinal studies and to demonstrate relatively small changes

in WML patterns, accurate information of WML volume and

location is essential. In this respect, the use of an automated

segmentation method that detects WMLs with a high sensitivity

and specificity, which are demonstrated in a quantitative and

objective way, could be advantageous. Successful methods have

been developed for the detection of multiple sclerosis (MS)

lesions (Alfano et al., 2000; Goldberg-Zimring et al., 1998;

Guttman et al., 1999; Kamber et al., 1995; Van Leemput et al.,

2001; Warfield et al., 1995a,b; Wei et al., 2002; Zijdenbos et

al., 2002). For the more complicated issue of WMLs in general,

also some segmentation algorithms exist (Jack et al., 2001;

Mohamed et al., 2001; Wei et al., 2002). However, these

methods evaluate their results only by visual inspection or

measurement of lesion volume. The aim of our research was

to develop an automated WML segmentation algorithm, which

is fully reproducible and quantitatively validated on a voxel

basis.

In this study, we present a method for automatic segmentation

of WMLs that is based on a supervised K-Nearest Neighbor

(KNN) classification technique using information from T1-weight-

ed (T1-w), inversion recovery (IR), proton density-weighted (PD),

T2-weighted (T2-w) and fluid attenuation inversion recovery
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(FLAIR) scans by probability estimation of voxels being part of a

lesion.
Methods

Patients

Twenty patients with arterial vascular disease [transient ische-

mic attack (TIA), n=4; peripheral arterial disease, n=3; coronary

artery disease, n=7; renal artery disease, n = 1; abdominal aorta

aneurysm, n=5] were included in this study. The mean age of the

patients was 66 years (meanF SD: 65.6F 7.7, range: 49–75).

Seventeen patients were male.

MR imaging

MRI studies were performed on a Philips Gyroscan ACS-NT

1.5-T whole body system (Philips Medical Systems, Best, The

Netherlands). All patients had the same MR protocol of the brain

consisting of transaxial T1-w, IR, T2-w, PD and FLAIR scans.

All scans were performed with a 4-mm slice thickness, no slice

gap, 38 slices, covering the entire brain, a 230� 230 mm field of

view and a 256� 256 scan matrix. The individual scan param-

eters were: T1-w: repetition time (TR)/echo time (TE), 234/2 ms;

IR: TR/inversion time (TI)/TE, 2919/410/22 ms; PD: TR/TE,

2200/11 ms; T2-w: TR/TE, 2200/100 ms; and FLAIR: TR/TI/TE,

6000/2000/100 ms. For the IR images, the real images were used

and the inversion time was chosen to obtain the best contrast

between gray and white matter. The entire acquisition time of all

scans was less than 11 min.

Manual segmentation

WMLs were scored independently on hard copies by two

investigators (RHCB and JvdG) who were blinded for clinical

symptoms of each patient. WMLs had to be hyperintense on

FLAIR, PD and T2-w images. WMLs were firstly classified into

deep white matter lesions (DWMLs) and periventricular white

matter lesions (PVWMLs). The number and size of DWMLs were

rated on hard copy according to their largest diameter in categories

of: (0) no DWMLs, (1) small (<3 mm), (2) medium (3–10 mm) and

(3) large (>10 mm). PVWMLs were rated quantitatively in three

regions: adjacent to the frontal horns (frontal capping); adjacent to

the lateral wall of the ventricles (bands); and adjacent to the

occipital horns (occipital capping) in both hemispheres (De Groot

et al., 2000b).

According to the patterns of WMLs, four patient categories

were composed of:
1. All patients (n = 20);

2. Patients with small lesion load (n = 8);

3. Patients with moderate lesion load (n = 7);

4. Patients with large lesion load (n = 5).

The patients have been divided into categories 2, 3 and 4 by

taking the highest of their DWML and PVWML score (score = 1:

small, score = 2: moderate and score = 3: large lesion load).

Secondly, the DWMLs and PVWMLs were manually segment-

ed by the first author (PA). The manual segmentations were
independently reviewed and corrected by two investigators (RHCB

and JvdG). The final manual WML segmentations were evaluated

in a consensus meeting (PA, RHCB and JvdG) and considered as

gold standard.

Image preprocessing

The entire image processing protocol started with three

preprocessing steps to prepare the data for the KNN classifica-

tion and analysis. To correct for MR inhomogeneities, a method

was used that resulted in similar gray values of major anatom-

ical structures in different patients per image type (Nyúl and

Udupa, 1999; Nyúl et al., 2000). To correct for differences

owing to patient movement, all images of a patient were

registered by rigid registration (translation and rotation), based

on normalized mutual information, to the FLAIR image as

reference image (Maes et al., 1997). To reduce the amount of

data to be investigated and to restrict our analyses to brain

tissue only, we isolated the skull and background by applying

Mbrase to the T2-w image of every patient (Stokking et al.,

2000).

KNN classification

The aim of the method for automatic segmentation of the WMLs

was to determine the lesion probability of each voxel. For this

purpose, the KNN classification method was used, which is known

as a nonparametric procedure for estimation of local class condi-

tional probability density functions from sample patterns (Duda et

al., 2001). In general, KNN classification is based on the classifica-

tion of samples, dependent on their features. In this method, each

image voxel is treated as a separate sample. A feature space is

defined, in which each axis represents one of the voxel features. A

learning set is generated from many preclassified voxels. These

learning voxels are entered into the feature space at the coordinates

corresponding to their feature values. After this, an image voxel of

a new patient is classified by adding it to the feature space and

inspection of the K learning voxels that are closest to it. The new

case is then classified according to the classes of those K

neighbors; for example, the most frequent class of the K neighbors

could be assigned to it.

In this application, the learning set for segmentation of one

patient was built from the voxels of the other 19 patients (the so-

called ‘‘leave-one-out’’ method). All voxels in the learning set were

labeled with the value of 0 (non-lesion class) or 1 (lesion class),

derived from the manual segmentations. Because of the large

number of cases, we decided to randomly select 20% of the voxels

for inclusion in the learning set. This reduces computation time and

computer memory significantly.

The features used in this study can be divided into two

categories: voxel intensities and spatial information. The first group

is defined by the signal intensities of a voxel in the acquired images:

T1-w, IR, PD, T2-w and FLAIR, which provides a five-dimensional

feature space. The second group of features incorporates the spatial

location of a voxel in the brain. These were added because in some

regions of the brain, lesions are more likely to occur than in others.

The spatial features were defined in-plane by two coordinates and

through-plane by the z-coordinate. In-plane, the voxel coordinates

were measured from the center of gravity in the FLAIR image,

which was the reference image for registration, by two different

methods. Two types of in-plane coordinates were used separately:
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Euclidean coordinates (x and y) as well as the polar coordinates (q
and u). Coordinate q represented the Euclidean distance from the

center of gravity and u the angle with the horizontal axis.

All experiments were performed with five different features

spaces, constructed from different sets of features. Each feature set

consisted of all the voxel intensity features and a subset of the

spatial features. They were defined by:
F only voxel intensities

Fxy voxel intensities and spatial features x and y

Fxyz voxel intensities and x, y and z

Fqu voxel intensities and q and u
Fquz voxel intensities and q, u and z

Fig. 1. Comparison of a binary segmentation (Seg) with the reference image

(Ref), with (Overlap) the correctly classified voxels, (Extra) the false

positives and (Miss) the false negatives.
Since different features have different ranges, a rescaling of the

feature space was necessary to define a proper metric to compare

distances in the feature space, which is essential to justify classifi-

cation based on KNN. This was achieved by variance scaling:

subtraction of the mean of the feature values and division of the

outcome by the standard deviation. This approach results in a mean

of 0 and variance of 1 for every feature.

The choice of K in KNN classification depends on the number

of features and the number of cases. When a small value of K is

used, the obtained results are more influenced by individual

cases. A larger value of K smoothens the outcome of the

classification (Bishop, 1995). If the number of cases goes to

infinity, the error rate shows an optimal behavior by approaching

the Bayes rate when K increases (Duda et al., 2001). In this

study, we used a relatively small number of features in combi-

nation with a large number of cases. Therefore, we opted for a

relatively large K. It was observed experimentally that for the

current purpose a K with a value higher than 100 has a marginal

influence on the accuracy of the classification. By taking com-

putation time into account, we concluded that 100 was an

acceptable choice for K.

The lesion probability of every voxel was determined by

inspection of the K-nearest neighbors of the examined voxel in

the feature space. It was defined as the fraction of lesion voxels

among those K neighbors. The voxel probabilities were presented in

a so-called probability map, which is an image where each voxel

intensity value is defined by the lesion probability of that voxel.

Evaluation

By applying different thresholds on the probability map, binary

segmentations of the WMLs were produced. These segmentations

were compared with the gold standard, where the number of

correctly classified voxels, that is, the true positives (TP) and true

negatives (TN), was counted as well as the number of false

positives (FP) and false negatives (FN). The true positive fraction

(TPF), which is the sensitivity, and the false positive fraction

(FPF), which is 1-specificity, was calculated for the threshold,

running from 0 to 1. They are defined by

TPF ¼ TP

TPþ FN
;

FPF ¼ FP

FPþ TN
:

The TPF was represented in an ROC curve as function of the

FPF for the ‘‘all patients’’ category for all five feature sets.

Furthermore, the binary segmentations were evaluated by

three different similarity measures: similarity index (SI) (Dice,

1945; Zijdenbos et al., 1994), overlap fraction (OF) and extra

fraction (EF) (Stokking et al., 2000). The SI is a measure for the

correctly classified lesion area relative to the total area of WML

in both the reference (the gold standard) and the area of the

segmented image. The OF measures the correctly classified

lesion area relative to the WML area in the reference. The EF

measures the area that is falsely classified as lesion relative to

the WML area in the reference. The similarity measures are

defined by

SI ¼ 2� ðRef \ SegÞ
Ref þ Seg

;

OF ¼ Ref \ Seg

Ref
;

EF ¼ Ref \ Seg

Ref
:

In these definitions, Ref denotes the volume of the refer-

ence and Seg is the volume of the binary segmentation (Fig.

1). The intersection of Ref and Seg, used in the SI and OF, is

similar to the volume of the correctly classified voxels

(Overlap). The volume of Ref \ Seg corresponds to the false

positives (Extra). The SI was represented in a graph as

function of the threshold, running from 0 to 1, for all feature

sets.



Fig. 2. Classification of a patient with small lesion load. (A) FLAIR

image, (B) manual segmentation, (C) probability map, (D) segmentations

derived from probability map with different thresholds: black:

probability (P)= 0, blue: 0<PV0.3, green: 0.3<PV0.5, yellow: 0.5<

PV0.8, red: 0.8<PV1.

Fig. 3. Classification of a patient with moderate lesion load. (A) FLAIR

image, (B) manual segmentation, (C) probability map, (D) segmentations

derived from probability map with different thresholds: black: probability

(P) = 0, blue: 0<PV0.3, green: 0.3<PV0.5, yellow: 0.5<PV0.8, red:

0.8<PV1.
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In practice, for clarity of the evaluation, it is desirable to have a

general measure, representing the accuracy of the probability map

as a whole. Therefore, probabilistic versions of the similarity
Fig. 4. Classification of a patient with large lesion load. (A) FLAIR

image, (B) manual segmentation, (C) probability map, (D) segmentations

derived from probability map with different thresholds: black: probability

(P)=0, blue: 0<PV0.3, green: 0.3<PV0.5, yellow: 0.5<PV0.8, red:

0.8<PV1.
measures are calculated, which provide an opportunity to compare

segmentation methods, in which probabilistic outcomes are evalu-

ated by comparison with binary references. The probabilistic
Fig. 7. Classification with probabilistic similarity index: 0.76. (A) FLAIR

image, (B) manual segmentation, (C) probability map, (D) segmentations

derived from probability map with different thresholds: black: probability

( P)=0, blue: 0 <PV0.3, green: 0.3 <PV 0.5, yellow: 0.5 <PV0.8, red:

0.8<PV1.



Table 1

Area under the ROC curve

Feature set All patients Small lesion Moderate lesion Large lesion

F 0.9832 0.9575 0.9815 0.9845

Fqu 0.9871 0.9759 0.9851 0.9874

Fquz 0.9885* 0.9870 0.9865 0.9883

Fxy 0.9874 0.9765 0.9855 0.9877

Fxyz 0.9886* 0.9869 0.9868 0.9883

Note. For the all patients category, significance of feature sets including

spatial features with respect to feature set F has been calculated.

*P < 0.05 (paired samples t test).
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similarity index (PSI), probabilistic overlap fraction (POF) and

probabilistic extra fraction (PEF) are defined by

PSI ¼
2�

X
Px;gs¼1X

1x;gs¼1 þ
X

Px

;

POF ¼
X

Px;gs¼1X
1x;gs¼1

;

PEF ¼
X

Px;gs¼0X
1x;gs¼1

:

where

� SPx,gs = 1: sum over all voxel probabilities, where in the

gold standard (manual segmentation), the intensity value

= 1,
� SPx,gs = 0: sum over all voxel probabilities, where in the

gold standard, the intensity value = 0,
� S1x,gs = 1: sum over all voxels in the gold standard,
� SPx: sum over all probabilities in the probability map.

The PSI and POF have values between 0 and 1, in which a high

value resembles better correlation with the reference, and 1 denotes

that the segmentation equals the gold standard. The PEF has values

of 0 and higher and should remain as small as possible for a good

segmentation. For example, a POF of 0.6 indicates that in the

segmentation the total area of the gold standard has been classified

with a value of 0.6, or that 60% of the reference area has been

classified with probability 1 or any combination of both cases.

The probabilistic measures were calculated for all patient

categories and all feature sets.
Fig. 5. ROC curves of classifications over all patients with different

feature sets: (Fxyz) voxel intensity features and spatial features x, y and z;

(Fquz) voxel intensities and q, u and z; (Fxy) voxel intensities and x and

y; (Fqu) voxel intensities and q and u; (F) only voxel intensities.
Statistics

To compare differences in feature sets for areas under the ROC

curves, similarity measures (SI, OF and EF) and probabilistic

similarity measures (PSI, POF and PEF), paired samples t tests

were used. A P < 0.05 was considered as statistically significant.

These analyses were only performed for the ‘‘all patient’’ category,

and not for the subcategories of patients, because of the limited

statistical power.
Results

KNN classification has been performed five times per patient,

according to the five different feature sets. In Figs. 2–4, example

images are shown of the classification results of patients, with a

small, moderate and large lesion load, with feature set Fxyz. For

each patient category, the following images are shown: FLAIR,

manual segmentation, probability map and a color image with

segmentations generated by applying thresholds of 0.3, 0.5 and

0.8 to the probability map. The images demonstrate that the

choice of the threshold on the probability map has large influence

on the binary segmentations. A higher threshold increases the

specificity of the result, but has a negative effect on the

sensitivity.

ROC analysis

The ROC curves of the five different feature sets were

calculated for the classifications of all patient categories. Fig. 5

shows a detail of the ROC curves of all patients with thresholds

running from 0 to 1. With a threshold, the sensitivity of the

segmentations with feature set Fxyz reaches 0.9704, with a

specificity of 0.9740. With the same threshold, the sensitivity

with feature set F is 0.9654, with a specificity of 0.9640. The

graph shows that the sensitivity and specificity of the other

features sets are between these numbers. The areas under the

curves have been calculated and are presented in Table 1. The

ROC curves and the areas show that including spatial features by

feature set Fxyz or Fquz improves the results for all patients

significantly with respect to feature set F, whereas the feature sets

without the z-coordinate, Fxy and Fqu do not increase the area

significantly.

Similarity measures

Fig. 6 presents the SI for the segmentations of the category of

all patients with the five different feature sets and the threshold



Table 3

Probabilistic similarity index, probabilistic overlap fraction and probabil-

istic extra fraction

Measure Feature

set

All

patients

Small

lesion

Moderate

lesion

Large

lesion

PSI F 0.62 0.25 0.57 0.70

Fqu 0.65** 0.28 0.60 0.72

Fquz 0.69** 0.35 0.63 0.75

Fxy 0.65** 0.29 0.60 0.73

Fxyz 0.69** 0.36 0.64 0.76

POF F 0.60 0.48 0.54 0.64

Fqu 0.63 0.47 0.57 0.66

Fquz 0.65** 0.51 0.59 0.69

Fxy 0.63 0.48 0.57 0.67

Fxyz 0.66** 0.51 0.59 0.69

PEF F 0.96 2.87 0.90 0.82

Fqu 0.94 2.37 0.91 0.83

Fquz 0.89 1.89 0.87 0.82

Fxy 0.94 2.35 0.91 0.84

Fxyz 0.90 1.86 0.87 0.83

Note. For the all patients category, significance of feature sets including

spatial features with respect to feature set F has been calculated.

**P V 0.01 (paired samples t test).

Fig. 6. Similarity index of binary WML segmentations of all patients as

function of the threshold with different feature sets: (Fxyz) voxel intensity

features and spatial features x, y and z; (Fquz) voxel intensities and q, u
and z; (Fxy) voxel intensities and x and y; (Fqu) voxel intensities and q and

u; ( F) only voxel intensities.
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running from 0 to 1. Similar to the ROC curves, the SI graph

shows that feature sets Fxyz and Fquz have the best performance.

Fig. 6 also shows that the optimal threshold for the generation of a

binary segmentation is approximately 0.3. Table 2 shows the SI,

OF and EF of the binary segmentations with this optimal threshold

for all patient categories and all feature sets. The SI improves

significantly using feature sets with spatial features, whereas the

OF only improves with feature sets Fxyz and Fquz. No significant

improvement of the EF was found when adding spatial features.

For all feature sets, it was observed that in patients with a large

lesion load better results are obtained. Furthermore, the table

shows that feature sets Fxyz and Fquz improve the results to a

similar extent.

Probabilistic similarity measures

Table 3 shows the probabilistic equivalents of the SI, OF and

EF for all patient categories and all feature sets. Addition of spatial
Table 2

Similarity index, overlap fraction and extra fraction with threshold 0.3

Measure Feature

set

All

patients

Small

lesion

Moderate

lesion

Large

lesion

SI F 0.73 0.33 0.70 0.80

Fqu 0.77** 0.39 0.73 0.83

Fquz 0.80** 0.49 0.75 0.85

Fxy 0.77** 0.40 0.73 0.83

Fxyz 0.80** 0.50 0.75 0.85

OF F 0.75 0.60 0.69 0.79

Fqu 0.77 0.59 0.71 0.81

Fquz 0.79** 0.64 0.73 0.83

Fxy 0.78 0.60 0.71 0.82

Fxyz 0.79* 0.64 0.73 0.83

EF F 0.31 1.99 0.28 0.18

Fqu 0.25 1.44 0.25 0.15

Fquz 0.19 0.95 0.22 0.12

Fxy 0.25 1.42 0.25 0.15

Fxyz 0.19 0.92 0.22 0.12

Note. For the all patients category, significance of feature sets including

spatial features with respect to feature set F has been calculated.

*P < 0.05 (paired samples t test).

**P V 0.01 (paired samples t test).
features results in a significantly higher PSI, for all feature sets.

The POF is significantly better for feature sets Fxyz and Fquz, with
respect to F. No significant improvement of the PEF was found

adding spatial features. Furthermore, the segmentations are better

for patients with a large lesion load and feature sets Fxyz and Fquz
improve the results to a similar extent.
Discussion

The combination of spatial information and signal intensities of

MR images in KNN classification provides a technique for WML

segmentation with a high sensitivity and specificity for all patient

categories, which is shown by ROC curves. The method generates

a probability map, containing the probabilities of voxels being a

lesion. The main advantage of determination of the lesion proba-

bilities over direct classification of voxels into lesion or non-lesion

is that it provides an opportunity to obtain different binary

segmentations, by which the ratio between sensitivity and speci-

ficity can be varied, dependent on the purpose of the segmentation.

In this way, segmentations with better agreement with the reference

can be produced. For example, the classification according to the

K-nearest neighbor rule (Duda et al., 2001) would generate the

binary segmentation of threshold 0.5, whereas the segmentation

with threshold 0.3 has a higher similarity index. Furthermore, the

probability map provides more detailed information on the lesion

probability per voxel than a binary segmentation.

The proposed algorithm produces segmentations with high

sensitivity and specificity. The ROC curve shows that, at a proper

point in the curve, the overall sensitivity of the binary segmenta-

tions of all patients is 0.9704, with a specificity of 0.9740. However,

these high numbers, and particularly the specificity, are not only a

consequence of the segmentation, but also due to the small prior

probability of the lesions. Therefore, the need arises to use similar-

ity measures, relative to the lesion volume for better information on

the quality of the segmentation. In this respect, the use of the

similarity measures (SI, OF en EF) provides an opportunity to

evaluate the segmentations in a quantitative and objective way. The
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optimal similarity indexes of the categories of all patients and of

patients with moderate and large lesion load are higher than 0.7 for

all feature sets. An SI value of 0.7 resembles an excellent agreement

according to Bartko (1991). For the class of patients with large

lesion load these values even exceed the value of 0.8.

At present, many studies on MS brain lesion segmentation have

been published that describe and evaluate the results in quantitative

terms by comparison of lesion volume or by analysis of the number

of correctly or misclassified lesions (Alfano et al., 2000; Goldberg-

Zimring et al., 1998; Guttman et al., 1999; Jack et al., 2001; Wei et

al., 2002). However, only a limited number of these studies

evaluate also spatial correspondence of the results with a reference

segmentation (Kamber et al., 1995; Van Leemput et al., 2001;

Zijdenbos et al., 2002). Kamber calculates an error rate, which at

least exceeds 1%. In the proposed method, this error rate is in all

cases below 0.5%. Van Leemput and Zijdenbos also use the

similarity index for measuring the correspondence with a manual

segmentation, which reaches maxima of 0.51 and 0.68, respective-

ly. The similarity index for all patients in the proposed method

exceeds both of these numbers. To our knowledge, other methods

for general WML segmentation only evaluate the results by visual

inspection or by measurement of lesion volume (Jack et al., 2001;

Mohamed et al., 2001; Wei et al., 2002).

The results of our study show that adding features containing

spatial information to the feature space improves the segmentations

significantly. The influence of Euclidian coordinates x and y

appears to be similar to polar coordinates q and u. Addition of

the z-coordinate to the feature set is also essential for a better

classification. Further improvement by spatial features might be

achieved by indicating the exact location in the brain, by using a

brain atlas as reference (Cocosco et al., 2002; Van Leemput et al.,

1999a,b; Warfield et al., 2000; Wells et al., 1996).

The similarity measures also suggest that the proposed method

produces better results for patients with a large lesion load than for

patients with a small lesion load. This can be explained by the fact

that small errors have a relatively larger effect on a smaller

reference area.

The SI is not only used as a measure for the accuracy of the

segmentation, but also for determination of the optimal threshold to

generate a binary segmentation. For the ‘‘all patients’’ category,

this threshold is approximately 0.3. The SI graphs are considerably

flat, which indicates the robustness of the optimal threshold. This is

supported by the fact that for thresholds running from 0.13 to 0.55

the SI is at least 95% of the maximum SI. The behavior of the

optimal threshold in other situations and applications is difficult to

predict. In general, it can be stated that higher agreement of the

probability map with a binary segmentation, that is, more proba-

bilities close to 0 or 1, increases the robustness of the optimal

threshold. The location of the optimal threshold can in other

applications be determined by performing some tests with the

binary reference that always has to be available for the learning set.

However, the choice of the threshold may in many cases also be an

expert decision that depends on the acceptable ratio between false

positive and false negative classified voxels.

Probabilistic similarity measures provide useful tools to evalu-

ate a probabilistic segmentation directly, without being dependent

on the generation of a binary segmentation. Valuable study on

these measures has been performed by Zou et al. (2002). In our

paper we applied the PSI, POF and PEF as probabilistic versions of

the SI, OF and EF. The PSI always denotes a lower value than the

corresponding SI with optimal threshold. This does not indicate a
worse result, but is caused by the fact that the probabilistic

classification outcome is compared to the binary gold standard.

To illustrate the meaning of the probabilistic measures, and to

provide a better intuitive understanding, an example of a classifi-

cation with a relatively high PSI value (0.76) as outcome is

presented in Fig. 7. The POF of this classification is 0.76 and

the PEF is 1.01. Classification has been performed with feature set

Fxyz. The images are: FLAIR, manual segmentation, probability

map and the color image with the binary segmentations of the

probability map with thresholds 0.3, 0.5 and 0.8. With threshold

0.3, the binary segmentation has a SI of 0.83, an OF of 0.90 and an

EF of 0.26.

The gold standard in this method was constructed by consensus

of some experts. Although this reference segmentation was satis-

factory for our main purpose, other more sophisticated approaches,

which estimate a ground truth from a group of expert segmenta-

tions, are also available and can be applied (Warfield et al., 2002).

In conclusion, the KNN approach offers valuable ways to

perform automated WML segmentation. Moreover, since this prob-

abilistic classification method has a general basis it is applicable to

many other segmentation problems, for instance, segmentation of

atrophy, white matter, gray matter or CSF. Finally, the method is

fully automatic, can be performed on routine MR diagnostic scans,

and is therefore suitable for detection and segmentation of WMLs in

large and longitudinal population studies.
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Nyúl, L.G., Udupa, J.K., Zhang, X., 2000. New variants of a method of

MRI scale standardization. IEEE Trans. Med. Imag. 19, 143–150.

Smith, C.D., Snowdon, D.A., Wang, H., Markesbery, W.R., 2000. White

matter volumes and periventricular white matter hyperintensities in

aging and dementia. Neurology 54, 838–842.

Stokking, R., Vincken, K.L., Viergever, M.A., 2000. Automatic morphol-

ogy-based brain segmentation (MBRASE) from MRI-T1 data. Neuro-

image 12, 726–738.

Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999a. Auto-

mated model-based bias field correction of MR images of the brain.

IEEE Trans. Med. Imag. 18, 885–896.

Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999b. Auto-

mated model-based tissue classification of the brain. IEEE Trans. Med.

Imag. 18, 897–908.
Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.,

2001. Automated segmentation of multiple sclerosis lesions by model

outlier detection. IEEE Trans. Med. Imag. 20, 677–688.

Warfield, S., Dengler, J., Zaers, J., Guttmann, C.R.G., Wells III, W.M.,

Ettinger, G.J., Hiller, J., Kikinis, R., 1995a. Automatic identification

of gray matter structures from MRI to improve the segmentation of

white matter lesions. J. Image Guide Surg. 1, 326–338.

Warfield, S., Dengler, J., Zaers, J., Guttmann, C.R.G. , Wells III, W.M.,

Ettinger, G.J., Hiller, J., Kikinis, R. 1995. Automatic identification of

gray matter structures from MRI to improve the segmentation of white

matter lesions. MRCAS’95. Second international Symposium on Med-

ical Robotics and Computer Assisted Surgery, Nov. 1995, Baltimore,

USA. John Wiley, Philadelphia, pp. 140–147.

Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R., 2000. Adaptive, tem-

plate moderated, spatially varying statistical classification. Med. Image

Anal. 4, 43–55.

Warfield, S.K., Zou, K.H., Wells, W.M., 2002. Validation of image seg-

mentation and expert quality with an expectation-maximization algo-

rithm. MICCAI 2002, 5th International Conference, Sept. 2002, Tokyo,

Japan. Springer-Verlag, Berlin, pp. 298–306.

Wei, X., Warfield, S.K., Zou, K.H., Wu, Y., Li, X., Guimond, A., Mugler

III, J.P., Benson, R.R., Wolfson, L., Weiner, H.L., Guttmann, C.R.G.,

2002. Quantitative analysis of MRI signal abnormalities of brain white

matter with high reproducibility and accuracy. J. Magn. Reson. Imaging

15, 203–209.

Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A., 1996.

Adaptive segmentation of MRI data. IEEE Trans. Med. Imag. 15,

429–442.

Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C., 1994. Mor-

phometric analysis of white matter lesions in MR images: method an

validation. IEEE Trans. Med. Imag. 13, 716–724.

Zijdenbos, A.P., Forghani, R., Evans, A.C., 2002. Automatic ‘‘pipeline’’

analysis of 3-D MRI data for clinical trials: application to multiple

sclerosis. IEEE Trans. Med. Imag. 21, 1280–1291.

Zou, K.H., Wells III, W.M., Kaus, M.R., Kikinis, R., Jolesz, F.A., Warfield,

S.K., 2002. Statistical validation of automated probabilistic segmenta-

tion against composite latent expert ground truth in MR imaging of

brain tumors. MICCAI 2002, 5th International Conference, Sept.

2002, Tokyo, Japan. Springer-Verlag, Berlin, pp. 315–322.


	Probabilistic segmentation of white matter lesions in MR imaging
	Introduction
	Methods
	Patients
	MR imaging
	Manual segmentation
	Image preprocessing
	KNN classification
	Evaluation
	Statistics

	Results
	ROC analysis
	Similarity measures
	Probabilistic similarity measures

	Discussion
	References


