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In this paper, we propose a new automated procedure for lesion
identification from single images based on the detection of outlier
voxels. We demonstrate the utility of this procedure using artificial and
real lesions. The scheme rests on two innovations: First, we augment
the generative model used for combined segmentation and normal-
ization of images, with an empirical prior for an atypical tissue class,
which can be optimised iteratively. Second, we adopt a fuzzy clustering
procedure to identify outlier voxels in normalised gray and white
matter segments. These two advances suppress misclassification of
voxels and restrict lesion identification to gray/white matter lesions
respectively. Our analyses show a high sensitivity for detecting and
delineating brain lesions with different sizes, locations, and textures.
Our approach has important implications for the generation of lesion
overlap maps of a given population and the assessment of lesion-deficit
mappings. From a clinical perspective, our method should help to
compute the total volume of lesion or to trace precisely lesion boun-
daries that might be pertinent for surgical or diagnostic purposes.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Precise lesion identification in subjects with structural brain
damage is essential for understanding lesion-deficit mappings in
the human brain. Usually, the gold-standard method for lesion
identification rests on the manual definition of abnormal brain
tissue by a trained professional (e.g. Bates et al., 2003; Dronkers
et al., 2004; Fiez et al., 2000); however, this method is laborious,
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operator-dependent (e.g. Ashton et al., 2003; Filippi et al., 1995),
and time-consuming. Alternatively, several semi-automated and
fully automated procedures for lesion identification have been
proposed (e.g. Anbeek et al., 2004; Capelle et al., 2004; Colliot
et al., 2006a,b; Datta et al., 2006; Fletcher-Heath et al., 2001;
Hojjatoleslami and Kruggel, 2001; Mehta et al., 2003; Prastawa
et al., 2004, 2003; Ruan et al., 2007; Sajja et al., 2006; Soltanian-
Zadeh et al., 1998; Stamatakis and Tyler, 2005; Wu et al., 2006;
Xie et al., 2005; Zhou et al., 2005). They can be divided in two
categories according to the nature of the MRI images used to
identify the lesion: (i) multi-channel or multi-spectral methods that
operate on several weighted MRI images, including T1, T2, PD,
and FLAIR images, with or without contrast agents (e.g. Kabir
et al., 2007; Prastawa et al., 2004; Ruan et al., 2007; Soltanian-
Zadeh et al., 1998; Wu et al., 2006); and (ii) mono-channel or
mono-spectral methods that use only one contrast MRI image (e.g.
T1 image) (Hojjatoleslami and Kruggel, 2001; Jack et al., 2001;
Lau and Ozawa, 2006; Stamatakis and Tyler, 2005; Wilke et al.,
2003).

With the financial and time constraints on clinical studies, it is not
unusual that patients participating in functionalMRI studies have only
one anatomical image (usually a T1 image). Several algorithms have
been proposed for extracting themaximum information fromonly one
type of MRI contrast. Although these algorithms differ in terms of
sensitivity, computational complexity and applicability, we can clas-
sify them according to two characteristics: (i) whether they use
a priori knowledge about the structure of normal brains; including; for
instance; a set of neurotypical templates or not and, (ii) whether they
use tissue segmentation techniques or not. For example, voxel-based
morphometry (VBM), which uses both template priors and seg-
mentation, can characterise structural abnormalities in either the gray
or white matter by segmenting and normalising MRI images of pa-
tients and comparing them to gray or white matter segments from
controls (e.g. Colliot et al., 2006a; Gitelman et al., 2001; Kassubek
et al., 2002; Wilke et al., 2003; Woermann et al., 1999). However,
this approach has been shown to have low statistical sensitivity for
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detecting lesions (Mehta et al., 2003) and critically depends on the
choice of the templates (Shen et al., 2007) and processing parameters
(e.g. Wilke et al., 2003). Other groups have implemented alternative
methods that eschew prior knowledge and segmentation. For
example, the level-set evolution framework, with deformable models
is based on cortical thickness and signal gradients (Colliot et al.,
2006b; Ho et al., 2002; Xie et al., 2005). However, these approaches
were developed to target specific lesion types (e.g., focal cortical
dysplasia) and cannot be generalised easily to other types of lesions.

Recently, Stamatakis and Tyler (2005) proposed a lesion iden-
tification technique based on the comparison of the damaged brain
to a set of normal brains without segmentation. The T1 images of
controls and patients were normalised to the same template,
spatially smoothed, and then compared statistically voxel-by-voxel
to identify regions (i.e. lesions) that differed between patients and
the normal range established by the controls (Stamatakis and Tyler,
2005). However, this approach depends on potentially suboptimal
normalisation and the lesions identified can be contaminated by
cerebrospinal fluid (CSF).

Another factor that may influence the success of automated
lesion delineation is the location of the lesion. For instance, lesions
close to the ventricles, the inter-hemispheric fissure, or to the scalp
might be problematic, when using some automated methods (e.g.,
Liu et al., 2001; Stamatakis and Tyler, 2005). In this context,
segmentation procedures might help to discriminate CSF and non-
brain tissue before identifying the lesion. Furthermore, the exis-
tence of a priori knowledge about the distribution of normal values
(assessed from normal controls) in all brain regions is very useful,
particularly when the lesion has similar signal properties to healthy
tissue (e.g. gray matter malformations (Bernasconi, 2003; Wilke
et al., 2003)). These considerations suggest that robust frameworks
for lesion detection should include tissue segmentation and a priori
knowledge.

In this context, we propose a new procedure to identify any type
of brain damage given a single anatomical image. Our procedure is
based on the assumption that the lesion comprises atypical voxels
that disclose themselves as outliers in gray and white matter
segments. Atypical voxels are those that do not correspond to the
expected tissue types; i.e., are neither grey matter (GM), white
matter (WM), nor cerebrospinal fluid (CSF). To avoid misclassi-
fication, the segmentation routine has to be modified to account for
the atypical “extra” tissue class introduced by the lesion. Here we
propose a modified version of the unified segmentation scheme
(Ashburner and Friston, 2005) to segment healthy and damaged
brain tissue. The unified segmentation scheme has recently been
shown to provide accurate spatial normalisation for lesioned brains
(Crinion et al., 2007). Outlier voxels are those that are far from the
normal range of voxel values in controls (Van Leemput et al.,
2001). The lesion is then identified by searching for outlier voxels
in GM and WM segments. This ensures that we identify lesions
that are specific to brain tissue (i.e., GM and WM). We use fuzzy
clustering with fixed-prototypes (FCP), developed recently for
outlier detection in second-level functional MRI analyses (Seghier
et al., 2007). A few studies have tried to implement this scheme
(i.e., identify unexpected and outlier voxels) in multi-spectral mode
(e.g. Prastawa et al., 2003, 2004), but its applicability has not yet
been demonstrated in mono-spectral mode. In this paper, we eva-
luate the approach with structural T1 images.

The approach is illustrated using both simulated and real patient
data. We first explain the rational for using a modified seg-
mentation procedure. We show that adding an extra class to the
unified segmentation model effectively precludes the misclassifi-
cation of damaged voxels as healthy GM or WM tissue. Then, the
success of the modified segmentation is assessed qualitatively by
ensuring that (i) GM and WM are free from contamination from
the lesion and (ii) the extra class does not incorporate intact tissue.
Outlier GM and WM voxels are identified by fuzzy clustering and
lesion maps are then generated. Using similarity measures, we
explore the sensitivity and the specificity of our method for
detecting and delineating brain lesions. The results from both our
artificial and real lesions demonstrate successful delineation of
damaged tissue with high sensitivity.

Methods

Data sets

T1 images with simulated lesions
Ten T1-weighted images from neurologically normal subjects

were modified by inserting a variety of lesions that had been de-
rived from “real” lesioned brains. Full details of how these T1
images were created can be found in Brett et al. (2001). Essentially,
the simulations involved creating a lesion definition image (i.e., a
manual definition of lesioned tissue) using T1-weighted MRI
images of real patients' brains with a variety of lesions. These
lesion images were then inserted, “cut-and-pasted”, into T1-
weighted MRI images from normal subjects. The lesions were
heterogeneous, of different size, T1 signal and location (see Brett
et al., 2001). Simulated case 01 had metastasis with extensive
oedema; 02 had a left anterior frontal infarct near to the scalp; 03
had left anterior and mesial communicating artery aneurysm and
temporoparietal infarct; 04 had dorsal and mesial cortical
dysplasia; 05 had a posterior and mesial left occipitotemporal
infarct; 06 had a large left frontoparietal loculated infarct; 07 had
left temporoparietal infarct; 08 had focal cortical atrophy affecting
the temporal lobe; 09 had a posterior and mesial left occipito-
temporal infarct and 10 had an infarct in the putamen/insula (for
illustration, see Fig. 2 of Crinion et al. (2007)).

In contrast to some previous studies (e.g. Mehta et al., 2003;
Stamatakis and Tyler 2005), we used simulated lesions that were
derived from real cases rather than using artificial lesions that do
not reflect the complexity of real lesions. There are two key
advantages of simulated lesions: the natural characteristics, in
terms of the size and texture of the lesion, are preserved and we
know a priori where the boundaries of the lesion are.

Real T1 images
T1 images were acquired from eight patients with strokes that

varied in size and affected diverse regions (age 23–68 years) and
sixty-four neurologically normal subjects (age 21–75 years). To test
the sensitivity of our method on a wide range of lesion volumes and
locations, we included: two patients with large and heterogonous
frontotemporal lesions extending laterally from the ventricles to
near the scalp; two patients with large occipitotemporal lesions; two
patients with left hemisphere lesions near to the ventricles; one
patient with a right hemispheric lesion near to the ventricles; and
one patient with a small infarct close to the inter-hemispheric
fissure. These real cases illustrate some of the characteristics that
might challenge automated identification of lesions.

All acquisitions were performed on a 1.5 T Siemens system (Sie-
mens Medical Systems, Erlangen, Germany). Anatomical imaging
consisted of aweighted T1GRE3D sequence (TR/TE/Flip=12.24ms/
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3.56 ms/ 23°, matrix=256×256, in-plane resolution=1×1 mm, 176
axial slices, 1 mm thick with no gap).

Lesion identification procedure

Our approach comprises four steps:

• Segmentation and normalisation of all patients and controls T1
images (allowing for a lesion tissue class).

• Spatial smoothing of normalised GM and WM segments.
• Detection of outlier voxels in each tissue by comparing the GM

andWM segments of the patient to those of controls under fuzzy
clustering.
Fig. 1. (A) GM, WM, and CSF priors as predefined in SPM5. Segmentation into G
simulated case 06 (D) with the standard unified segmentation routine. Chronic le
damage in simulated case 06, misclassified as intact WM (D), is indicated with a
• Outlier voxels in each tissue class are assigned to the lesion (i.e.,
a fuzzy set).

Note that for illustration purposes we will use the simulated
cases 10 and 06 to disclose the rational of each step of our
automated method. Simulated case 10 has a chronic stroke
affecting the insula (tissue loss) with well-defined borders and
a relatively homogeneous T1 signal distribution (close to CSF
signal). In contrast, simulated case 06 has a large frontopar-
ietal, loculated lesion with diffuse borders, local mass effects
and a heterogeneous T1 signal distribution (tissue loss with T1
signal near to CSF and tissue damage with T1 signal near to
GM).
M, WM and CSF tissues of normal T1 volume (B), simulated case 10 (C),
sion in simulated case (10) is segmented in the CSF class. The presence of
white arrow.
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Segmentation of the T1 volumes

Unified segmentation-normalisation. We employed the unified
procedure implemented in the SPM5 software package (Wellcome
Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.
ucl.ac.uk/spm/) that combines segmentation, bias correction and
spatial normalization through the inversion of a single unified
model (for more details see Ashburner and Friston, 2005). In brief,
the unified model combines tissue class, intensity bias and non-
linear warping into the same probabilistic models that are assumed
to generate subject-specific images. Image intensities are modelled
by mixtures of Gaussians (MOG). Within a MOG, the prior
probability that a voxel intensity is drawn from a particular Gaus-
sian is given by a mixing proportion. In the unified model, the
priors on the tissue class from which intensities are drawn are
encoded by deformable tissue probability maps. These are ge-
nerated from the averages of affine registered and tissue classified
Fig. 2. Signal-to-probability maps of a normal brain (A) and simulated case 06 (B).
tissue. T1 values are coded in an arbitrary unit (from 100 to 700). The GM probabi
shown on the left (light gray). For display purposes, the WM probability values ar
WM.
images of 452 subjects (see Fig. 1A), provided by the International
Consortium for Brain Mapping (http://www.loni.ucla.edu/ICBM/).
These maps represent the probabilities of finding GM, WM, CSF
and “other” tissues at each voxel. In this paper, the unified model
used the default number of Gaussians {2,2,2,4} to model each of
the intensity distributions of GM, WM, CSF and the “other” tissues
respectively.

Throughout this work, the following parameters of the SPM5
scheme were held constant: 25 mm for the cut-off of three
dimensional discrete cosine transform (DCT) basis functions for
spatial warping (for more details see Ashburner and Friston, 1999),
medium regularisation (see Crinion et al., 2007), and 75 mm width
for the Gaussian smoothness of intensity bias fields.

Problems with the segmentation procedure. To illustrate the
effectiveness of the unified segmentation using the three (plus
“other”) priors shown in Fig. 1A, a normal brain and two simulated
These maps represent a scatter-plot between the T1 image and the segmented
lity is shown on the right of each plot (dark gray) and the WM probability is
e multiplied by −1. The black arrow indicates the misclassified tissue in the

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.loni.ucla.edu/ICBM/


1257M.L. Seghier et al. / NeuroImage 41 (2008) 1253–1266
lesions (cases 10 and 06) were processed using the SPM5 seg-
mentation routine. The normal brain was segmented as expected
into GM, WM and CSF (Fig. 1B). In simulated case 10, the well-
defined insular lesion is entirely classified as CSF (Fig. 1C),
despite the fact that the normal priors were higher for WM than
CSF at this spatial location. The lesion site was therefore classified
with a low probability of being GM or WM which is important
when identifying areas with abnormally low GM or WM. In con-
trast, for simulated case 06, a part of the lesion was misclassified as
normal WM tissue (Fig. 1D), despite the fact that this tissue had a
Fig. 3. (A) modified segmentation of simulated case 06: (top) the 4 prior images; (bo
extra class. (B) modified segmentation of the same case using the result of the fir
spatially located in WM but with T1 signal close to GM) is now classified in the
T1 signal different from the T1 signal in healthy WM. This cannot
entirely be explained by the mixing of two Gaussians because
the same area remained misclassified as WM even when using
one Gaussian per class to model the signal distribution of each
tissue. This suggests that the relatively high WM priors at this
spatial localisation had biased the apparent difference in T1 signal
during the optimisation procedure (for more details, see Eq. (5) in
Ashburner and Friston, 2005). For our purposes, this segmentation
failure will hinder lesion identification. This problem has been
documented previously in patients with focal cortical dysplasia,
ttom) the segmented tissues (GM,WM, CSF) and a first approximation of the
st segmentation run as priors on the extra class. Note that the damage (i.e.
lesion class and not as intact WM.



1258 M.L. Seghier et al. / NeuroImage 41 (2008) 1253–1266
where parts of the lesions were misclassified as intact WM (see for
example Colliot et al., 2006a). A modification of the segmentation
procedure therefore needs to ensure that abnormal voxels are not
misclassified as GM or WM.

A modified segmentation procedure. One simple solution to the
problem of misclassification of damaged tissue entails adding an
“extra” class that includes the unexpected and abnormal voxels
within the lesion. This is equivalent to the segmentation procedure
in some multi-spectral studies that use the regions that show signal
enhancement after contrast agent injection as priors (e.g. Moon
et al., 2002; Prastawa et al., 2003). Although lesion location, shape,
size, and signal are unknown, we show below how the priors can
be approximated for the extra class in a mono-spectral mode.
Before describing this extra class, we illustrate its rational by
displaying the segmented images in a new way. This involves
generating signal-to-probability maps that represent a scatter-plot
Fig. 4. (A) Signal-to-probability maps of simulated case 06. These maps represent a
coded in an arbitrary unit (from 100 to 700). The GM probability is shown in dark g
WM probability values are multiplied by −1. Voxels located in the WM but corr
removing the voxels inside the lesion (those shown in black in A), the signal-to-pro
(both GM and WM tissues are no longer contaminated by the lesion).
(i.e., a voxel-by-voxel correspondence) between the T1 image
(signal) and the probability of a segmented tissue type.

Fig. 2 illustrates a scatter-plot of a normal brain. Higher pro-
bability values (around 1) for WM and GM corresponded to
different T1 signal ranges, suggesting a good partition between the
two tissues. However, in the presence of a lesion with a hetero-
geneous signal, as in simulated case 06, high WM probability was
also observed for voxels with a T1 signal range similar to those of
the GM class (voxels indicated by an arrow in Fig. 2B). This
suggests that the WM class actually contained voxels from the
lesion with a T1 signal far from the normal WM signal; i.e., the
WM class has become over inclusive.

The modified segmentation algorithm aims to suppress over
inclusive WM and GM classes, especially when the lesion has a T1
signal in the range of WM or GM signal. By adding an extra class
to the segmentation routine, we aimed to model explicitly voxels
that show a discrepancy between the spatial priors and the expected
scatter-plot between the T1 image and the segmented tissues. T1 values are
ray and the WM probability is shown in light gray. For display purposes, the
ectly classified as lesion (in the extra class) are shown in black. (B) After
bability maps of simulated case 06 are comparable to those of a normal brain



Fig. 5. (A) a schematic view of the different steps, from segmentation to grouping, of our automated lesion identification method. (B) An illustration of the
resulting images for simulated case 10 using the modified procedure.
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T1 signal (e.g. a location in the WM but with T1 signal values
close to GM). To suppress misclassified voxels (those indicated by
an arrow in Fig. 2B), the priors for this extra class should exhibit
the following characteristics. First, as the T1 signal in the lesion
(e.g. oedema, dysplasia) and GM are comparable, the extra class
should have a low probability in GM voxels to avoid incorporating
normal GM voxels. Similarly, to differentiate misclassified and
intact WM voxels, the extra class should have a low probability in
WM voxels to ensure that normal WM are classified properly;
however, as misclassified voxels are particularly evident within
WM, the probability of the extra class should be higher for voxels
located in WM, relative to GM, to “force” the segmentation to
reclassify the misclassified tissue. Although these criteria can be
satisfied by many priors for the extra class, one simple prior is the
mean of WM and CSF priors:

Pextra ¼ PWM þ PCSF

2
: ð1Þ

Where PWM and PCSF are the standard priors of WM and CSF
respectively (as shown in Fig. 1A). In short, a new class is formed
by taking prior probability mass from the WM and CSF classes but
not the GM class (note that Pextra values in GM tissue are not
zeros). This extra class provides more flexibility in the segmenta-
tion procedure, when dealing with the damaged tissue as illustrated
below.
Implementing the modified segmentation. Fig. 3 illustrates how
the modified segmentation routine dealt with damaged tissue in
simulated case 06. By adding this extra class, the segmentation was
able to classify the abnormal WM tissue (see Fig. 3A). Although
most of the abnormal voxels were given a low probability of being
intact WM (as can be seen when comparing Fig. 3A to Fig. 1D),
some of the abnormal voxels remained misclassified as WM or
GM. To improve the segmentation procedure further, the extra
class was refined and then used as an empirical prior for a second
segmentation on the same T1 image. To obtain a refined version of
the extra class, all the voxels classified in the extra class with a
probability value lower than a third were removed. This ensured
that, at the same location, voxels belonging to the extra class would
have a higher probability value than either GM or WM. When
using this refined version of the extra prior, the second segmentation
removed almost all abnormal voxels from the WM class (see Fig. 3B
for more details). This is clearly visible when comparing the WM
classes in Figs. 1D and 3B. Remarkably, this segmentation
procedure, with two iterations and appropriate extra class priors,
modelled abnormal voxels and thus minimised misclassification in
GM and WM classes. Note that, at each iteration, the segmentation
routine of SPM5 ensures that all priors sum to one at any voxel.

Practically, the process shown above can be iterated several
times (i.e., an iterative segmentation routine): the estimated extra
class acting as the prior for the next segmentation run. Here we use
two iterations throughout the paper. For more details about the
influence of the number of iterations, see paragraph 1 and Fig. S1
of the Supplementary material.

With two iterations, Fig. 4 shows clearly how adding an extra
class improved the dissociation of normal and abnormal WM
voxels. In these maps, the abnormal WM voxels (shown in black in
Fig. 4A) are classified in the extra class. The final WM class is
remarkably similar to a normal WM class (e.g. the scatter map of
a normal subject in Fig. 2A was comparable to the one of the
correctly segmented lesioned brain in Fig. 4B). Critically, we also
found that adding this extra class did not alter the segmented
healthy tissue when the brain is normal (for more details see
paragraph 2 and Fig. S2 of the Supplementary material).

This new segmentation approach which creates 4 normalised
and segmented classes per subject (i.e., normalised GM, WM, CSF
and the extra class) was applied to ten brains with simulated lesions
and eight brains with real lesions. For the purpose of lesion
identification, only the GM and WM images were used (i.e., here
we are only interested in lesions of gray and white matter).

Spatial smoothing
Before comparing the segmented images of a lesioned brain to

those of controls, we need to suppress fine-scale inter-subject ana-
tomical variability. For this purpose, the normalised and segmented
GM and WM images of each subject were smoothed spatially with
a Gaussian kernel of 8 mm full-width-at-half-maximum (FWHM).
See paragraph 3 and Fig. S3 of the Supplementary material for
more details about our reasons for selecting 8 mm smoothing. This
is in line with other studies that have shown better results with
intermediate smoothing values (8–12 mm) for lesion identification
(e.g. Stamatakis and Tyler, 2005).

Fuzzy clustering of outliers
To identify outlier voxels, we have described previously a

method based on Fuzzy Clustering with fixed Prototypes (FCP).
This has been used to identify voxels where activation in a given
subject is far from the mean activation of the group or population
(for more details, see (Seghier et al., 2007). In the context of lesion
identification, we assume that, at the global level, a lesioned brain
can be considered as an outlier in relation to normal (control) brains.
This assumption has been suggested for instance in some previous
multi-spectral work (e.g. Jack et al., 2001; Prastawa et al., 2004; Van
Leemput et al., 2001). Here, we used FCP to identify voxels that
were very different in the lesioned brain as compared to controls.

The procedure is as follows: a lesioned GM segment is compared
with control GM segments for each voxel i, by assessing a similarity
metric Dij that represents the difference between the value of voxel i
of a j-th GM fuzzy set and the mean of GM values in this voxel (with
j=1… Nsub; Nsub is the total number of subjects (i.e. number of
controls plus the patient)). The similarity metric Dij is defined as:

Dij ¼ 1� tanh
Nsub

Nsub � 1
d
Xij � P

X i

a

� �
: ð2Þ

The real constant α is a “tuning” parameter that can be adjusted to
control the sensitivity of the method to outlier values (see Fig. 3 of
Seghier et al. (2007)). tanh is the hyperbolic tangent, Xij is the tissue
probability for the j-th subject at voxel i, and X̄

P
i is the mean over

subjects. The constant α is fixed at −0.5 (the constant α is negative to
test if Xij is low compared to X

P
i, which is in line with the definition

of a lesion as an absence of normal brain tissue).
The similarity metric Dij is then used to quantify the degree of

membershipUij of voxel i to class j according to the following equation:

Uij ¼
Dk

ijX
j

Dk
ij

: ð3Þ

The parameter λ is a negative number, typically −4. The values Uij

(within the interval [0,1]) comprise the j-th fuzzy set. When j indexes



Fig. 6. (A) For simulated cases 06 (circles) and 10 (squares), illustration of the Dice index (left) at different U thresholds and ROC curves (right) that plot the true
positive rate (sensitivity) on the false positive rate (one minus specificity) for different U thresholds. (B) Axial slices illustrating the lesion boundaries of all
simulated cases.
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the lesioned brain, the values Uij comprise the fuzzy set FGM, which
represents the degree of membership of voxels that have very lowGM
probability in the lesioned brain, relative to controls (i.e., a GM lesion
map). This procedure was repeated with WM images, yielding the
fuzzy set FWM.

Grouping GM and WM lesions
From the above, we obtain two fuzzy sets FGM and FWM,

representing the voxels in each lesioned brain that had a very low
probability of being GM and WM voxels respectively, compared
with the controls. The union, FLES of the two sets identifies the
lesion (i.e., a probability of being either GM or WM). The fuzzy set
union was assessed with (c.f., Ibrahim, 1997),:

FLES ¼ FGM [ FWM ¼ max FGM ;FWMð Þ ð4Þ
where [ is the set operator “union”. The operator “max” is applied
over all voxels.

A schematic view of our scheme is provided in Fig. 5A. An
illustration of this procedure is given in Fig. 5Bwith simulated case 10.
Briefly, after segmentation, the tissue images were smoothed (with
FWHM of 8 mm) and compared to normal tissue images from the
control subjects to identify outlier voxels. These GM and WM outlier
voxels are then combined to form the fuzzy set that defines the lesion.
This fuzzy set can be thresholded at a given U value to generate a
binary mask of the lesion (for more details about the influence of U
thresholds, see paragraph 4 and Fig. S4 of the Supplementarymaterial).
Validation of the identified lesions

At the global level, the method is judged successful if it can
identify the lesion at the right location and with approximately the
correct extent. At the voxel level, we assessed Dice's similarity
index (Dice, 1945) between each binary lesion map (i.e. FLES at a
given U threshold) and the “real” lesion (considered as true
positives) using the following formula:

Dice ¼ 2dTP
2dTP þ FP þ FN

ð5Þ

where TP, FP, and FN represent the number of true positives, false
positives, and false negatives respectively (for a similar rational see Sajja
et al., 2006; Stamatakis and Tyler, 2005). Because the lesion is a fuzzy
set (i.e. FLES contained values between 0 and 1), the Dice index was
generated at severalU thresholds (c.f. Anbeek et al., 2004). To assess the
specificity and the sensitivity of our method, we also generated receiver
operating characteristic (ROC) curves (e.g. Metz, 1978) that encode the
dependence of the true positive rate (sensitivity) on the false positive rate
(one minus specificity) for different U thresholds.

For simulated lesions, the “real” (true) abnormal voxels are ap-
proximately known (inserted with the cut/paste procedure as explained
above). For real cases, all lesionsweremanually segmented by an expert
(A.P.L) and the resultant masks are thus considered as true voxels.
Fig. 7. ROC curves of the eight real cases. All curves are remarkably close to
the top-left corner (i.e. near to the manual segmentation).
Results

Definition of simulated lesion boundaries

At the voxel level, we illustrate the sensitivity of the method on
simulated cases 06 and 10 (those presented in Fig. 1C and D).
Fig. 6A shows the Dice similarity index at different U thresholds.
At low U values (e.g. Ub0.05), the Dice index was small due to
high false positive rates. The Dice index reached high values
(N0.7) at intermediate U values suggesting a remarkable cor-
respondence between the identified lesions and the known
simulated lesions. The method is also highly sensitive and specific
as illustrated by the ROC curves (i.e. curves near to the top-left
corner). At the global level, the boundaries of all simulated lesions
are shown in Fig. 6B. All lesions were identified successfully,
including the extensive oedema in simulated case 01, both the
aneurysm and infarct in simulated case 03, dysplasia in simulated
case 04, large tissue loss and tissue damage in simulated case 06
and atrophy in simulated case 08. Critically, although a low U
threshold was used (U=0.1) in Fig. 6B, false positives (i.e., intact
tissue identified as damaged) were very limited (e.g. brainstem of
simulated case 05 and WM tracks in simulated case 07).

Definition of real lesion boundaries

Given real patient scans, the method was able to identify auto-
matically, and without exception, a wide range of lesions. Fig. 7
shows the ROC curves of the eight real cases. Compared to the
manual segmentation (i.e. that defines the “true” abnormal voxels),
our method is highly sensitive and specific for these different
lesions. The Dice index is on average 0.64±0.1 with a maximum at
0.81. One real case has a small Dice index (0.53) due to non-
overlapping voxels between the manual segmentation and our
method, in particular near to the ventricles (see Fig. 8C below),
despite lesions identified at the right location.

Patients with extensive lesions are shown in Fig. 8. In these
four cases, lesions were identified correctly, including massive
tissue loss (Fig. 8A) and extensive tissue damage in different parts
of the brain (Fig. 8B–D). More challenging cases were the patients
with tissue loss near to the ventricles (i.e., comparable T1 signal in
lesions and ventricles). Fig. 9 shows the results in three patients;
the boundaries of the lesions appear well distinguished from the
ventricles, which confirms that our procedure minimised any
contamination from ventricles during lesion identification. Lesion
identification was successful in both left (Fig. 9A–B) and right
hemispheres (Fig. 9C). The last real case is shown in Fig. 9D. The



Fig. 8. Illustration of the boundaries of four real cases with large and heterogeneous lesions on coronal, axial, and sagittal views. Lesion boundaries are displayed
at a threshold of UN0.3 (threshold applied on the fuzzy lesion set).
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method was remarkably successful in this case, despite a lesion
near the inter-hemispheric fissure (Fig. 9D).
Discussion

In this paper, we propose a new automated procedure for lesion
identification from single images based on the detection of outlier
voxels. We have demonstrated the utility of this procedure on
multiple artificial and real lesions. Our findings show the high
sensitivity of the method for detecting and delineating brain lesions
with different sizes, locations, and textures. Our approach has
important applications for the generation of lesion overlap maps of
a given population (e.g. Frank et al., 1997; Makale et al., 2002) and
the assessment of lesion-deficit mappings (Bates et al., 2003;
Damasio et al., 2004; Karnath et al., 2004; Solomon et al., 2007;
Tyler et al., 2005).

The rational for using this method is motivated by the following
points: (i) this method is suitable when only one type of image
(e.g., T1 image) is available; (ii) intensities in the segmented
classes are automatically normalised into the interval 0 to 1 for
each subject, which should minimise the influence of MR signal
non-uniformities (Hou, 2006) that may hinder the detection of
lesion from T1 volumes (e.g. Stamatakis and Tyler 2005); (iii) the
analysis was performed on voxels within the tissues of interest
(GM and WM) avoiding contributions from the CSF and non-brain
classes; (iv) it can assess the lesion effect specifically for each brain
tissue; e.g., GM malformations; (v) the existence of the lesion is
modelled explicitly as an extra class during brain segmentation,
which helps to avoid misclassification of damaged voxels; (vi)
identified lesions are mapped directly in a stereotaxic space (e.g.
Rorden and Brett, 2000); (vii) the algorithm is based on optimal
normalisation (i.e. the unified segmentation–normalisation frame-
work) that has been shown to be accurate and robust when dealing
with lesioned brains (Crinion et al., 2007); (viii) the algorithm for
outlier detection is based on the pragmatic theory of fuzzy sets; (ix)
the categorisation of a voxel as intact or abnormal is based on the
distribution of normal values of GM and WM in healthy subjects;
(x) identified lesions are coded as continuous values thereby
quantifying the degree of abnormality of each voxel.

Some methodological factors may limit the sensitivity of our
method. The spatial smoothing used here to minimise inter-subject
anatomical variability during the identification of outliers obv-
iously has an influence on the sensitivity and specificity of the
method. In line with previous reports (e.g. Stamatakis and Tyler,
2005; Wilke et al., 2003), intermediate smoothing values (e.g.
around 8 mm of FWHM) appear to be suitable for the size of
lesions tested here. However, this parameter should be adapted to



Fig. 9. Illustration of the boundaries of three real cases with lesions near to the ventricles (A–C) and one real case with a lesion near to the inter-hemispheric
fissure (D) on coronal, axial, and sagittal views. Lesion boundaries are displayed at a threshold of UN0.3.
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match the size of the expected lesions (due to the matched filter
theory (Salmond et al., 2002a; White et al., 2001)), for instance by
using low smoothing if the method is applied to identify tiny lesions
(e.g. subcortical lesions (Vogels et al., 1995) or subtle GM
malformations (Kassubek et al., 2002)). In addition, the sensitivity
of the method also depends on the value of the parameter α during
the quantification of the similarity measure D (i.e. see Eq. (2)).
Basically, the parameter α controls how far a voxel should be from
the mean of controls before it is considered an outlier. Here, it was
set objectively to midway in the range of possible probability values
(i.e. half the interval [0,1]). An extensive discussion of the influence
of the parameter α can be found elsewhere (Seghier et al., 2007).

Critically, the comparison between the brain-damaged subjects
and healthy subjects assume that both groups differ only according to
the presence or absence of abnormal tissue. Thus, it is important to
cancel orminimise all other potential sources of differences thatmight
be caused by demographic variables, including age and gender. For
instance, comparing an elderly subject to younger controlsmay lead to
the detection of abnormal voxels caused by structural differences
outside the real lesion (although atrophy detectionmight be relevant in
other contexts; e.g. Convit et al., 2000). In addition, the specificity of
the method also depends on the accuracy of the segmentation and the
normalisation procedure. The normalisation procedure should
accurately match the damaged brain to the controls to ensure good
correspondence of healthy tissues in both groups. Several parameters
may influence the quality of the normalisation procedure (e.g.
Robbins et al., 2004; Salmond et al., 2002b; Shen et al., 2007; Wilke
et al., 2003). Here we used an optimal normalisation procedure that
has recently been shown to be more accurate in brain-damaged
subjects than standard procedures (Crinion et al., 2007).

During the evaluation of our method, we assumed manual seg-
mentation as the gold-standard method in order to define the “ground-
truth” (true abnormal voxels) used for computing the Dice similarity
index and evaluating ROC curves. However, this does not guarantee
that misclassified voxels will not be included in the manually
segmented lesions (which will lead to an increase of false positives/
negative). For instance, Fiez et al. (2000) estimated the percentage of
intra- and inter-operator errors during lesion identification in 10
subjects. In particular, they showed that, at the voxel level, the intra-
operator error (i.e. percentage of nonoverlaping voxels between two
lesion segmentations of the same subject and by the same operator)
was on average 26% to 36% (for more details see Table 3 of Fiez et al.
(2000)). Note also that the definition of “exact” lesion boundaries in a
mono-spectral mode is difficult even with manual segmentation,
because of partial volume effects in T1 images with limited spatial
resolution (e.g. Guttmann et al., 1999; Links et al., 1998).

In this paper, we tested our method on a variety of lesions (size,
location, texture). However, it is likely that other kinds of lesions
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might be challenging. Some lesion locations might be more difficult;
for instance, posterior fossa lesions (e.g. infratentorial tumors) can be
difficult to identify automatically (Gass et al., 2000). As the gyral
anatomy of the cerebellum is more convoluted than that of the
cerebrum, lesions in this region may give rise to disproportionate
errors of spatial normalization. In this context, it might be useful to use
more accurate cerebellar templates (for a similar rational see
Diedrichsen, 2006). Other lesion locations or causes of abnormal
signal intensity may also be problematic for our method. Periven-
tricular lesions (lesions contiguous with ventricles, e.g. Zimmerman
et al., 1986) can be classified asWM lesions but they are very difficult
to distinguish from atrophy effects or CSF-partial voluming (Payne
et al., 2002). In all these cases and as a general principle we recom-
mend that all automated lesion profiles be checked by eye.

Finally, as shown above, identified lesions are coded as continuous
values (the fuzzy degree of membership U in the interval [0,1])
providing a useful quantification of the degree of abnormality of each
voxel. This is essential for methods that use continuous lesion values
for generating lesion-deficit mappings (e.g. Tyler et al., 2005). On the
other hand, for other mapping methods (e.g. Bates et al., 2003;
Damasio et al., 2004; Dronkers et al., 2004; Karnath et al., 2004) or
lesion overlap methods that use binary lesions, the binarisation
process can be performed by applying aU threshold (typically 0.3) to
the fuzzy lesions.

In summary, we have presented an automated method for lesion
identification in mono-channel MRI that can be implemented
easily within the SPM5 software package. With a modified
segmentation procedure and fuzzy clustering, our approach was
able to detect and delineate a variety of artificial and real lesions.
From a clinical perspective, our method should help to compute the
total volume of lesion, when this measure is appropriate, or to trace
precisely the frontiers between the intact and damaged tissue that
might be pertinent for surgical or diagnostic purposes.
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