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ABSTRACT

In image segmentation, one challenge is how to deal with the non-
linearity of real data distribution, which often makes segmentation
methods need more human interactions and make unsatisfied seg-
mentation results. In this paper, we formulate this research issue
as a one-class learning problem from both theoretical and practi-
cal viewpoints with application on medical image segmentation.
For that, a novel and user-friendly tumor segmentation method is
proposed by exploring one-class support vector machine (SVM),
which has the ability of learning the nonlinear distribution of the
tumor data without using any prior knowledge. Extensive experi-
mental results obtained from real patients’ medical images clearly
show that the proposed unsupervised one-class SVM segmenta-
tion method outperforms supervised two-class SVM segmentation
method in terms of segmentation accuracy, speed and with less
human intervention.

1. INTRODUCTION

Medical image segmentation plays an instrumental role in clinical
diagnosis. An ideal medical image segmentation scheme should
possess some preferred properties such as minimum user inter-
action, fast computation, and accurate and robust segmentation
results [1][2]. The existing works on medical image segmenta-
tion have been focusing on X-ray, Magnetic Resonance Imaging
(MRI), CT and ultrasound images, and they can be broadly clas-
sified into three methodologies: region growing methods, shape-
based methods, and statistical methods.

Region growing methods [3] provide a simple way for seg-
mentation. These methods require user to manually select a seed
in an image followed by applying a region growing process. To
reduce some unnecessary computations, a region of interest (ROI)
can be further imposed. The major drawback of this method is that
it requires a considerable amount of human intervention to spec-
ify the criteria for region growth and to select the seed candidates
to achieve a satisfied segmentation result. Another drawback of
this method is that it only works well for homogenous regions.
Shape-based methods such as active contour [4][5] provide an-
other school of approaches for medical image segmentation. But
the disadvantages of these methods lie in the difficulty of select-
ing the optimal initial contour. Improper selection of the initial
contour will results in unsatisfactory results. Moreover, the con-
vergence speed is often very slow. Other sophisticated methods
including statistical methods and fuzzy logic approaches [6] are
introduced into this field recently. These methods usually define a
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Fig. 1. The schematic diagram of the proposed tumor segmenta-
tion method based on one-class support vector machine (SVM).

specific parameterized distribution, and the major work is to esti-
mate such predefined parameters. It means that such approaches
have implicitly imposed some prior assumptions about the data
distribution. Accordingly, their performance heavily depends on
how well the assumed distribution is close to the real data distribu-
tion. They are only useful when the data distributions of different
tissue classes are known in prior [7]. However, in real cases, espe-
cially in medical applications (e.g., MRI tumor segmentation), we
usually have no prior knowledge about the data distribution. Thus
automatic learning of these nonlinear distributions is desirable.

In this paper, we propose a novel and user-friendly tumor seg-
mentation approach by exploring one-class SVM (see Fig. 1). In
the proposed segmentation framework, the user is only required to
feed one-class SVM classifier with a chosen image sample over a
tumor area as the query for performing segmentation. Then, our
approach can intelligently learn the nonlinear tumor data distri-
bution without additional prior knowledge and optimally generate
an accurate boundary of the tumor region. The final segmentation
result can be obtained after region analysis. Note that SVM can
generalize well in higher-dimensional spaces, and feature extrac-
tion can be automatically performed during the training stage of
SVM [8]. No specific feature extraction approach is required.

2. ONE-CLASS, TWO-CLASS, AND MULTI-CLASS SVM
FOR IMAGE SEGMENTATIONS

Statistical segmentation methods perform the task of classifying
and grouping the image pixels into unified regions according to
a certain criteria. The key task is usually performed by some se-
lected pattern classifiers plus some necessary post-processing tech-
niques such as morphological filtering. In tumor segmentation, the
focus is to separate the tumor data (’positive’ pattern) from the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Data 

Decision Boundary
 by Two−Class SVM 

Decision Boundary
by One−class SVM 

Fig. 2. Undesirable classification result by two-class SVM. Leg-
end ’◦’ indicates the target samples for training and legend ’+’
indicates the relevant non-target data for training. Two-class SVM
is trained on the samples indicated by ’◦’ and ’+’. One-class SVM
is trained only on the samples indicated by ’◦’.

non-tumor data (’negative’ pattern). The following discussion is
focused on segmentation based on one-class and two-class, which
can be easily generalized to the case of multi-class classification.

In two-class classification, the data from two classes are avail-
able. The decision boundary is ’supported’ from both sides. Most
two-class classifiers assume more or less equally-balanced data
classes and thus do not work well when one class is severely under-
sampled or even completely absent. An illustration of undesirable
classification result reached by two-class SVM is given in Fig. 2.
In this figure, the decision boundary generated by two-class SVM
is based on the training samples indicated by legends ’◦’ and ’+’. It
is obvious that the two-class SVM has misclassified a large part of
non-target data (indicated by legend ’.’) into the target data, which
is unacceptable. To achieve a satisfied tumor segmentation result
by using two-class classification, user needs to know the number
of classes and the distributions of tumor data and non-tumor data
in order to achieve representative and balanced data samples. The
requirement is impractical and often impossible to meet. These
disadvantages make the conventional segmentation systems not so
useful.

On the other hand, one-class SVM performs well in separat-
ing the target data (tumor region in this case) from others – see the
circle around the target data as the decision boundary produced
by one-class SVM. Therefore, from both practical and theoretical
viewpoints, we argue that the tumor segmentation issue could be
formulated as a one-class learning problem and accordingly pro-
pose a new segmentation approach based on one-class SVM.

3. MATHEMATICAL FOUNDATION OF ONE-CLASS
SVM

One-class SVM constructs a classifier only from a set of labelled
positive patterns, called positive training samples [9]. Suppose
that the user has the following training data set:

χ = {xi| i = 1, 2, 3, . . . , l} (1)

where xi is the i th observation and l ∈ N is the number of obser-
vations. Consider there is a feature map, which maps the training
data into a higher-dimensional inner-product space, called feature

space F . That is, Φ : χ → F . Thus the image of a training sam-
ple xi in χ is represented as Φ(xi) in F . We want to compute a
function f which takes the value +1 for the tumor data (positive
samples) and -1 for the non-tumor data (negative samples) outside
the tumor region. In the feature space, our strategy is to separate
the data from the origin with the maximum margin. Therefore we
only consider the tumor data, and the objective function is formu-
lated as follows:

min
W∈F,η∈Rt,b∈R

1

2
WT W + 1

vl

∑

i
ηi − b

s.t. W · Φ(xi) ≥ b − ηi, ηi ≥ 0

(2)

where W is the normal vector of the hyperplane which represents
the decision boundary. b represents the threshold of function f ,
ηi is the slack variable, which is penalized in the objective func-
tion. The regularization term v is a user-defined parameter, which
controls the trade-off and indicates the fraction of samples that
should be accepted by the description. We want to compute the
parameters W and b, which give the minimization of the objective
function (Eq. (2)). Therefore, we introduce the positive Lagrange
multipliers, αi, and βi (for i = 1, 2, · · · , l), one for each of the
inequality constrains in (2). This gives the following Lagrange
form:

L(W, η, b, α, β) =
1

2
W

T
W +

1

vl

∑

i
ηi − b −

∑

i
βiηi

−
∑

i

αi(W · Φ(xi) − b + ηi) (3)

where η, α, and β are one-column vectors representing [ηi], [αi],
and [βi], respectively. To minimize L(W, η, b, α, β), we let its
gradient, with respect to W, b, and ηi, individually, equal to zero.
That is,

∂L

∂W
= W−

∑

i
αiΦ(xi) = 0 =⇒ W =

∑

i
αiΦ(xi) (4)

∂L
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= − 1+
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i
αi = 0 =⇒

∑

i
αi = 1 (5)

∂L

∂ηi

=
1

vl
+ αi − βi = 0 =⇒ ai =

1

vl
− βi ≤

1

vl
(6)

Substituting (4)-(6) into (3), we obtain the following dual prob-
lem:

min
α

1

2

∑

i,j
αiαjk(xi,xj)

s.t. 0 ≤ αi ≤ 1

vl
,

∑

i
αi = 1

(7)

where k(xi,xj) represents the inner product of Φ(xi) and Φ(xj);
that is, k(xi, xj) = Φ(xi) · Φ(xj)

Eq. (7) can be further written in a more compact matrix form:

min
α

1

2
αT Qα

s.t. 0 ≤ αi ≤
1

vl
, eT α = 1

(8)

where Qi,j = k(xi,xj) and e is an unit vector of length N . Note
that the dual problem in (8) presents a quadratic form, and its min-
imization can be solved by using the well-known quadratic pro-
gramming (QP) optimization method. The optimal value of α cor-
responds to the minimum of the objective function. Those objects
with weight αi > 0 are required in the final description of the
data set. They are commonly called support vectors in machine
learning research.



The optimal value of the parameter b can be computed via the
following equation:

b =
∑

j
αjk(x

j
,xi) (9)

where xi corresponds to any one of the support vectors. Once the
optimal values of the parameters are obtained, we can classify the
tumor data according to the following decision function:

f(x) = sgn
(

∑

i
αik(x

i
,x) − b

)

(10)

The data corresponding to f(x) ≥ 0 are determined as the tumor
data candidates. Otherwise, they are regarded as the non-tumor
candidates.

4. KERNEL-BASED FLEXIBLE DESCRIPTION

The learning ability of one-class SVM originates from the ’kernel
trick’ introduced by Vapnik [9]. This ’trick’ is accomplished by
different choices of kernel function k(x,y) introduced in Section
3. Note that in the formulation of one-class SVM, the mapping
Φ is only defined implicitly by the kernel k(x,y). Thus, we do
not need to give an explicit mapping but to define a kernel instead.
Commonly used kernels are summarized as follows:

• Radial basis function (RBF): k(x,y) = exp
(

−‖x−y‖2

σ

)

• Polynomial kernel: k(x,y) = (x · y)n

• Tangent hyperbolic kernel: k(x,y) = tanh(x · y + Θ)

where σ, n, and Θ are the parameters of RBF kernel, polynomial
kernel, and tangent hyperbolic kernel, respectively. It has been
pointed out that these kernels are not equally useful. Among them,
the preferable choice is the RBF kernel [9]. With the ’kernel trick’,
one-class SVM can deal with nonlinear multi-mode data distribu-
tion.

A toy experiment is conducted to demonstrate the learning
ability of one-class SVM. The training data are jointly sampled
from two 2-D normal distributions. In this section, one-class SVM
is investigated in two cases: linear and nonlinear. In the linear
case, k(x,y) equals to the inner product of the original data sam-
ples; i.e., k(x,y) = x · y. One-class SVM directly performs the
classification task in the input space without mapping the data to a
higher-dimensional space. The learning ability of linear one-class
SVM is demonstrated in Figs. 3(a)-(b). From this figure, we can
see that it attempts to put a circle boundary in the 2-D space to in-
clude most of the positive samples, while leaving some out of the
boundary. Furthermore, the boundary also includes an undesirable
and superfluous region in the input space (see Fig. 3(a)). This is
due to the fact that the hypersphere (for higher-dimensional input
data) is a very rigid model, not flexible enough to give an accurate
boundary of the data set.

For the nonlinear case, if we map the data to a new space by
using the ’kernel trick’, we might obtain a better fit around the ac-
tual data set’s boundary. A possibly demonstration of the learning
ability of one-class SVM using RBF kernel is performed on the
same data set (see Figs. 3(c)-(d)). After learning, it can be clearly
seen that the one-class SVM can capture the data distribution fairly
well and intelligently produce a flexible boundary containing most
of the training examples. Also the 3-D decision surface as shown
in Fig. 3 clearly confirms a good match with the true data distribu-
tion. The ’kernel trick’ gives the active learning ability to one-class
SVM, which can solve the nonlinearity of data distribution for tu-
mor segmentation of MRI as mentioned in Section 2.
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Fig. 3. Resulting flexible description of one-class SVM on the
training data generated from two Gaussian distributions. (a) De-
cision boundary generated by linear one-class SVM via the inner
product; (b) The corresponding 3-D decision surface of (a); (c)
Decision boundary generated by nonlinear one-class SVM via the
RBF kernel function; (d) The corresponding 3-D decision surface
of (c).

5. SEGMENTATION MAP POST-PROCESSING

Any classification method could yield classification errors. In our
proposed method, the mis-classified pixels usually take the form
of isolated speckles scattered across the entire classification map
as shown in Fig. 4(b). To remove these speckles, a morphologi-
cal filter including dilation and erosion operations is applied as the
post-processing technique — merging the connected regions while
removing some isolated non-tumor regions. The eight-wise con-
nected components operation is used in the refinement of tumor
segmentation [7]. The effectiveness of this operation is demon-
strated in Fig. 4(c). We can clearly see that the speckle noises have
been removed.

(a) (b) (c)

Fig. 4. An illustration of the role and effectiveness of segmentation
map post-processing. (a) The original image; (b) The initial tumor
segmentation map; (c) Post-processing result.

6. EXPERIMENTAL RESULTS

6.1. Comparison with the ground truth

To verify the effectiveness of the proposed segmentation method,
several supervised segmentation experiments are performed on a



set of test images. These test images are nasopharyngeal carci-
noma slices (Fig. 5) from MRI system acquired from real patients.
They are scanned from the top of the patients’ brain and down-
ward. Each patient’s MRI anatomic slice contains two feature im-
ages: one is imaged by MRI system without adding the contrast
agent to the patient (Fig. 5a) and the other is obtained after adding
the contrast agent (Fig. 5b). Both of the two feature images are
used in our tumor segmentation task. The gray levels of the tumor
sample selected by the user as a query are directly fed into one-
class SVM to train its parameters. The average processing time
of tumor segmentation is around 6.85s for one anatomic slice con-
taining two feature images of size 512 × 512 each (implemented
in MATLAB on a Pentium III 2.4 MHz PC). To save the computa-
tion time, user has an option to impose a ROI rather than the entire
image slice at the graphical user interface stage.

In our experiment, a Gaussian RBF kernel is chosen as the ma-
chine kernel function as mentioned in Section 4. After learning,
the approach classifies the medical data according to the decision
boundary specified by (10). Post-processing morphological filter-
ing is then performed on the obtained binary classification map.
The tumor segmentation results are compared with the respective
’ground truth’ tumor segmentations that were manually segmented
by radiologist. Quantitative measurement of segmentation accu-
racy are calculated in terms of true positive (TP ) with respect to
the ground truth.

Let GT and Ω denote the set of tumor pixels of the ground
truth and the set of the tumor pixels of our segmentation results,
respectively. The TP can be defined as follows:

TP = {x(i, j) | x ∈ GT, x ∈ Ω} = GT ∩ Ω (11)

where x(i, j) represents intensity of the medical image pixel at the
location (i, j). To give an objective evaluation of our segmentation
results with respect to the ground truth, the following commonly
used criteria is adopted [1] :

MP =
#TP

#GT
(12)

where symbol # denotes the cardinality of a set. Therefore, MP is
the percentage of correct match between our segmentation results
and the ground truth.

Based on the difference between GT and Ω, false positive
(FP ) and false negative (FN ) are further defined as follows:

FP = {x(i, j) | x /∈ GT, x ∈ Ω} = GT ∩ Ω (13)

FN = {x(i, j) | x ∈ GT, x /∈ Ω} = GT ∩ Ω (14)

In our experiments, the comparison results in terms of #TP ,
#FP , #FN , #GT , and MP are tabulated in Table 1. The
higher the MP value, the larger #TP (i.e., correct tumor segmen-
tation) contained in the results. From Table 1, we can see that the
segmentation results achieve a high percentage of correct match to
the ground truth. Most of the MP values are around 90%. Fig. 5
shows some examples of our segmentation results versus their re-
spective ground truth to give an visual comparison. The segmen-
tation results are promising and are acceptable by radiologists in
this field.

6.2. One-class SVM versus two-class SVM

One of the advantages of this one-class SVM-based approach is
that human interactions have been greatly reduced, while yielding

Table 1. One-class SVM based tumor segmentation results versus
the ground truth.

No. #TP #FP #FN #GT MP
1 4192 74 522 4714 0.89
2 3465 302 273 3738 0.93
3 3696 1326 348 4044 0.91
4 2899 445 189 3088 0.94
5 1715 909 109 1824 0.94
6 1176 709 111 1287 0.91
7 1113 497 135 1248 0.88
8 5336 2244 465 5801 0.92
9 5565 1242 975 6540 0.86

10 4568 1553 739 5307 0.86
11 6597 628 1060 7657 0.86

very good segmentation results compared to other supervised two-
class or multi-class based segmentation methods. It has reduced
the risk of producing unsatisfied segmentation results due to unbal-
anced data cluster sizes – the tumor region versus the non-tumor
region. The corresponding principle has been analyzed in Section
2. We here experimentally make a comparison of the proposed
method with two-class SVM-based segmentation scheme. The
reason why we selected two-class SVM as the representative two-
class classifier is that many studies have indicated that two-class
SVM outperforms other conventional two-class classifiers in most
cases [10][11]. To have a fair comparison, we only replace the
algorithm of one-class SVM with two-class SVM while keeping
other processing steps unchanged. For two-class SVM, in order to
obtain satisfied segmentation results, time-consuming human in-
teractions are required to select the representative data samples of
the tumor and the non-tumor tissues, respectively. Table 2 tab-
ulates the segmentation results using supervised two-class SVM
segmentation technique. Compared with Table 1, it is worth to
note that two-class SVM produces less FP s than one-class SVM.
This observation is justified because two-class SVM utilizes the
separation information provided by the tumor data and the non-
tumor data. Thus, after training, the classifier has built up the
discrimination capability to differentiate the tumor data and the
non-tumor data. From this table, we can see that the tumor seg-
mentation results by one-class SVM are overall better than those
by the supervised two-class SVM in terms of the values of MP .
Moreover, our proposed method requires less human interactions.
Thus, it is user-friendly and practical in clinic use.

7. CONCLUSIONS

Segmentation or extraction of a concerned region from medical
images is a challenging yet unsolved task due to large variations
and complexity of the human anatomy and pathological lesions.
Currently, there are no universally accepted methods on quantify-
ing tumor size in clinical practice [1]. In this paper, the proposed
approach based on one-class SVM has demonstrated great poten-
tial and usefulness in MRI tumor segmentation.

The proposed segmentation approach has the ability of learn-
ing nonlinear distribution of medical data without prior knowl-
edge. Experimental results in this paper have shown that the seg-
mentation results of the proposed approach are better than the su-
pervised two-class SVM learning algorithm in terms of the values



Fig. 5. Examples of tumor segmentation results from three patients versus the ground-truth segments (row-wise, from top to bottom,
corresponding to different patient’s MRI slices, respectively). (a)-(b) The original nasopharyngeal carcinoma MRI feature images, before
and after adding the contrast agent, respectively; (c) The tumor boundary, as shown in white contour, has been detected by using our
proposed one-class SVM method; (d) Segmented tumor area (same as (c), but for ease of visualization); (e) The ground truth segments.

.

Table 2. Two-class SVM tumor segmentation results with respect
to the ground truth

No. #TP #FP #FN #GT MP
1 4110 71 954 4714 0.87
2 3425 198 313 3738 0.90
3 3353 1067 691 4044 0.78
4 2512 118 576 3088 0.75
5 1711 390 113 1824 0.83
6 1193 299 94 1287 0.93
7 893 248 355 1248 0.72
8 3899 286 1194 5081 0.77
9 5433 980 1107 6540 0.83
10 4778 1882 529 5307 0.90
11 6208 601 1449 7657 0.81

of MP (i.e., correct matching). Furthermore, it only requires the
user to feed the algorithm with a ’query’ tumor sample. Hence it
reduces user interactions and increases the feasibility of the pro-
posed method. To conclude, the proposed scheme is a novel and
user-friendly tumor segmentation method from the practical view-
point.
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