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Abstract- Tumor/abnormality segmentation from magnetic
resonance imagery (MRI) can play a significant role in cancer
research and clinical practice. Although accurate tumor
segmentation by radiologists is ideal, it is extremely tedious.
Experience shows that for MRI database indexing purposes
approximate segmentations can be adequate. In this paper, we
propose a straightforward, real-time technique to find a
bounding box around the brain abnormality in an MR image.
Our algorithm exploits left-to-right symmetry of the brain
structure. The proposed detection algorithm can play a useful
role in indexing and storage of bulk MRI data, as well as provide
an initial step or seed to assist algorithms designed to find
accurate tumor boundaries.

I. INTRODUCTION

Currently, the large databases of brain tumor magnetic
resonance (MR) images maintained by most clinics are not
indexed, and cannot be searched based on clinically relevant
tumor characteristics such as location and size. On the one
hand, manual tumor segmentation is extremely laborious and
tedious given the sheer volume ofMR data. On the other hand,
reliable and fast automated off-the-shelf tumor segmentation
algorithms are equally hard to obtain. Presently available
automatic brain tumor segmentation algorithms that attempt to
segment the tumor exactly do not perform as reliably as it is
desired even from the database indexing purpose. Instead, we
propose in this paper an algorithm that finds a less exact
segmentation but does so reliably and in real-time.

Exact, automatic segmentation of tumors/edema from brain
MRI is a difficult and unsolved problem. For a nice account of
this topic from an image analysis and machine learning
perspective see [7]. The potential road blocks seem to come
from incorporating domain specific knowledge into the
algorithms. Voxel-wise classification algorithms, such as
those via support vector machine, are typically dependent on
the locally computed features (computed within a window
around a voxel). On the other hand, incorporation of global
region-based features is non-trivial and computationally
intensive ([2], [5]). These algorithms typically require
registration of MR images, standardization of image
intensities, and noise removal [7]. Moreover, many advanced
algorithms can be slow and unsuitable for database indexing
purposes.

Keeping these views in consideration, we propose here a
fast method for locating brain tumors in magnetic resonance
(MR) images. Specifically, the algorithm defines bounding
boxes around abnormal regions caused by primary brain
tumors in typical MR scanning modalities, including TI, TI
with gadolinium, T2, and FLAIR [7]. We believe that our
algorithm has at least the following two direct applications in
the treatment of brain cancers. Clinical centers currently
maintain large amounts of archived brain tumor MR data that
is not indexed for easy retrieval according to image properties.
Database indexing based on automated tumor location would
allow a clinician to retrieve historical cases relevant to the
diagnosis and treatment of new patients' cancers. In addition,
our proposed automated tumor location algorithm could be
used to seed or constrain an automated brain tumor
segmentation system.
The key observation underlying our approach is that normal

brain structure is roughly symmetric: the left part and the right
part can be divided by an axis of symmetry. Tumors/edemas
typically disturb this symmetry. We utilize this property to
design a real-time algorithm to locate bounding boxes. The
proposed algorithm uses only a single MR image and avoids
the non-trivial issues of image registration and intensity
standardization. Our bounding box finding algorithm is
unsupervised and requires no prior training. It uses only two
user-tuned parameters. Empirical studies with our algorithm
show that these two parameters can be conveniently set by a
user to run on a large amount of data.

II. PROPOSED TECHNIQUE

We cast the problem of finding a bounding box around brain
abnormalities from MRI as a change detection problem [6].
We assume that the region of abnormality is located in one of
the two halves of the brain. Thus, in the MIRI one half of the
brain acts as a reference image, and the other half, as a test
image. We need to compare the test image with the reference
image to find out the region of abnormality.
To formulate this change detection problem let us consider

the setting shown in Fig. l(a), where we show two images, I
and R. Here, I is the test image and R is the reference image.
The task is to find the anomalous region D on I that is not
present in R. Often, straightforward methods such as taking
the point-wise subtraction image II-RI fail to identify the
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region differences correctly. The reasons are various;
however, the most prominent one is that the left and right
halves of a brain do not precisely match on a point-to-point
basis, even when we consider a normal brain without
tumor/edema. Noise is also present in the difference image.
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Fig 1: (a) Finding D from image I, using a reference image R, (b
typical score function plot.

In this paper we use a region-based approach rather
point-to-point comparison that most of the change de
algorithms use [6]. To detect the region of abnormality
we consider a score function defined by the Bhatta
coefficient (BC) [4]. We define our proposed score me
follows. Consider a horizontal dotted line drawn acrm
images I and R in Fig. 1(a) at a distance s from the tops
images. We define two rectangles on the image d
A(s) = [O,w] x [O,s] and B(s) = [O,w] x [s,h], where
h are respectively the width and the height of the image
R. Note that A(s) and B(s) respectively denote the
domain above and below the horizontal line. We def
proposed score function as:
Es A(s) A()

E(s) =P ~ B(s) B(s)
-(P ' X

where P's are normalized gray level intensity histograms
(probability mass functions). The subscript on P denotes
whether P is constructed on the test image I or on the
reference image R. The superscript of P denotes on which
portion of the image domain P is constructed. For example,

P A(s) denotes the normalized intensity histogram of image I

within A(s). Here (X, Y) is the inner product of two vectors X
and Y. Thus the score function is the difference of BC's
between the image domains above and below the reference
line at s.
BC is a number between 0 and 1. BC between two

probability mass functions (p.m.f.) is 1 when they are exactly
equal. If two p.m.f.'s are very different, e.g, with disjoint
supports, then their BC value will be 0. From this perspective
our score metric essentially measures: (a) how similar are the
two upper histograms and (b) how dissimilar are the two lower

histograms. Thus when our score function has a high value,
we expect the two upper histograms to achieve a good match,
while the two lower histograms are likely to have a poor
match. On the other hand, a low value of E(s) indicates a
mismatch between the upper histograms and a good match
between the lower histograms.
We claim that the score function helps determine the

location of D in a very fast computation. Our claim is
expressed in Fig. l(b), which shows that the score function
should first increase, then decrease and then increase again as
s increases from 0 to h. The increasing and decreasing
segments meet at s=/ and s=u, at the lower and upper bounds
of D, respectively. So, from a score plot we can locate the
upper and lower bounds for D quickly. To find the left and
right bounds of D, we simply rotate I and R by 90 degrees and
follow the same procedure. The following two propositions
establish this claim along with the necessary assumptions
about the data, i. e., I and R.

h Proposition 1: M(s) + L(s) > E(s) > L(s), where

L(s) (s ) D /pA(s) D As(s)\
)A A~~~~~~(s); R /

than a B(s)DI /pB(s) D ,B(s)\
tection adBs
D on I, and
icharya A(s) r- D /- A(s r)r D A(s)
etric as M(s) IA(s)I ; +

oss the i
s ofthe Bs mD / Bs D B

w and B(s
s I and Proof: Note that PI (s) can be written as:
image

ine the pA(s) A(s) r D pA(s) r- D A(s) \ D pA(s)
pI A(s) I A(s) I

D

Using the above decomposition for PIA(s), one can show:

KpA(s) AA( A(s)D (\p/ () 'D P (s)

and

A(sD ( A(s) D,pTAs) +

A(s) / I( /

IA(s) I AP; D R p( R /

A similar set of two inequalities holds for

(Ip ) '1/i(s). Combining these four inequalities

yields the result. Q.E.D.
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Proposition 2: If the following four conditions, viz.,

(i) (jpA(s)r-D A(s)D | (s)
pi pp())« i

(ii s rp()rD p(s ) <(PB(s)\D |p(s?

(iii)K 1N(s) DpsA(s) cl and

(iv)K B (s)\D \ (s) c
hold where cl and c2 are two constants, then E(s) is (a)
increasing when 0 < s < 1, (b) decreasing when / < s < u,
and (c) increasing when u < s < h.

Proof: Assumptions (i) and (ii) together with Proposition 1
imply: E(s) = L(s). Next applying (iii) and (iv) in the
expression for L(s) yields:

L(s) = c A(s) D B(s)
I~ A(s) C2 B(s)

Now it is straightforward to verify that L(s) is increasing when
0 < s < 1, decreasing when / < s < u, and again increasing
when u < s < h. Q.E.D.

MR Image Boundary and Line of Symmetry

snake [8] to find the skull boundary as shown in Fig. 2(b).
Next, a vertical line is drawn through the centroid of the
snake. This vertical line serves as a line of symmetry (LOS)
(also shown on Fig. 2(b)). For an image having considerable
rotation, one can fit an ellipse to the snake and take the major
axis of the ellipse as the LOS. Now the portion of MRI to the
left of the LOS serves as the test image I and the portion of
MRI to the right of LOS, after taking a reflection, serves as the
reference image R. Note that we do not need to know a priori
if the tumor is located on the left or the right side. After
finding the bounding box on one side, say on the left side, we
test if the average intensity within the bounding on the left
side is greater than that on the right side, assuming that
tumor/edema will produce stronger signal on TIC images. A
score function plot for the vertical direction and another plot
for the horizontal direction are shown, respectively, in Fig.
2(c) and Fig. 2(d).

Finally, to locate the bounding box, we detect the extrema
of the score plots as shown in Fig. 2(c) and 2(d). The
bounding box found is overlaid on Fig. 2(a). Note that the
score function has a number of local extremum points. Also
note that our propositions cannot guarantee that the extremum
points we are seeking are the global ones. In practice, we find
these extremum points by the following algorithm.

Algorithm 1

50 501

150

200

250

(a)
Score plot for vertical direction Score F

0.2 r

0.1

0

-0.1

-0.2-

-0.3-
100 200 300 0

(c)

Fig 2: (a) TI weighted MRI with overlaid bou
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Step 1: Locate all maxima and minima from a score plot.
These extrema are found within a neighborhood of size N
pixels (a user defined parameter, we take N=41 for all our
experiments)
Step 2: Consider all the pairs of consecutive extremum points:

iO
100 150

200 250
(maxp, minp) where maxp is a maximum and minp is a

iO1010200 250
(b) minimum point. From among all such pairs, find the pair (1, u)

plot for honzontal direction for which the difference (E(l) - E(u)) is the maximum.

Note that in Algorithm 1, following the claim of Proposition
2, we are essentially looking for a pair of points comprised of
a consecutive maximum point and minimum point that,
respectively, corresponds to the upper and the lower bound of
the bounding box. The difference (E(l) - E(u)) is the amount
of decrease in score function between two consecutive

(d) 15C extrema. The neighborhood size N limits the size of the
nding found by the abnormal region we can find. For example, Algorithm 1 will
)f symmetry, (c) E(s) be able to find bounding boxes with heights larger than N.
)rizontal direction.

To establish the nature of E(s) as illustrated in Fig. 1(b), the
assumptions (iii) and (iv) can be relaxed. One only needs that
the rate of area change with respect to s occurs faster than that
of the BC's. On the other hand, the assumptions (i) and (ii)
mean that the abnormality portion of I is different from the
rest, when compared with respect to a reference histogram.
The use of our computation is illustrated in Fig 2. In Fig.

2(a), we show a brain MRI (TI weighted with gadolinium,
henceforth referred to as TIC) in which the abnormality is
observed on the left side of the image (corresponding to the
patient's right side). First, we compute a gradient vector flow

III. RESULTS

This section illustrates the results of applying our bounding
box finding algorithm to brain MRI data. In Fig. 3, we show
bounding boxes found by our algorithm on four TIC images.
In these examples, the bounding boxes include the regions of
abnormality as intended. The two parameters of the proposed
bounding box finding algorithm is the number of histogram
bins, which we take 64 for all our experiments, and the
neighborhood size N that we take 41 pixels for all the
experiments.
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symmetry. The technique uses a scoring function that provides
a measure of the similarity or difference between two regions
in terms of the Bhattacharya coefficient computed on those
region intensity histograms. We provide a mathematical basis
of the behavior of this scoring function that essentially locates
the bounding box. This region-based and image feature
histogram-based approach can open new avenues of brain
tumor boundary delineation.
Our approach has several advantages: (a) It exploits

approximate left-right symmetry of the brain. (b) No pre-
processing, such as intensity standardization or noise removal,
is required by our algorithm. (c) It requires no labeled image
data, nor any training. (d) It does not require image
registration. (e) Only two user defined parameters are used. (f)
It can be implemented in real-time. One limitation of our
algorithm is that it assumes the tumor/abnormality is confined
to the left or right side of the brain and does not cross the
LOS. Also, when the tumor is fragmented into multiple parts,
our algorithm tends to detect only the most prominent region
of abnormality. In the future, we would like to relax these two
limitations.

Fig 3: MR images and bounding boxes around abnormal regions.

For performance evaluation of our algorithm we consider

the Dice coefficient (DC) [3]: DC= 2G lS where S is the

set of pixels within a bounding found by our algorithm, and G
is the set of pixels belonging to a bounding box computed
around the tumor/edema boundary as drawn by a human
expert radiologist. The modulus sign in DC denotes the
number of pixels belonging to a set. The ideal value of DC is
1, in which case S = G. A DC value closer to 1 implies a better
segmentation. Fig. 4 shows encouraging Dice coefficient
values for two sets of brain MRI data taken from two patients.
In Fig. 4 slice numbers refer to the axial slices taken at
different heights through the patients' brains.
As already mentioned, other than providing a fast means for

database indexing, our algorithm can also provide an
initialization for other segmentation algorithms. We elaborate
this view in Fig. 5. In Fig. 5(a), a bounding box is first
computed by our proposed method. In Fig. 5(b), we show
segmentation by the Chan-Vese method [1] starting with an
initial contour from the bounding box of Fig. 5(a). Fig. 5(b)
shows the final boundary computed by the Chan-Vese
algorithm. In Fig. 5(c), we show the Chan-Vese segmentation
from a different initial curve (a shrunk skull boundary in this
case). We observe that spurious segmentation boundaries are
generated in Fig. 5(c). This example illustrates that our
proposed bounding box algorithm can aid other algorithms to
delineate the region of abnormality.

IV. FUTURE WoRK AND CONCLUSIONS

We propose a technique for computing bounding boxes
around brain abnormality in standard MR images based on

..G
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Fig 4: Dice coefficients for MR images for two studies.

(a) (b) (c)

Fig 5: (a) Bounding box, (b) segmentation within bounding
box, (c) segmentation on the entire image.

Initial, encouraging results from a few patient studies have
prompted us to conduct extensive testing on the patient image
database maintained at the Cross Cancer Institute on the
University of Alberta campus. We also plan to couple this
bounding box finding algorithm with other in-house
segmentation algorithms (visit:

Extensions of the proposed algorithm to 3D are
straightforward. We are currently making this effort. Last but
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not the least, being a change detection algorithm, we plan to
extend the application areas of our algorithm to other areas
such as video surveillance.
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