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Diffuse lesions of the white matter of the human brain are common
pathological findings in magnetic resonance images of elderly subjects.
These lesions are typically caused by small vessel diseases (e.g., due to
hypertension, diabetes), and related to cognitive decline. Because these
lesions are inhomogeneous, unsharp, and faint, but show an intensity
pattern that is different from the adjacent healthy tissue, a segmenta-
tion based on texture properties is proposed here. This method was
successfully applied to a set of 116 image data sets of elderly subjects.
Quantitative measures for the lesion load are derived that compare well
with results from experts that visually rated lesions on a semiquanti-
tative scale. Texture-based segmentation can be considered as a general
method for lesion segmentation, and an outline for adapting this
method to similar problems is presented.

© 2007 Elsevier Inc. All rights reserved.
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Introduction

In elderly patients suffering from cognitive impairment, an
important differential diagnosis with therapeutic implications is
drawn between the presence of a neurodegenerative disease (e.g.,
Alzheimer’s disease, AD), a cerebrovascular disease (e.g., a
multiinfarct cognitive disorder), or a combination thereof. In
magnetic resonance imaging (MRI) of the brain, cortical and
hippocampal atrophy are found as well-known signs for AD (Wolf et
al., 2003), while focal or diffuse lesions are signs of cerebrovascular
disease (Englund, 2002; Erkinjuntti et al., 1996; Tullberg et al.,
2002). Especially, “periventricular lesions” (PVLs) and “diffuse
white matter hyperintensities” (DWMHs) are often found in the
subcortical white matter (WM) (Bowen et al., 1990; Deary et al.,
2003; Fazekas et al., 1987; Guttmann et al., 1998). The amount of
these abnormalities is correlated with age and risk factors for
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diseases affecting small brain vessels such as hypertension and
diabetes (Bowen et al., 1990; Englund, 2002; Fazekas et al., 1998;
Tullberg et al., 2002), and increased in the presence of memory
disorders or dementia (Bowen et al., 1990; de Groot et al., 2002;
Deary et al., 2003; Desmond, 2002; Starr et al., 2003; Tullberg et al.,
2002). PVLs are typically adjacent to the corner of the lateral
ventricle, as “caps” on the frontal horns, or “bands” along the trigone
and occipital horn (see Fig. 1). DWMHs are located in the deep
white matter, and appear as faint, nodular or confluent, patchy
lesions with fuzzy borders. For an excellent discussion of the
neuropathological features of the lesions refer to (Braffman et al.,
1988; Englund et al., 1988; Erkinjuntti et al., 1996; Fazekas et al.,
1998).

Visual assessment of T,-weighted MR images is still the most
widely used practice for evaluating these lesions: Fazekas et al.
(1987) proposed a semiquantitative rating 4-point scale (0: absence;
1: mild; 2: moderate; 3: severe). Intensity is the most important
image feature employed in segmentation approaches, either by using
MR contrast agents (e.g., in the case of multiple sclerosis lesions,
Parodi et al., 2002), by acquiring special MR imaging protocols
(e.g., a fast-fluid-attenuated inversion recovery (FLAIR) sequence,
Gootjes et al., 2004), or by combining information from multiple
protocols (e.g., Ty, T,, and PD-weighting, Zijdenbos et al., 1994).
Lesions are segmented as outliers of the intensity distribution in
monomodal images (Jack et al., 2001), or by intensity-based
classification in multimodal images (Anbeek et al., 2004; Admiraal-
Behloul et al., 2005; Tullberg et al., 2002; Zijdenbos et al., 1994).
Due to the partial volume effect, white matter lesions may have
similar intensity values as grey matter, so the use of a white matter
template (an atlas) was suggested to define the search space for
lesions (Admiraal-Behloul et al., 2005; DeCarli et al., 2005).
Besides these voxel-based approaches, the spatial homogeneity of
lesion may be used as an additional segmentation criterion. These
“region-growing” procedures typically require a seed point specified
by an expert (Payne et al., 2002; Parodi et al., 2002; Gootjes et al.,
2004). Finally, DeCarli et al. (2005) proposed a classification
procedure that is based on the intensity distribution of the WM and
the distance of a voxel to the next cerebro-spinal fluid (CSF)
compartment. For a comprehensive comparison of current ap-
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Fig. 1. T;- (left) and T,-weighted images (right) of diffuse white matter hyperintensities (DWMH, top) and periventricular lesions (PVL, right). Arrows point to

example lesion areas.

proaches for segmenting WM hyperintensities, refer to Yoshita et al.
(2005).

Because these lesions have an irregular shape and inhomo-
geneous structure (see Fig. 1), segmentation approaches based on
intensity or shape alone may yield imprecise results. Thus,
characterizing and classifying these unsharp, faint, inhomoge-
neous lesions by their textural characteristics appear promising.
We briefly indicated this idea in Kovalev et al. (2001), and
claborate here on a detailed procedure for texture-based
segmentation of WM lesions. Indeed, a wide variety of textures
are encountered in biomedical images, and recent 3D CT and
MRI images show rich correlates of the natural texture of organs:
examples for oriented textures are muscles fibers or white matter
tracts. The advantage over current intensity- or region-based
approaches discussed above is that the intensity pattern of a
lesion is classified here—and different lesion types may be
discriminated by their different intensity pattern. The approach is
applicable to mono- and multimodal images: using multiple
weightings generally increases the sensitivity and specificity of
lesion detection.

Intensity properties of textures may be described by a grey-level
co-occurrence matrix (COM, refer to Rangayyan, 2005 for a detailed
introduction). An element in this two-dimensional matrix represents
the probability of occurrence of a pair of intensity levels 7;,i, of

neighboring voxels v,v,. Thus, the COM describes the joint
intensity distribution of neighboring voxels. Other useful characte-
ristics that describe textures include the gradient magnitude g;,g, or
the angle a;, between gradients at v{,v,. These multi-dimensional
co-occurrence matrices were introduced by Kovalev and Petrou
(1996), and applied to MRI data analysis in Kovalev et al. (2001).
We denote an element of the COM as texture feature, and aim at
segmenting lesions from normal tissue by discriminating their
texture features.

Although we focus on the detection and segmentation of PVL
and DWMH here, we emphasize that our approach is applicable for
solving similar problems (e.g., the detection of WM lesions in
multiple sclerosis, the segmentation of edema around tumor lesions
and infarct zones), and is not limited to brain image data, or even
MRI as imaging modality. Therefore, we describe a general
procedure for computing texture properties from small subvolumes
ofan image, and develop a strategy for optimizing the discrimination
between two or more texture descriptors (e.g., corresponding to
WM, PVL, and DWMH). Vectors of texture features may be
classified in high-dimensional space, and properties of lesions
understood in terms of their distinctive features. We consider as
specific strengths of this approach: (1) it is conceptually simple and
casy to implement, (2) it is computationally efficient (e.g., it takes
less than 60s typical computation time for a brain volume), (3) taking
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advantage of multiple imaging modalities is straightforward, and (4)
detection and segmentation quality is based on statistical quantities.
In the next section, we formally outline our approach for
texture-based segmentation and classification of feature vectors.
Three experiments describe the application to the problem of
segmenting PVL and DWMH in MR brain images of elderly
subjects. A final discussion critically reviews the concept. With our
example application, we suggest to replace the semi-quantitative
ratings with objective, texture-based measures for quantifying
signs of cerebro-vascular disease as revealed by MR imaging.

Algorithms

Our texture-based approach for segmenting template (patholo-
gical) structures is based on the idea that prototypical, distinctive
properties of this structure are captured in a multi-sort co-
occurrence matrix ¢, (COM, Kovalev et al., 2001) computed from
a (small) subvolume of the whole image domain. Matrices ¢; are
computed in subvolumes of the same dimensions at all positions
i in the image domain Q, and the similarity p,=sim(c; c,) is
determined. Results are compiled in the form of a “Lesion
Probability Map” (LPM), where values close to 1 correspond to a
high confidence that the region in the vicinity contains the template
structure, and values close to 0 correspond to its absence (e.g.,
healthy tissue). Note that multiple template structures may be
sought for. In this case, results at each position are represented as a
vector of conditional probabilities, or converted into a hard
classification drawn from the highest conditional probability. In the
following sections, we discuss issues of (1) image pre-processing,
(2) details of computing multi-sort COMs, and (3) their statistical
analysis.

Pre-processing

To compare texture properties between different image data
sets, it is obvious that data must have the same spatial resolution
and a similar intensity distribution. Thus, pre-processing involves
within-scan correction of intensity inhomogeneities and within-
group normalization of image intensity and contrast (Schad, 2002).
Refer to Kovalev et al. (2001) for a further discussion.

To increase the specificity of detecting a pathological structure
based on prior knowledge, and to delimit computation, it is useful
(but not required) to define a search space, e.g., for lesions of the
white matter, a segmentation of the white matter can be employed
as the search domain. Because lesions typically have an intensity
distribution that is different from the surrounding tissue, providing
an intensity-based segmentation is often insufficient. Whether it is
necessary to provide a search domain and how this is accomplished
depends on the application. Information specific to our problem is
given in the experimental section.

Computation of a co-occurrence matrix

Consider a 3D digital image im and its corresponding gradient
image gr, obtained by convolving im with a kernel based on the
first derivative of a Gaussian function VG with standard deviation
o. The gradient magnitude image gm is computed at each location
i by: gm;=|\gril|, V i€ Q,,, and the gradient direction image gd by:
gdi=gri/|lgril, ¥V i€8Q,. Denote the binary image dom as the
search domain for the pathological finding, e.g., the brain or a
subcompartment thereof. We briefly describe the computation of a

multi-sort COM. Consider a small 3D subvolume of width
centered around coordinate xo, vo, zo, that is scanned for all voxel
pairs. For each pair of voxels at locations (x;, y;, z;) and (x;, y;, 2;)
in this subvolume, find the intensities im;, im;, gradient magnitudes
gm;, gm;, and angle ang; between gradient directions gd;, gd,.
Note that we only study immediate neighbors, i.e., voxels
connected by faces, edges, or corners. Due to the reflection
symmetry of the matrices, only 7 of the 26 immediate neighbors
must be examined, as indicated by the direction arrays dx, dy, dz.
Note that we have to ensure that both voxels belong to the search
domain (e.g., the white matter). Intensities, gradient magnitudes,
and angles are discretized by binning functions into N/, NG, and
NA levels, respectively. Suppose intensity levels of a voxel pair
are l;=ibin (im;) and [;=ibin (im;), then the element /I/I;/[];] of the
intensity co-occurrence matrix has to be incremented. Similarly,
the gradient array GG and angle array 4 are updated. Valid voxel
pairs are counted in 7.

The subvolume size ¥ is determined from textural properties of
the pathological finding, and the spatial resolution of the desired
probability map. With larger W, textural properties are more
robustly described because more voxel pairs are examined,;
however, the spatial resolution of the resulting map decreases.
For small values of I, bins of the co-occurrence matrices may not
receive enough counts to represent the texture properly. Intensity,
gradient magnitude, and gradient angle are discretized into N/, NG,
and NA levels, respectively. The choice of this parameter is critical,
so that sufficient counts are found when sampling over a (small)
subvolume. Note that the discretization can be limited to a
subrange of the possible values in the domain, e.g., for intensity:

i im
lbl}’l(lm,‘) = NI * —
max — imin

i — imin

(1)

where imin, imax denote the bounds of the intensity interval. A
similar mapping is defined for the gradients with limits gmin,
gmax. The full range of gradient angles was used (0—180°). The
determination of these bounds and suitable values for the
parameters NI, NG, NA, and W are discussed in the experimental
section. To avoid unnecessary computation, images im and gm can
be replaced by their binned versions in a pre-processing step, so
repeated calls to ibin("), gbin() are not required here.

Since the search domain in dom is highly irregular, the number
n of voxel pairs examined in a specific subvolume depends on the
local structure in the subvolume, and is typically less than the
maximum: n<=7#W>. To allow a comparison between matrices
obtained at different positions, bin-wise normalization by »n is
necessary. It is useful to impose a lower bound on 7, so that only
those matrices are considered that are based on a sufficient number
of samples.

For further statistical analysis, arrays /I of dimensions NIX NI,
GG of dimensions NG x NG, and 4 of dimension NA are reshaped
into a feature vector fwith dimension NF = NI + NG’ + NA. Due to
the chosen normalization, elements of each array /I, GG, A sum up
to 1, so elements f; range in [0,1], and Y ;=3 for n>0. Remember
that this feature vector describes the texture properties in a small
subregion around location Xy, Vo, zo, SO this operation has to be
repeated for all locations in the search domain dom.

Note this feature vector can be “stacked up” from different
COMs by including different imaging modalities (e.g., T-,
T,-weighted images) or timepoints (e.g., for serial examinations).
In this former case, taking advantage of a different imaging modality



990 F. Kruggel et al. / Neurolmage 39 (2008) 987-996

may result in an increased specificity for detecting a template
structure. In the latter case, a higher sensitivity for detecting changes
with time may be achieved. Of course, data must be spatially aligned
(e.g., by linear registration) during pre-processing.

Statistical analysis

A feature vector f can be understood as pointing towards a
specific location in a texture feature space of NF dimensions.
Generally, the number of observed feature vectors is much larger
than NF, so a classification of feature vectors can be dealt with in
this high-dimensional space. We assume that points corresponding
to a specific tissue type or template structure form a distinct
cluster in this space, i.c., follow a multi-dimensional Gaussian
distribution. For dimensions related to intensities and gradient
angles, this assumption is reasonable. The gradient magnitude
shows a leftward-skewed distribution (see experimental section),
that is, however, still approximately Gaussian distributed. Several
options are available to study properties of feature vectors in this
space:

® Generation of a prototypical descriptor: An expert marks
positions in a single or multiple images where a template
structure is present. If the points in feature space corresponding
to COMs computed from these annotations form a cluster, then
the center of this cluster can be regarded as a prototypical
descriptor for this template. This prototypical feature vector can
be computed as an element-wise (weighted) average of all
expert-marked instances.

® Similarity metric: The similarity (f;, f;) between two feature
vectors can be defined as their L;-, L,-, or L,-distance. The
empirical probability density function of this distance can be
used to derive a voxel-wise probability for the presence of a
template structure.

® Optimization of a discrimination problem: Consider two sets of
feature vectors derived from two different sample tissues (e.g.,
white matter and lesion), and perform an element-wise z-test
between feature vectors of both samples. Sign and magnitude of
the test scores offer important insight which COM bins (i.e.,
which texture features) are most discriminative. The absolute
sum of the element-wise test scores is a measure for the
discriminative ability for the current setting of parameters W, NI,
NG, NA, the intensity (imin, imax), and gradient limits (gmin,
gmax). This sum can be used as a measure for an automatical
optimization of these 8 parameters.

® Clustering: Any suitable clustering approach may employed to
develop more complex discrimination functions, e.g., increasing
the discrimination problem from 2 to k& classes. More
specifically, analyzing the properties of pathological tissue is
interesting: Is it possible to discriminate different regions, types,
or degree of pathology within a region-of-interest?

Note that it is not necessary to perform the classification or
discrimination task in high-dimensional space. In our experience, a
principal component analysis (PCA) reveals that the first two
components typically represent 80% of the total variance, and the
first 810 components up to 95% for the example problem studied
here. Understanding and optimizing the discrimination problem are
much easier in low-dimensional space. Once a discrimination
problem is optimized, it is rather a computational disadvantage to

map each feature vector into a lower-dimensional space and
perform the classification in this space.

Experiments
Subjects and MR imaging

Subjects were recruited from the Leipzig Longitudinal Study
of Aging (LEILA 75+) (Riedel-Heller et al., 2000). Subjects were
collected to represent a characteristic sample of the elderly with a
cognitive continuum from normality to mild/moderate dementia
within a narrow age range of 75-85 years. All subjects and/or
their legal caregivers gave informed written consent to participate
in this study that was approved by the local ethics committee.
None of the subjects suffered from temporal lobe epilepsy, brain
tumors, or major vessel infarcts. A history or presence of other
cancer, diabetes, heart disease, Parkinson-like features, and mild
depressive symptoms did not lead to exclusion from the study. A
subset of 116 subjects was selected for this study (75 female,
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Fig. 2. Top: Intensity histogram from T;-weighted MRI data of subvolumes
sampled in healthy WM (black) and lesions (red). Below: Corresponding
gradient magnitude for healthy WM (black) and lesions (red). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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mean age: 78.56 years, range 60-91 years; 41 male, mean age:
78.27 years, range 66—88 years, age difference between gender
nonsignificant).

Three-dimensional (3D) T,-weighted high resolution MRI brain
data sets were obtained on a Siemens Vision 1.5 T scanner using a
3D sequence (MPRAGE, TR 11.4 ms, TE 4.4 ms, 128 slices, matrix
256 %256, voxel size 0.9x0.9 x 1.5 mm). In addition, T,-weighted
MR images were acquired (TR 5016 ms, TE 132 ms, matrix
357%x512, 19 slices, 5-mm slices, gap 1.5 mm, field of view
255%255 mm, transversal).

Imaging data were rated by a neuroradiologist for the presence
of PVH and DWMH on a 4-point rating scale (0: absence; 1: mild;
2: moderate; 3: severe) (Fazekas et al., 1987).

Pre-processing

The 3D T;-weighted data were aligned with the stereotaxic
coordinate system using a 9-parameter transformation (translation,
rotation and scaling) while interpolating to an isotropic voxel size
of 1 mm. A fourth-order b-spline interpolation was used in the
spatial transformation. Data were corrected for intensity inhomo-
geneities by a fuzzy segmentation approach using 5 classes (Pham
and Prince, 1999), yielding an intensity-corrected T,-weighted
image. Within-group normalization of image intensity and contrast
was performed on the distribution information obtained in the
segmentation step. Data sets were finally cropped to a minimum
box enclosing the head of 200 x256 x 200 mm extent. T,-weighted
data were registered with the T-weighted data using a 9-parameter
transformation.

Experiment 1: optimizing the discrimination problem

The first experiment demonstrates the influence of the
parameter setting on the discrimination problem, and is meant
as an example of the optimization approach for similar detection
problems. In 12 T;-weighted data sets, a neuroradiologist marked
42 centers of subvolumes, of which 18 are attributed as “normal

Table 2
Discrimination power of different matrix combinations at different window
widths

Descriptor 7 9 11
(4)

1 3.112 2.293 1.626
GG 7.022 8.897 9.880
A 3.812 3.969 4.102
11+ GG 7.713 7.156 6.599
1I+GG+A4 7.730 7.103 6.463
(B)

1 0.804 0.723 0.652
GG 0.991 1.000 1.000
4 0.853 0.907 0.906
1I+GG 0.986 0.981 0.975
11+GG+A4 0.997 0.983 0.976

(A) Results for #tests of L;-distances between co-occurrence matrices vs.
average of normals, expressed as z-scores. (B) AUC for detection. The
best discrimination power at the smallest window width is found for the
1I+GG+A combination at width 7.

WM” and 24 as “DWMH”. Gradient images were computed
from all data sets (¢=1.0), and regions of 15° voxels centered
around the annotation points cut out from intensity and gradient
volumes. The PDFs of intensity and gradient magnitude are
shown in Fig. 2.

There is a clear distinction of the intensity distribution in both
sets: the distribution in the lesion is broader, and the mean shifted
to lower values. It is sufficient to focus on an interval [120, 180]
for computing the // matrices. There is also a clear distinction of
the gradient magnitude between groups: the distribution in the
lesion is broader, and the mean shifted to higher values,
corresponding to a more inhomogeneous pattern. The interval
[0, 9] was chosen for the GG matrices. The bin count was set to
NI=NG=NA=6 in all experiments. COMs were computed for all
subvolumes and widths W& {7, 9, 11, 13, 15}. To examine which

Table 1
Bin-wise z-scores for window size W=7 for matrices // (top), GG (middle), and 4 (below)
Intensity 120-129 130-139 140-149 150-159 160-169 170-179
120-129 0.000 4.130 2.586 1.388 0.000 0.000
130-139 3.986 3.368 1.474 1.112 —0.060 0.000
140-149 1.766 2.005 0.526 -0.659 —1.267 0.000
150-159 0.477 0.698 -0.979 —2.991 -3.213 —1.405
160-169 0.000 -0.774 -0.227 —3.735 -3915 -2.212
170-179 0.000 0.000 0.000 —2.088 —2.733 —2.028
Grad. mag. 0.00-1.49 1.50-2.99 3.00-4.49 4.50-5.99 6.00-7.49 7.50-8.99
0.00—1.49 -5.714 —6.819 —2.670 -0.215 —0.419 —0.849
1.50-2.99 —5.854 —5.926 —2.261 1.155 1.709 0.006
3.00-4.49 —2.278 -1.739 0.109 4.616 4.331 3.332
4.50-5.99 1.935 2.288 3.788 6.012 5.012 4.341
6.00-7.49 1.137 2.522 4.322 5.322 4.842 4.779
7.50-8.99 1.010 1.153 3.054 3.425 4.337 3.985
Grad. ang. 0-29 30-59 60—89 90-119 120-149 150-179
4.147 —1.815 —4.069 —4.353 —2.852 —3.788

Positive z-scores correspond to (significantly) higher counts in pathological regions. Compare with the intensity and gradient magnitude distribution in Fig. 2.
For pathological regions, the // scores show a shift from high-intensity to low-intensity bins along the main diagonal of /7, along with a spread-out to off-diagonal
bins. Likewise, higher gradient magnitudes are found in pathological regions.
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matrix bins are most discriminative, #-tests were computed for
each bin, comparing controls vs. lesions, and results expressed as
z-scores for W=7 in Table 1.

Positive z-scores correspond to (significantly) higher counts in
pathological regions. The average intensity decrease in the
intensity histograms from normal to pathological regions corre-
sponds here to a shift from high-intensity to low-intensity bins
along the main diagonal of /I, along with a spread-out to
off-diagonal bins. Note that 13/36 bins show significant
differences (|z/>2), and 7 bins are empty. For GG, a shift to
higher gradient magnitudes is found, corresponding to the higher
gradient magnitudes in the histogram. Here, z-scores are much
higher, 23/36 bins show significant differences, and all bins are
populated. Choosing larger windows results in marginally higher
z-scores, presumably because COMs were computed on a larger
data basis and, thus, are more robust.

The average co-occurrence descriptor was determined by
element-wise averaging the corresponding feature vectors for the
normal subvolumes. For different combinations of /I, GG, and A,
and different window widths, L;-distances were computed to this
average descriptor. 7-tests were computed for the L;-distances for
the normal and pathological descriptors, and test scores converted
to z-scores. Results are compiled in Table 2, left. Higher z-scores
denote a better discrimination between normal and pathological
descriptors. Alternatively, “receiver-operating-characteristic”
(ROC) curves were computed while varying the L,-distance
threshold. Results are compiled as the “area under curve” (AUC) in
Table 2, right.

GG matrices show the highest discrimination power which is in
agreement with the large z-score differences found for GG bins
above. The power increases with window size. Descriptors // and 4
are less discriminative, and the power decreases slightly with
window size. Among distance measures, L, L, and L., Li-distances
always achieve the highest discrimination. The best performance at
the smallest window size is found for //+GG+4 and size 7.

A fully automatical parameter optimization is possible, e.g.,
using AUC as an optimization criterion while varying imin, imax,
gmin, gmax, W, and perhaps, the bin counts NI, NG, and NA.
However, the discrimination power derived here is optimistic:
subvolumes were known to completely encompass either lesion or
white matter, and fully belonged to the search domain. When
processing 3D data sets, subwindows under study are rather
expected to contain different tissues and/or lesions, and generally
will not completely lie within the search domain.

Experiment 2: sensitivity and specificity of detection

Next, the discrimination power was tested in a full 3D data set. A
neuroradiologist provided a manual segmentation of lesion areas in a
data set with a high prevalence of WM abnormalities. The union of
the WM segmentation (as obtained from the fuzzy classification)
and the lesion annotation was used as the search space. We took
advantage of using both weightings for the classification problem.
The distribution of the intensity and gradient magnitude in the
annotated WM and lesion voxels was studied similar as described
above, yielding an intensity range for T;: [130, 190], T»: [80, 160],
and a gradient range for Ty: [0, 12], T»: [0, 24].

COMs were computed for both weightings and all voxels in the
search space. A random subset of 1920 feature vectors (lesion: 2%,
WM: 0.25%) was used as a training sample. PCA was applied to
retain only 2 components, representing 83% of the cumulative

variance. Because we assume that each cluster may be modeled by
a multi-dimensional Gaussian distribution, it is natural to model the
whole data set as a mixture of multi-dimensional Gaussian
distributions. No constraints were imposed on the structure of
the covariance matrix here, and parameters were estimated using
the expectation- maximization (EM) algorithm (Fraley and Raftery,
2002). The optimal number of clusters may be determined from the
Bayesian information criterion (BIC). The simplest model led to a
clear distinction of 2 classes (Fig. 3), denoted as WM and lesion
voxels, respectively.

While the feature vectors corresponding to the WM voxels
show an almost symmetric distribution w.r.t. both components in
the center of the plot, the lesion descriptors are clearly separated as
a distinct cluster. To construct a discrimination function, 8 PCA
components were retained that represented 92.5% of the total
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Fig. 3. A random subset of 1920 feature vectors from an MRI data set was
used as a training sample. PCA was applied to retain only 2 components,
representing 83% of the cumulative variance. Top: Clustering of feature
vectors into two clusters, denoted as WM (blue) and lesion (red). Below:
Corresponding contour map of the clustering.
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variance. Classes WM and lesion were described by the mean m
and variance-covariance matrix ¢ in this 8-dimensional space.

Using this information from the training sample, feature vectors
f; for subvolumes around all voxels in the search space were
computed and mapped into the 8-dimensional space. The distance
to both class centers was determined, e.g.,

. T —1 /p
diwm = (fi — mwm) Cwm(fi — mwm)
and converted into a “lesion probability”:

dpEs

-] °LES
P dwm + dies

Using the expert annotation as reference, the ROC curve
indicated an optimal threshold of p=0.13 with a sensitivity

se=0.901 and specificity sp=0.913. The example segmentation is
shown in Fig. 4.

False positive detections were typically found in the white
matter stalks of the gyri. They are small, and their peak
probability is rather low (p<0.5). Post-processing involves
thresholding the probability map, labeling connected components,
and removing small and low-probability components. Thus, the
specificity can be raised to sp=0.994. False negative detections
were typically found on the border between WM and lesion, and
account for about 30% of the border voxels of the lesion.
Considering the faint, fuzzy, and irregular aspect of the lesion
border in the images, this rate is arguably related to the precision
of the manual annotation.

This scheme is easily extended to deal with multiple different
lesion types, either by increasing the number of classes, or by

Fig. 4. Top row: Orthogonal views of T;-weighted image. Middle row: T,-weighted image, registered with the T;-weighted image. Bottom row: Segmentation
result, shown as a lesion probability map. Intensities range between 0 (healthy, in black) and 1 (lesion, in white). The cumulative lesion probability may be

interpreted as the lesion load.
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Fig. 5. Top: Discrimination of feature vectors corresponding to WM (blue),
diffuse white matter hyperintensities (DWMH, red), and periventricular
lesions (PVL, green). Below: Overlay of classification result onto the T;-
weighted image with DWMH (red) and PVL (green).

subclassification of the lesion voxels. The model with the best BIC
value in the classification above was found with 3 classes (see
Fig. 5), where (roughly) the former class of lesion voxels is now
discriminated into two classes. The “green class” has a higher
intensity difference from WM and higher gradient magnitude than
the “red class”. We consistently find voxels of the “green class”
adjacent to the ventricles, and address them as “periventricular
lesions” (PVL) in accordance with the description by Payne et al.
(2002). Likewise “red voxels” are rather located deep in the white
matter, and thus addressed as “deep white matter hyperintensities”
(DWMH).

Experiment 3: analyzing single cases and groups

Finally, all data sets in the patient sample were analyzed for the
presence of DWMH and PVL using texture-based segmentation. We
were interested in relating a segmentation-based lesion measure with
data of the expert rating scales. All 116 data sets were successfully
segmented using the texture-based classifier. We recorded the
number of lesion voxels 7 gs and the lesion load /| s, computed as
the integral lesion probability. Both variables showed a highly

significant correlation with the expert ratings (p<10e—7), but not
with age and gender. However, the explained variance was rather
low (R*=0.2433). After visual assessment of several cases, we
regard inconsistency in the expert ratings as the major source of the
unexplained variance. In our view, the lesion load is the most reliable
measure for quantifying WM lesions.

A subset of 28 subjects with a high prevalence of WM lesions
was chosen, and another subject without a significant amount of
lesions was selected as reference. A nonlinear registration between
the T,-weighted data sets of the reference and each of the 28
subjects was computed. The resulting deformation field was used
to warp all lesion probability maps onto the reference. The
averaged probability volume corresponds to a map of the
prevalence of these WM lesions. Example axial slices at different
levels above the AC-PC plane are compiled in Fig. 6. As stated in
the introduction, these WM lesions are typically found in the deep
supra- and periventricular WM. The processing time for a single
data set, including the computation of the gradient volumes,
the co-occurrence matrices, their classification, and post-proces-
sing takes about 210 s on a standard workstation (AMD 2.4 GHz
processor).

Discussion

An approach for segmenting WM lesion based on their texture
features was presented. Multi-sort co-occurrence matrices capture
intensity, gradient, and gradient-angle distributions of neighboring
voxel pairs in a small subvolume. This matrix can be recast as a
vector that directs to a point in a high-dimensional texture feature
space. Because lesions have different textural properties compared
to the surrounding healthy tissue, it is possible to discriminate
lesion-containing subvolumes in the high-dimensional texture
space. We described an outline for the computation of the co-
occurrence matrices and for the optimization of the discrimination
problem. As an example, we provided a solution for the difficult
segmentation of diffuse white matter lesions. Our approach is
conceptually simple, computationally efficient, and based on
statistical decisions. It is straightforward to include multiple
imaging modalities—beyond our example of combining T;- and
T,-weighted MR images, the integration of CCT-MRI or PET-MRI
might be of interest.

With our segmentation problem, we typically find a high
detection sensitivity, but achieving a high specificity can be an
issue. False positive detections are found in subvolumes that have
similar characteristics as WM lesions. Such detections are typically
found at the WM/GM interface, especially in the hindbrain, and at
the border of the thalamus and the third ventricle. In our case, it is
easy to distinguish these false positive based on location in a post-
processing step.

Some approaches for the automatical detection of WM lesions
use a nonlinear spatial normalization to compare a subjects WM
density with that of a group (DeCarli et al., 2005; Yoshita et al.,
2005). We rather describe textural properties in a small neighbor-
hood and classify them according to a discriminant function
derived from a group. Thus, a spatial normalization is not required.
By retaining the individual data space our approach allows
quantifying the individual lesion load.

Although there is some neurobiological controversy about the
validity of discriminating different types of white matter lesions
(Chimowitz et al., 1989; Fazekas et al., 1987; Fernando et al.,
2004; Payne et al., 2002; Yoshita et al., 2005), our results provide
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Fig. 6. Prevalence of WM lesions in axial slices 38 mm (top left), 28 mm (top right), 23 mm (bottom left), and 18 mm (bottom right) above the plane defined by

the anterior and posterior commissures.

some support for separating periventricular lesions and deep white
matter hyperintensities based on their textural features and
location. The latter regions have rather faint borders, a “cloudlike”
appearance and are located deep in the white matter (Fig. 1, top).
PVL regions are characterized by their relatively sharp borders, a
low intensity in 7}-weighted images, and their localization adjacent
to the ventricles, especially at the anterior tip of the lateral ventricle
(Fig. 1, bottom). Although the discrimination of both lesion types
is in line with a post-mortem MRI-histology study (Fernando et al.,
2004), we cannot provide a histological proof for our classification
that is only drawn from in-vivo MRI data.

The application of this approach for segmenting lesions with
similar appearance is straightforward, most notably, in multiple
sclerosis (e.g., Leemput et al., 2001), in tumors and edema, CNS
infections (e.g., toxoplasmosis), and hereditary WM diseases (e.g.,
leukodystrophy). But not only lesion size and location are important.
The acuity of a disease is often related to a specific appearance, i.e.,
the distance of feature vectors from the normal tissue distribution
may be used in the staging of tumors. “Old” and “fresh” lesions in
multiple sclerosis may be distinguished.

Compared with manual segmentation and rating, advantages of
an automatical approach for lesion segmentation include increased

reliability, consistency, and reproducibility. Quantitative informa-
tion about lesion size and characteristics may lead to a deeper
understanding of disease patterns and their timecourse, and provide
assistance in diagnostic and therapeutic decisions. With the
increasing spatial resolution of the new generation scanners, the
rich texture of tissues and lesions in organs is revealed, and we can
take advantage of textural features for segmentation.
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