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Abstract. An important finding in our understanding of the human
vision system is perceptual grouping, the mechanism by which visual el-
ements are organized into coherent groups. Though grouping is generally
acknowledged to be a crucial component of the mid-level visual system, in
computer vision there is a scarcity of mid-level cues due to computational
difficulties in constructing feature detectors for such cues. We propose
a novel mid-level visual feature detector where the visual elements are
grouped based on the 2D translation subgroup of a wallpaper pattern.
Different from previous state-of-the-art lattice detection algorithms for
near-regular wallpaper patterns, our proposed method can detect multi-
ple, semantically relevant 2D lattices in a scene simultaneously, achieving
an effective translation-symmetry-based segmentation. Our experimen-
tal results on urban scenes demonstrate the use of translation-symmetry
for building facade super-resolution and orientation estimation from a
single view.

1 Introduction

Symmetry is an essential concept in perception and a ubiquitous phenomenon
present in all forms and scales in the real world, from galaxies to atomic struc-
tures [1]. Symmetry also is considered a preattentive feature [2] that enhances
object recognition. Much of our understanding of the world is based on the per-
ception and recognition of repeated patterns that are generalized by the math-
ematical concept of symmetry [3].

A translation-symmetry is a translation transformation that keeps a pattern
setwise invariant [4]. Mathematically, such a pattern has to be periodic and infi-
nite. In practice, we view a finite portion of a periodic pattern in an image as an
occluded infinite pattern, thus the term ‘translation-symmetry’ is equally appli-
cable [5]. 2D translation symmetry detection (lattice detection) has been gaining
more attention in computer vision and computer graphics in recent years [5–18].
The underlying topological lattice structure of a near-regular texture (NRT) un-
der a set of geometric and photometric deformation fields was first acknowledged
and used by Liu et al. for texture analysis and manipulation [6, 19]. Subsequently,
Hays et al. [7] developed the first deformed lattice detection algorithm for real
images without pre-segmentation. Hays et al. [7] formulated the lattice detection
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problem as a higher order correspondence problem using a spectral method that
produces impressive results. Later, Park et al. [8, 9] formulated 2D deformed
lattice finding as an inference problem on a Markov Random Field (MRF) and
showed improved speed and accuracy on single lattice detection. Regular lattice
detection has also been formulated by Han et al. [10] using statistical model
selection.

In applications, Shindler et al. [15] use lattice detection to geo-tag user photos
and many efforts have been made to remove clutter from real world 2D lattices
and synthesize new views [14, 20]. Canada et al. [11] developed lattice detection
for automatic high throughput analysis of histology array images. Liu et al. [21]
apply a lattice detection algorithm to detect and remove a fence region that
occludes interesting objects behind the fence.

However, state-of-the-art lattice detection algorithms cannot detect multiple
lattices in the scene, which prevents wide applicability of 2D translation symme-
try features for many computer vision and graphics applications. In this paper
we present, for the first time, an algorithm for detecting multiple 2D lattices.

2 Translation-Symmetry-based Perceptual Grouping

The human visual system can detect many classes of patterns and statistically
significant arrangements of image elements. Perceptual grouping refers to the
ability to extract significant image relations and structure from lower-level prim-
itive image features without prior knowledge of high-level image content. Our
proposed method follows this concept. We first detect lower-level primitive im-

(a) (b) (c) (d)

Fig. 1: (a) Lower-level visual primitives (KLT, MSER, and SURF) (b) Visual
grouping of each type of feature (c) (t1, t2) basis grouping by RANSAC (d) 2D
lattice completion and grouping.

age features such as Kanade Lucas Tomasi corners (KLT) [22], Maximally Sta-
ble Extremal Regions (MSER) [23], and Speeded Up Robust Features (SURF)
[24]. Then, each set of feature points is grouped by that feature’s descriptor
and 2D lattice structures are proposed from each group. The proposed grouping
method is an iterative procedure similar to a standard clustering algorithm such
as K-means or mean-shift clustering, except that the similarity metric reflects
higher-level knowledge of 2D translation symmetry such as texel appearance,
(t1, t2) basis vector pair, and lattice coverage in the image. Once we obtain this
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information, we can rectify the perspective distortion of the 2D translation sym-
metry as well as collect additional valid lattice points that were not detected by
any of the low-level features detectors. This increases the quality of the detected
2D translation symmetry.

2.1 Low-level Feature Aggregation

The use of different types of lower-level primitive features is beneficial because
KLT features, MSER, MSER on the inverted image, and SURF with a positive
or negative laplacian generate different responses to different visual elements,
and therefore we can reliably find a wide range of 2D lattice points. As can be
seen in Figure 2, some of the valid 2D lattice points are only identified by one or
two of the detector types, thus justifying using a set of complementary feature
detectors.

(a) KLT (b) MSER (c) SURF

Fig. 2: Low-level primitive visual features detected by KLT, MSER, and SURF.
Some of the valid lattice points are not identified by all of the feature detectors
but only a subset of them. MSER and MSER on the inverted image are displayed
in green and red, respectively, and SURF features with a positive and negative
laplacian are colored red and green.

2.2 Grouping of Low-level Features

Since the number of repeating patterns is not given a priori, we use the mean-
shift algorithm with a varying bandwidth to cluster the different types of lower-
level features. Since KLT only specifies the 2D location of points and MSER
only gives a 2 by 2 scatter matrix of the region, we extract 11 by 11 subimages
centered at each KLT feature and the center of the MSER region. Each subimage
is normalized by subtracting the mean pixel value, and dividing by the standard
deviation of pixel values to compensate for illumination changes.

2.3 Translation-Symmetry-based Grouping

We seek a (t1, t2)-vector pair that represents the generators of the translation
symmetry subgroup using a RANSAC-based method, similar to the work of Park
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(a) KLT (b) MSER (c) SURF

Fig. 3: Sample results of mean-shift clustering of low-level features. For clarity
we manually choose clusters that are on the 2D lattice structures.

et al. [9] and Schindler et al. [15]. Schindler et al. [15] randomly select 4 points
from a set of SIFT features, whereas Park et al. [9] improve this random proposal
by considering proximity of KLT points to avoid proposals with an invalid affine
transformation. We further examine whether the proposed 4 points form a valid
quadrilateral to increase the likelihood of finding a feasible perspective mapping.
Using this proposal, we iteratively complete the 2D lattice structure under a
perspective deformation model while allowing some tolerance using a normalized
threshold that is independent of the image.

Proposals of a basis quadrilateral: For each detected feature point cluster,
we randomly sample three points {a; b; c} to form a (t1, t2) vector pair given by
b−a and c−a, compute the fourth point, d given by t1+t2+a, and compute the
perspective transformation that maps these four points from image space into
the integer lattice basis {(0, 0), (1, 0), (0, 1), (1, 1)}. We can now transform all
remaining points from image space into their equivalent lattice positions via the
same perspective transform, and count as inlier points those whose lattice space
coordinates are within some threshold1 of an integer position (x, y) . If the four
chosen points {a; b; c; d} define a valid basis quadrilateral of a 2D translational
pattern, many additional supporting votes should emerge from other interest
points having a similar spatial configuration.

Lattice completion: Since many of the valid lattice points are not detected
by any of the lower-level primitives, we further seek to recover all missed lattice
points that are not initially identified by the feature detectors. For this task
we evaluate normalized cross correlation between the basis quadrilateral and in-
put image. Note that this is not possible without the hypothesized perceptual
grouping of low-level features since otherwise we do not know whether there
are repeating patterns, how many there are, and what they look like. Due to
possible foreshortening effects, identifying all of the valid lattice points in one

1 0.2 is used for all our experiments and this threshold is image independent since all
the points are transformed to normalized coordinates (integer coordinates)
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(a) Proposals of quadrilateral (b) Final grouping

Fig. 4: Sample results of quadrilateral proposals and final grouping result: (a)
Note that there are many duplicate basis quadrilaterals found on the same build-
ing. (b) These are further clustered and filtered by the proposed algorithm.

iteration using cross correlation suffers from inaccurate localization of the likeli-
hood peaks. To avoid this problem we first rectify the image using the mapping
from the current observed lattice points, {pc(j, i)|1 ≤ j ≤M, 1 ≤ i ≤ N} to the
regular lattice constructed by the found (t1, t2) basis vector pairs. The (t1, t2)
basis vector pair and regular lattice point, pr(j, i) are given by

t1 = pc(1, 2)− p(1, 1), t2 = pc(2, 1)− pc(1, 1)

pr(j, i) = pc(1, 1) + t1(i− 1) + t2(j − 1)
(1)

We then compute a perspective mapping, Hcr from pc(j, i) to pr(j, i) and warp
input image Ii to get a rectified image Ir = H(Ii). Next, we compute a me-
dian quadrilateral, Tm from all the quadrilaterals centered at lattice coordinates
pr(j, i) defined by (t1, t2) basis pairs. We compute the normalized cross corre-
lation between median texel Tm and the rectified image Ir (NCC(Ir, Tm)) and
get local peaks (x, y) by non-maxima suppression.

At this stage, the procedure becomes iterative. We propose a refined mapping,

H
(t)
ri from p

(t)
r (j, i) to (j, i) at each iteration t. Only the peaks that are trans-

formed to neighborhoods2 of integer positions (x̂, ŷ) are chosen as valid lattice

points and used to update the lattice point set p
(t+1)
r (j, i) = p

(t)
r (j, i)∪(x̂, ŷ). We

then recompute the rectification mapping H
(t+1)
ri using correspondences between

p
(t+1)
r (j, i) and (j, i) and repeat the entire procedure until p

(t+1)
r (j, i) = p

(t)
r (j, i).

This is summarized by pseudo code in Figure 5.

Perceptual grouping of lattices: From all candidate proposals, {Pri|i = 1 ∼
N} we sort all the proposals by the normalized A-score introduced in [6]. The
more that quadrilaterals in the lattice look alike and the higher the number
of quadrilaterals in the lattice, the smaller the A-score. Starting from the best

2 The same tolerance threshold as section 2.3 is used in all of our experiments.
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1 set t=0, Compute (t1, t2) and p
(t)
r (j, i) by equation (1)

2 Compute mapping Hcr using correspondences p(j, i) to pr(j, i)
3 Rectify the input image Ii by Hcr to get the rectified image, Ir
4 Compute median quadrilateral Tm

5 Compute normalized cross correlation NCC(Ir, Tm) between Tm and Ir.
6 Compute non-maximum suppressed peaks (x, y) from NCC(Ir, Tm)
7 do

8 compute H
(t)
ri from p

(t)
r (j, i) to (j, i)

9 if distance between H
(t)
ri [x;y] and round(H

(t)
ri [x;y]) ≤ 0.2

10 p
(t+1)
r (j, i) = p

(t)
r (j, i) ∪ (x, y)

11 end
12 t=t+1

13 while p
(t+1)
r (j, i) 6= p

(t)
r (j, i)

Fig. 5: Pseudo code for the lattice-completion algorithm

proposal in terms of the normalized A-score, we group Pri while performing
the lattice-completion algorithm (section 2.3). As can be seen in Figure 7, the
output of the lattice-completion algorithm (section 2.3) gives rough segmenta-
tions of the scene, therefore, we use this information to group the Pri. Let the
input lattice proposal and output lattice be Pri and Li respectively and let the
lattice-completion algorithm (section 2.3) be F (), then Li = F (Pri). The initial
cluster center, which is a completed 2D lattice, is initialized by L1 = F (Pr1)
and we then group {Pri|2 ≤ i ≤ N} only when more than 70% of the 2D
lattice points in Pri are contained in the quadrilaterals in L1. From the Pri
that are not grouped to the first cluster center we choose the best proposal in
terms of its normalized A-score and we generate a second cluster center using
the lattice-completion algorithm (section 2.3). This procedure repeats until no
more ungrouped proposals are left. For example, Figure 11b has 72 proposals
and the proposed method is successful in grouping all of the proposals. Pseudo
code for grouping is given in Figure 6.

2.4 Quantitative Evaluation

We have compared the proposed perceptual grouping algorithm, which we will
refer to as PG, against Park et al. [9], which we will refer to as PAMI09. We
have tested the PAMI09 and PG algorithms on a publicly available dataset
containing 120 real-world urban scene images with ground-truth [9]. We eval-
uate the precision and recall rate of the detected lattices using the automated
evaluator described in [9]. The number of true positives (TP) is given by the
number of correctly identified texels, the number of false positives (FP) is given
by the number of falsely detected texels, and the number of false negatives (FN)
is given by the number of ground-truth texels minus the number of true posi-
tives. When N is the number of 2D lattices in the entire data set, the precision
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1 For every Pri for 1 ≤ i ≤ N
2 Sort Pri by normalized A-score
3 Enqueue each Pri to Qp, Enqueue(Qp, P ri)
4 Initialize queue, QL for lattice grouping. QL = NULL
5 while Qp! = NULL
6 L=F(Dequeue(Qp))
7 Enqueue(QL,L)
8 Initialize temporary queue Qt = NULL
9 while Qp! = NULL

10 P=Dequeue(Qp)
11 if L ⊃ P
12 Group P to L
13 else
14 Enqueue(Qt,P)
15 end
16 end
17 Qp = Qt

18 end

Fig. 6: Pseudo code for perceptual grouping

and recall rates are given as

Precision =

∑N
i=1 TPi∑N

i=1(TPi + FPi)
, Recall =

∑N
i=1 TPi∑N

i=1(TPi + FNi)
(2)

Instead of computing average precision and recall rates, equation (2) is used
to reflect the difference between the successful detection of lattices with, for
example, 1000 texels versus 4 texels.

Accuracy: We measure the detection rate of PAMI09 and PG only when these
two algorithms detect the same lattice structure, since PAMI09 [9] is intended
for detecting only a single deformed lattice (14672 ground-truth texels). Second,
we measure detection rates against all of the ground-truth to show the multiple
lattice detection capability of PG (23753 number of ground-truth texels). Since
PAMI09 [9] is not intended for multiple lattice detection, we first run PAMI09
[9], then remove the portion of image where the 2D lattice is found, and repeat
until no more lattices are found.

As can be seen in Figure 8, the precision rate of PG has improved by 8.4 %
over PAMI09 [9] for both single and multiple lattice detection and the recall
rate of PG is improved by 10% and 20% over PAMI09 [9] for single and multiple
lattice detection respectively. In addition, the precision and recall rates of PG
and PAMI09 [9] for detecting multiple lattices does not drop significantly from
the rates on single lattices, as can be seen in Figure 8. This effectiveness of
our method comes from: 1) feature aggregation from a variety of interest point
detectors, which is more reliable at exposing repeating structures; 2) modeling
the deformation of the lattice by perspective projection rather than non-rigid
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(a) (b)

Fig. 7: Sample results of translation-symmetry-based perceptual grouping are
shown. Different colors mean different groups.

deformation for fast, simple, and accurate application to rigid objects; and 3)
perceptual grouping of multiple lattices.

Efficiency: The PG algorithm takes 4.2 ± 2.07 min using a 2.4 GHz Intel
P8600 4GB machine in MATLAB while PAMI09 [9] takes 15.8 ± 11.3 min.
This confirms that the new method is more efficient and more accurate.

Fig. 8: The blue and red bars indicate precision and recall rate of single lattice
detection (14672 ground-truth texels) for the PG (red) and the PAMI09 [9]
(blue) algorithms. The green bar indicates precision and recall of sequential runs
of PAMI09 [9] and the purple bar indicates precision and recall rate of PG for
detecting multiple lattices within a single image (23753 ground-truth texels).
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3 Application

To demonstrate a possible application using the 2D lattice grouping proposed
in this paper, we have used the detected lattices for single view super-resolution
and urban scene analysis.

3.1 Super-Resolution from a Single View

Recently Glasner et al. [25] showed the power of super-resolution from a single
view. Recurrence of similar patches in an image forms the basis for their single
view super-resolution approach in [25], and therefore correctly identifying cor-
responding patches is very important in this. As can be seen in our results in
Figure 7, we solve this correspondence problem for texels in a lattice structure.

Instead of running a state-of-the-art super-resolution algorithm such as [25],
we took a basic approach where multiple images of the same scene are regis-
tered, a median image is computed, and de-blurring is performed. In our case
we rectify each quadrilateral in the 2D lattice into the same coordinate system,
compute a median texel, and perform deconvolution to get a high resolution
(HR) image. We map each recovered HR image back to the original space and
combine the existing original low resolution (LR) image to transfer high fre-
quency HR information while retaining original lighting and shadow changes.
We first perform a discrete cosine transform (DCT) on the HR image to isolate
the high frequency components by truncating absolute DCT coefficients larger
than 80% of the largest absolute DCT components to get truncated DCT block
D3. Inverse DCT is then performed to get HRhf and HRhf is added back to the
original LR image, thus preserving local information4. Sample results are shown
in Figure 9.

3.2 Frontal View Facades Estimation from a Single View

Before we attempt to analyze an urban scene, we need to resolve ambiguity
of (t1, t2) vector pairs under perspective distortion since there could be many
choices of valid (t1, t2) vector pairs for a given perspective distortion of a 2D
wallpaper pattern. This can make estimation of frontal facets of buildings am-
biguous. We want the (t1, t2) vector pair to be aligned to vertical and horizontal
edges of the building, since these edges are typically aligned with meaningful di-
rections, either parallel to or perpendicular with the ground. Figure 11 (a) shows
(t1, t2) vector pairs that are not aligned with the horizontal and vertical edges of
the building. Figure 11 (b) shows (t′1, t

′
2) vector pairs after the desired correction.

In the following section we will explain in detail how we correct (t1, t2) vector
pairs.

3 This is the inverse of JPEG procedure where one wants to discard high frequency
information to achieve compression.

4 For further details, please refer to our supplemental material.
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Fig. 9: Sample single view SR results are shown. I stands for original input, B
stands for bicubic interpolation, SR-1 stands for super-resolution with the exact
copy of the texels, SR-2 stands for super-resolution with a local information
transfer such as lighting and shadow. (a-d) input selection. (a-B ∼ d-B) results
of 2× bicubic interpolation. (a-SR1,2 ∼ d-SR1,2) results of 2× SR.

Resolving ambiguity of (t1, t2) vector pairs Most modern architecture
falls into either the pmm or p4m subgroup of the 17 possible 2D wallpaper
patterns [15]. In such cases, the (t1, t2) vector pair should be aligned with both
the reflection axes and the horizontal and vertical edges of the building5. First,
we enumerate variations of (t1, t2) from the current detected lattice. Let a lattice
point at row j and column i be given by p(j, i), then the current t1 and t2 are
given as t1 = p(j, i + 1) − p(j, i) and t2 = p(j + 1, i) − p(j, i) respectively.
The variation of (t1, t2) can be given as t′1 = p(j, i + 1) − p(j, i) and t′2 =
p(j + 1, i+ 1)− p(j, i), or t′1 = p(j, i+ 1)− p(j, i) and t′2 = p(j + 1, i− 1)− p(j, i)
as can be seen in Figure 10b or Figure 10c.

5 We do not examine horizontal and vertical gradient information to correct (t1, t2)
as there might be severe perspective distortion.
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(a) (b) (c)

Fig. 10: (a) The current (t1, t2) vector given as t1 = p(j, i + 1)− p(j, i) and t2 =
p(j+1, i)−p(j, i) (b) The variation of (t1, t2) vector given as t′1 = p(j, i+1)−p(j, i)
and t′2 = p(j + 1, i + 1) − p(j, i) (c) The variation of (t1, t2) vector given as
t′1 = p(j, i + 1)− p(j, i) and t′2 = p(j + 1, i− 1)− p(j, i)

We then compute a median texel from quadrilaterals which have been trans-
formed from their 4 observed points in the lattice, {p(j, i), p(j, i) + t1, p(j, i) +
t1 + t2, p(j, i) + t2}, to rectified points, {(1, 1), (w, 1), (w, h), (1, h)} where h and
w are the height and width of rectified texels (both set as 50 pixels). Then we tile
nine copies of the computed median texel in a 3 by 3 grid to form a small reg-
ular lattice pattern and attempt to find the two reflection axes. We only search
through x and y directions near the center of the rectified median texel. This is
sufficient and necessary because, if reflection axes exist, they must be parallel to
the (t1, t2) vector pair.

We repeat this procedure for all the enumerated (t1, t2) vector pairs and seek
reflection axes. The sum of the absolute difference between the median texel and
the flipped median texel is computed and we select the (t1, t2) vector pair that
generates the minimum sum as the best pair. Sample results are shown in Figure
11 (c,d,e,f). As can be seen in Figure 11, the analysis is successful in aligning
(t1, t2) to the vertical and horizontal edges of the building facade.

(a) Before (b) After

(c) Best Chosen (d) Candidate 1 (e) Candidate 2 (f) Candidate 3

Fig. 11: Sample results of correction of (t1, t2) vector pair using reflection axes
analysis. (a) before (b) after (c) best texel shape (d-f) candidate texel shapes
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Computation of Frontal View Collins and Beveridge [26] showed that when
the vanishing points of a 3D plane projected onto an image and the angular field
of view of the camera are known, a 3D rotation matrix can be used to relate
observed image locations on the plane to the image coordinates they would have
if the plane were rotated to face the camera (having a normal vector pointing
directly along the camera view direction). Their formulation shows that if the
vanishing line of the plane is given by the formula ax+by+c = 0, then the normal
to that plane, in camera coordinates, is n = (a, b, c)/‖(a, b, c)‖. The matrix that
will perform the projective transform simulating the desired 3D rotation is, in
homogeneous coordinates,

ki

x′
i

y′i
f

 =

 E F a
F G b
−a −b c

xi

yi
f

 (3)

where

E =
a2c + b2

a2 + b2
, F =

ab(c− 1)

a2 + b2
, G =

a2 + b2c

a2 + b2
(4)

where f is the focal length given by f = w
2tan(FOV/2) where w is the image width

and FOV is the camera’s angular field of view.

A perspectively distorted lattice that has been identified by our method will
converge to two vanishing points, one in each direction of 2D repetition. We can
calculate the vanishing points for a lattice covering the facade of a building, then
calculate the line connecting the vanishing points in the form ax + by + c = 0.
From that equation, the values (a, b, c) are the normal vector to the plane in
camera coordinates [26]. We use these values to draw the normal vectors to
building facades in Fig. 12.

We cannot perform the projective transform that would simulate bringing
the building facade into a frontal view without knowing the angular field of
view of the camera. However, we assume that the two directions of repetition on
a building facade are orthogonal in a frontal view. If an incorrect field of view
were assumed and used to bring the lattice into a frontal view, the two directions
generating the lattice would not be orthogonal. Specifically, an incorrect field of
view used to generate the frontal view will induce a scaling along the direction of
the facade normal in image coordinates. In our supplemental material, we show
that a simple search routine can quickly converge upon the one unique value
for angular field of view that can be used to bring a lattice into a frontal view
while preserving the orthogonality of the directions of 2D repetition. We show
the computed size and shape of the lattice and texels for three images in Fig.
12.

This is a powerful application of our method because computation of building
facade normals can be used for 3D reconstruction and geotagging. The calcu-
lation of a frontal view of a building facade also can enable extraction of the
building appearance as a 2D texture, and can be useful for building recognition
where only the frontal appearance of a building is known.
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(a) (b)

Fig. 12: This figure shows the computation of surface normals from a lattice
detected on a building facade. The blue arrow indicates the surface normal of
the building.

4 Conclusion

A novel 2D translation-symmetry-based method of perceptual grouping is pre-
sented that shows superior performance in terms of detecting single and multiple
lattices in an image over the state-of-the-art algorithm. Perceptual grouping is
possible when mid-level information of scene structures is successfully obtained.
Also, we have demonstrated that the detected lattice structure can be used for
single view super-resolution as well as for 3D orientation estimation in urban
scenes. We plan to extend this work on single view 3D urban scene reconstruc-
tion and apply mid-level visual features for object categorization.
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References

1. Gardner, M.: The new ambidextrous universe: symmetry and asymmetry, from
Mirrow reflections to superstrings. W.H. Freeman and Company (1979)

2. Conners, R., Ng., C.: Developing a quantitative model of human preattentive
vision. Volume 19. SMC (1989)

3. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)
4. Grunbaum, B., Shephard, G.: Tilings and Patterns. New York: W.H. Freeman

and Company (1987)
5. Liu, Y., Hel-Or, H., Kaplan, C.S., Van Gool, L.: Computational symmetry in

computer vision and computer graphics. Foundations and Trends in Computer
Graphics and Vision 5 (2010) 1–156

6. Liu, Y., Collins, R.T., Tsin, Y.: A computational model for periodic pattern per-
ception based on frieze and wallpaper groups. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26 (2004) 354–371

7. Hays, J., Leordeanu, M., Efros, A., Liu, Y.: Discovering texture regularity as a
higher-order correspondence problem. In: 9th European Conference on Computer
Vision. (2006) 522–535



14 Minwoo Park†, Kyle Brocklehurst†, Robert T. Collins†, and Yanxi Liu†*

8. Park, M., Collins, R.T., Liu, Y.: Deformed Lattice Discovery via Efficient Mean-
Shift Belief Propagation. In: European Conference on Computer Vision, Marsellie,
France (2008)

9. Park, M., Brocklehurst, K., Collins, R., Liu, Y.: Deformed Lattice Detection in
Real-World Images Using Mean-Shift Belief Propagation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 31 (2009) 1804–1816

10. Han, J., McKenna, S., Wang, R.: Regular texture analysis as statistical model
selection. In: 10th European Conference on Computer Vision, Marsellie, France
(2008)

11. B.A. Canada, G.K. Thomas, K.C.J.W., Liu, Y.: Automatic lattice detection in
near-regular histology array images. In: Proceedings of the IEEE International
Conference on Image Processing. (2008)

12. Mitra, N.J., Guibas, L., Pauly, M.: Partial and approximate symmetry detection
for 3d geometry. In: ACM Transactions on Graphics. Volume 25. (2006) 560–568

13. Schaffalitzky, F., Zisserman, A.: Geometric grouping of repeated elements within
images. In: Shape, Contour and Grouping in Computer Vision. (1999) 165–181

14. Korah, T., Rasmussen, C.: Analysis of building textures for reconstructing partially
occluded facades. In: ECCV ’08: Proceedings of the 10th European Conference on
Computer Vision, Berlin, Heidelberg, Springer-Verlag (2008) 359–372

15. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting
and Matching Repeated Patterns for Automatic Geo-tagging in Urban Environ-
ments. In: Computer Vision and Pattern Recognition. (2008) 1–8

16. Leonard G. O., H., Kanade, T.: Computer analysis of regular repetitive textures.
In: Proceedings of a workshop on Image understanding workshop, San Francisco,
CA, USA, Morgan Kaufmann Publishers Inc. (1989)

17. Lin, H.C., Wang, L.L., Yang, S.N.: Extracting periodicity of a regular texture based
on autocorrelation functions. In: Pattern Recognition Letters. (1997) 433–443

18. Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements
from an image. In: 4th European Conference on Computer Vision. (1996) 546–555

19. Liu, Y., Tsin, Y., Lin, W.C.: The Promise and Perils of Near-Regular Texture.
International Journal of Computer Vision 62 (2005) 145 – 159

20. Tsin, Y., Liu, Y., Ramesh, V.: Texture replacement in real images. In: IEEE
Conference on Computer Vision and Pattern Recognition. Volume 2. (2001) 539 –
544

21. Liu, Y., Belkina, T., Hays, J., Lublinerman, R.: Image De-fencing. (In: IEEE
Conference on Computer Vision and Pattern Recognition, 2008.) 1–8

22. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer
Vision and Pattern Recognition. (1994) 593–600

23. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from
maximally stable extremal regions. In: BMVC. (2002)

24. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: In
ECCV. (2006) 404–417

25. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV.
(2009)

26. Collins, R.T., Beveridge, J.R.: Matching perspective views of coplanar structures
using projective unwarping and similarity matching. In: In Proc.Int.Conf. of Com-
puter Vision and Pattern Recognition, CVPR. (1994) 240–245


