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I. INTRODUCTION

Object tracking is useful in many applications, and it is
an active research area of computer vision. It is commonly
used in human computer interaction and visual surveillance
systems. Conventional methods such as background subtrac-
tion and mode seeking have been widely used, while many
new approaches involving active shape models and graphical
models were proposed over the past few years. However, these
approaches usually use a pre-defined template for matching,
which allows very little deformation.

In this project, we focused on object tracking using con-
tours. Specifically, we attempt to track objects that may deform
substantially. Where this can be useful is for image segmenta-
tion and general object tracking. We formulate the contour as
a Hidden Markov Model, which was proposed by Huang [1].
In each new frame, we allow the states (locations along the
boundary) to adapt to new observations of edge detection and
NCC score against a patch centered at their location along the
previous frame, while constraining smoothness of neighboring
transitions as well. To do this, the forward-backward algorithm
is used to find the global optimum set of contour landmark
points in the new frame.

II. RELATED WORKS

A Hidden Markov Model (HMM) is a probabilistic repre-
sentation that is widely used in speech recognition applications
and proved to be a robust method for related recognition
systems. It has also been applied to recognize hand gestures to
interpret American Sign Language [2], where a user’s hands
are tracked from skin color, and the tracking process focuses
on hand movement through time. A coarse description of hand
shape, orientation, and trajectory are inputed to a HMM for
recognition.

HMM can also be used to detect the contour of an object
[1]. The contour can be detected based on various cues and
constraints. In [1], they used foreground and background color,
pixel intensity, and edge information as observations for each
hidden state of the HMM. For this project, our observations
are gradient (Canny edge detection) and normalized cross
correlation (NCC) scores only. However, instead of limiting
ourselves to an ellipsoid object contour as in [1], we try to
adjust the contour to the object edge which gives a more
complex representation as the object may change to a very
complex shape, such as change of hand gestures. Here, the
object contour is represented by its landmark points. The
predicted position of a landmark point in a subsequent frame
is restricted to be on the normal line to the contour through
the landmark’s position in the current frame.

III. METHODS

We implement an HMM to track object contour based
on the formulation from [1], where the hidden states of the
HMM are the landmark points along the contour of the object
in a new frame. The observations are the gradients (Canny
edge detection) and the NCC score (against a patch from the
previous state), taken along a 21 pixel long 4-connected path
centered on the landmark’s location in the previous frame and
extending along the normal to the objects contour at that point
in the previous frame. Figure 1 shows the details of how HMM
is formulated for this object tracking problem.

Fig. 1: A) The solid line is the previous contour and the dashed line
is the next contour. Normal lines are shown at the landmark points.
B) The hidden states S are inferred by the observations O. (image
from [1])

Since our goal is to track deformable object contours, we
made each state seek a new position between each frame. This
enables our method to adapt to the new shape of the object
contour. This also makes our method scalable in the number of
landmark points, as the boundary of the object is recalculated
at each frame and the landmarks are always taken at every fifth
boundary pixel. Thus, in frames where the object is smaller
we require fewer landmarks points to track and dynamically
increase the number of landmark points as the surface area of
the object increases.

In our observation matrix, each row represents the pixels
along a normal line at one of the contour’s landmark points,
while the columns represent the states (pixel offsets along that
line). To populate this matrix, the value for any position along
any normal line is computed from the combination of its NCC
and gradient probability, where we want the true state to be
similar to the previous frame (NCC) and on the edge of the
object (gradient). State transitions are modeled by an overall
contour smoothness constraint, which is a Gaussian penalty of
e~ B@;=21)” where x are the states on consecutive normal lines.
Thus, we are trying to minimize a weighted cost associated
with finding the positions along the normals that have the best
edge response, look the most like the position in the previous



frame, and are smoothest with respect to the transition being
suggested by the landmark points on either side of the one
in question. We calculate smoothness as the probability of
observing the states in the rows directly above and below the
row in question with respect to a gaussian centered at the state
(column) at that row. To obtain the global optimal solution, we
implemented the Forward-Backward algorithm to propagate
the smoothness information round-trip along all states, and
then use Dynamic Programming to compute the sequence of
state transitions that yields highest likelihood and lowest cost.
Forward-Backward Belief Propagation can be implemented
using either MAP or MMSE.
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The important difference between the two is whether the
maximum value from the propagated observations or the sum
of the values is used in the iterations. Overall, our method
contains the following steps:

1 Manually draw initial contour

2 For every C pixels on the contour, generate the landmark
points and its normal lines

3 Obtain hidden state observations with gradient and NCC
information, generate observation matrix
state transition

4 Employ smoothness constraint into

probability

5 Apply Forward-Backward Belief Propagation with MAP
or MMSE, followed by Dynamic Programming to find
the lowest cost state transition

6 Compute optimal state transitions and adjust landmark
points to determine new contour

7 Repeat steps 2-6 for continuous deformable object
contour tracking

IV. EXPERIMENTS AND RESULTS

We have implemented the algorithm using MMSE
estimation in hope that it is a better way to avoid false
positive nearby strong edges. We have tried a few different
input videos to test its performance and the output is
interesting. The method runs at about 5 seconds per frame
(depending on the number of landmark points being tracked).
In our experiments, we used every fifth pixel along the
contour as a landmark point; the more dense you make this
spacing, the more accurate the tracking but the longer it
takes to run. We allowed the Forward-Backward algorithm

to run for 10 iterations, though it was usually observed to
converge at around the fifth iteration. For the gaussian that
determines penalties for violating smoothness, we used a
constant weighting term beta = 0.01. This indicates how
much smoothness matters with respect to aligning with the
best edges and strongest correlation. If this value is lower, it
allows for greater deformation but may be taken away from
the object when another strong edge passes by. If the term is
greater, it will help preserve the shape of the object and may
help keep it from being misled by nearby edges, but it will
not allow for great deformation between subsequent frames,
so deformation needs to be slow with respect to frame rate.

Test case 1: simple rotating fist: Figure 2

Fig. 2: Tracking an object with translation and slight deformation
such as turning your fist is fairly accurate and can recover even after
temporarily losing the contour.

Test case 2: flexing of the fingers: Figure 3

Fig. 3: Our method is capable of tracking complex deformations and
maintains accuracy by adjusting the number of landmark points as
the surface area increases.



Test case 3: brain tumor segmentation: Figure 4

Fig. 4: Another application to HMM deformable contour tracking
is for brain tumor segmentation, treating each consecutive slice as
continuing video frames.

Test case 4: hand extending all fingers: Figure 5

Fig. 5: This shows a failure of our algorithm. The deformation here
is too extreme and happening too quickly. This represents an area
where either the cost weighting parameters or the similarity and edge
measures could be improved.

V. CONCLUSIONS AND FUTURE WORK

We have implemented contour tracking using HMM, and we
have added our twist to make the algorithm track deformable

object contour. We show our success in tracking objects
with translation and deformation due to rotation, perspective,
and actual deforming movement of the object itself. Our
experiments show promising results, while sometimes tracking
can be thrown off by strong edges nearby, but that recovery
is possible as the object continues to deform. Much work
on exploring the parameter space can be done, changing
the way smoothness is weighted and taking more criteria
into account than just edge detection and NCC score. In
particular, a good extension would be to record a color or
intensity histogram for the foreground (inside the contour) and
background (outside). Using an observation that attempts to
keep appropriate colors inside and exclude others should help
avoid many situations where a nearby edge disrupts tracking.
Our method could prove useful in many applications, such
as tumor segmentation, where one slice of the tumor can be
found by seeking assymmetry and could then be segmented in
adjacent frames using our method, as well as in sign language
recognition [2], where the ability to describe the position and
pose of the hands and fingers with more complexity than an
approximate ellipse [1] could lead to the recognition of more
complex signs and allow for a greater vocabulary.
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