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Abstract—We propose a novel and robust computational framework for automatic detection of deformed 2D wallpaper patterns in
real-world images. The theory of 2D crystallographic groups provides a sound and natural correspondence between the underlying
lattice of a deformed wallpaper pattern and a degree-4 graphical model. We start the discovery process with unsupervised clustering of
interest points and voting for consistent lattice unit proposals. The proposed lattice basis vectors and pattern element contribute to the
pairwise compatibility and joint compatibility (observation model) functions in a Markov Random Field (MRF). Thus we formulate the 2D
lattice detection as a spatial, multi-target tracking problem, solved within the a MRF framework using a novel and efficient Mean-Shift
Belief Propagation (MSBP) method. Iterative detection and growth of the deformed lattice are interleaved with regularized thin-plate
spline (TPS) warping, which rectifies the current deformed lattice into a regular one to ensure stability of the MRF model in the next
round of lattice recovery. We provide quantitative comparisons of our proposed method with existing algorithms on a diverse set of
261 real world photos to demonstrate significant advances in accuracy and speed over the state of the art in automatic discovery of
regularity in real images.
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1 INTRODUCTION

N EAR regular texture patterns [1] are pervasive in
man-made and natural environments. They pro-

vide fundamental cues for both human and machine
perception [2], [3]. In the computer vision and com-
puter graphics communities, such patterns are usually
regarded as textures with a stochastic nature, composed
of deformed versions of one or more basic texture ele-
ments [4]–[7]. Ample evidence can be found that near
regular textures are not merely random collections of
isolated texture elements, but exhibit specific geometric,
topological and statistical regularities and relations [6]
(Figure 1).

Wallpaper group and lattice theory inform us that
periodic patterns can be described by a pattern element
(tile) and two smallest linearly independent (t1, t2) gen-
erating vectors [8], [9]. The translation subgroup of all
wallpaper patterns can be characterized by a degree-4
graphical model where each pattern element is a node
that has four neighbors representing its own copies, off-
set by plus or minus t1 and t2. For deformed wallpaper
patterns or near regular textures [6], the “copies” are
no longer faithful, due to variations in viewing angle,
material coloration, lighting, or partial occlusion. Yet, the
appearances of the photometrically and geometrically
deformed elements remain highly correlated. We call
these varying pattern elements “texels”, to distinguish
them from the ideal pattern element that they are instan-
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tiations of. Similarly, for deformed lattice patterns the
strict geometric offsets of neighbors in the lattice must
be replaced by “spring” terms allowing local variations
of the (t1, t2) lattice basis vectors. We encode these soft
constraints on the geometry and appearance of deformed
wallpaper patterns as pairwise compatibility and joint
compatibility functions in a degree-4 Markov Random
Field (MRF) model.

Fig. 1: Repeating patterns are pervasive both in natural
and man-made (and bee-made, bottom right) environ-
ments : buildings, handmade baskets, bee hives, cloth,
and fish.

The underlying topological lattice structure of a near-
regular texture (NRT) under a set of geometric and pho-
tometric deformation fields was first acknowledged and
used by Liu et al for texture analysis and manipulation
[6], [10], [11]. Subsequently, Hays et al [12] developed the
first deformed lattice detection algorithm for real images
without pre-segmentation, and Lin and Liu [13], [14]
developed the first deformed lattice tracking algorithm
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for dynamic NRTs.
The idea behind [12] is simply to look for the

t1, t2 neighbors of randomly selected interest regions
in the image. If a sufficient number of such regions
look like their respective t1, t2 neighbors (lower order
similarity) and also share their t1, t2 neighbors’ direc-
tions/orientations with other interest regions in the im-
age (higher order correspondences), their shared spatial
relationships contribute to the final lattice in a spectral
method formulation. With the found correspondence,
the slightly deformed lattice is straightened out and a
new round of lattice discovery begins, so the extracted
lattice grows bigger and bigger. Formulating the lattice
detection problem as a higher order correspondence
problem adds computational robustness against geomet-
ric distortions and photometric artifacts in real images.
Although Hays et al [12] produces impressive results,
there are several serious drawbacks preventing its wider
applicability. First, local correlation-based peak finding is
used as a last resort for finding regions of interest, which
is both time consuming and sensitive to noise, occlusion
and transform discontinuity in the image. Second, the
method is based on finding the eigenvalues of a n2×n2

sparse matrix (n is the number of potential texture
elements), which is cumbersome computationally. Third,
the algorithm only examines one of the t1, t2 vectors
at a time, and is thus less robust against misleading
repetitions and prone to wasting time on interest points
that do not lead to legitimate neighbors. Our proposed
method overcomes these weaknesses.

Our work is partially inspired by Lin and Liu [13], [14]
who treat lattice detection on the initial frame of a video
clip as a spatial tracking problem. However, they do
not use a graphical model in the lattice detection phase.
Furthermore, they require an initial texel to be given (by
the user) and use affine template matching to grow the
deformed lattice spirally outward. Instead, we propose
to formulate the detection of the underlying deformed
lattice in an unsegmented image as a spatial, multi-target
tracking problem, using a recently published, fast Belief
Propagation method called Mean-Shift Belief Propaga-
tion (MSBP) [15]. It is natural to represent near-regular
texture by a Markov Random Field (MRF) given the
topological lattice structure of wallpaper patterns [11],
[12], [14].

Compared with [12], our proposed approach offers
significant improvements in accuracy, robustness and
efficiency for automatic lattice detection by: 1) incor-
porating higher order constraints early-on to propose
highly plausible lattice points; 2) recovering the re-
maining elements by inference on a graphical model
constructed from a proposed (t1, t2) vector pair and
pattern element; 3) achieving a deterministic algorithm
linearly dependent on the number of texels, instead
of quadratic or higher order. Quantified experimental
results on an extensive set of diverse real-world images
(Section 6) demonstrate the advantages of our approach
quantitatively.

2 LATTICE FITTING USING A MARKOV RAN-
DOM FIELD
Assume we are given an image I that contains a de-
formed version of a true periodic pattern. Also as-
sume we have an estimate of the ideal pattern element,
specified by an appearance template T0, and the t1, t2
lattice generating vectors (a method for automatically
discovering these items is presented in Section 4). Our
goal in this section is to infer accurate image locations x
= {x0, x1, x2, . . . , xn} of all texels forming the repeated
pattern in image I .

A Markov Random Field (MRF) specifies a factor-
ization of the joint distribution of a set X of random
variables. An MRF can be represented as an undirected
graph G = (N,E), where each node in N represents a
random variable in set X and each edge in E represents
a statistical dependency between random variables in
X. In the present context, the random variables are the
image locations of texels, and edges in the MRF model
represent two kinds of dependencies: spatial constraints
between neighboring texels and appearance consistency
constraints between each image texel and the reference
pattern element (Fig. 2).

Fig. 2: Information for fitting lattice patterns can be
represented in a degree-4 MRF. In this model, latent
variables, x, represent 2D texel locations to be inferred.
Spatial neighborhood constraints provided by the (t1, t2)
lattice basis vectors are expressed by a pairwise compat-
ibility function Ψ(xi, xj), while image measurements, z,
quantifying similarity in appearance between each texel
and the ideal pattern element, are used within a joint
compatibility function Φ(xi, zi).

The motivation for performing lattice finding using an
MRF model is that localizing texels in a repeated pattern
is made easier and more robust if multiple texels are
searched for jointly, rather than one at a time. This is so
because the location of each texel is constrained by its
neighbors, so finding some of them provides knowledge
about where the others may be. In an extreme case,
if you locate the four adjacent neighbors of a texel,
you can infer where the central texel should be, even
if it is occluded or otherwise hard to find. The key to
leveraging this insight is to encode the topological lattice
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structure explicitly into a graphical model so that the
model can be used effectively to perform inference over
the joint space of spatial constraints. Specifically, for each
pair of neighbors xi and xj connected by an edge in
the MRF, we define a pairwise compatibility function
Ψ(xi, xj) to impose a spatial constraint between them.
For example, if we know that xi and xj are t1-neighbors
of each other in the lattice, we constrain the offset vector
xj − xi to be “similar” to vector t1.

Another piece of information that can help localize
each texel is that the image patch centered at xi should
look like the pattern template T0. In our case, the differ-
ence in appearance between the two is quantified by an
image measurement zi, and a joint compatibility function
Φ(xi, zi) is added to the MRF to impose the constraint
that the difference in appearance should be “small”.

2.1 Belief Propagation in Large State Spaces

As a statistical model, the MRF encodes the joint proba-
bility p(x, z). Determining the location of one texel given
estimated positions of all other texels is computationally
infeasible if it requires brute force evaluation of the
marginal distribution, leading to a time complexity of
O(n × nk−1), where k is the number of nodes in the
graph and n is the size of the latent variable space
(cardinality of the space of candidate texel locations).
Thus, determining where each of the elements is in the
pattern would require O(nk) computation time.

Fortunately, the joint probability over the texel loca-
tions x and image appearance measurements z in an
MRF can be factored as

p(x1, ..., xN , z1, ..., zN ) = k
∏
(i,j)

ψ(xi, xj)
∏
s

φ(xs, zs) (1)

with ψ and φ being the pairwise compatibility and
joint compatibility functions. The belief propagation (BP)
algorithm takes advantage of this factorization to per-
form inference on the graph efficiently. Thus the com-
putation cost for estimating the location of all texels
is reduced from O(nk) to O(kn2). However, BP is still
very expensive when the latent variable state space is
large, and is not feasible for latent variable spaces with
continuous values. Specifically, by “BP” we are referring
to Discrete Belief Propagation (DBP), where the values of
the random variables xi come from a discrete set. When
xi is an image location, we thus need to specify a level of
discretization. Although finer discretizations yield better
localization accuracy, the computation cost of DBP grows
quadratically in the number of locations considered.

To improve the speed of inference using DBP, sev-
eral approaches have been suggested. Ramanan &
Forsyth [16] speed up DBP by first removing states that
have low image likelihood value. However, preprocess-
ing is needed to compute the image likelihood for the
entire space, which needs O(nT) pre-processing time,
where n is the size of the latent variable space and
T is the time needed for image likelihood evaluation.

Moreover, this kind of pruning method is susceptible
to error; once an important state is incorrectly pruned
in the pre-processing stage, the inferencing may not
reach the correct solution. Coughlan & Shen [17] also
speed up DBP by state pruning. The pruning method
they use is dynamic quantization, which allows addition
and subtraction of states during the belief propagation
process. Although method of Coughlan & Shen has less
risk than static pruning of the latent variable space, it is
not suitable for high dimensional state space.

More recently, efficient DBP methods for early vision
were discussed in [18]. The author shows that the
computation time can be reduced by several orders
of magnitude using min convolution, bipartite graphs
and multi-grid methods. However, min-convolution can
be used only if the compatibility function is convex.
Moreover, it is not feasible in high-dimensional spaces
due to the need for uniform discretization.

Unless one is willing to discretize, approaches based
on DBP are not suitable for continuous latent vari-
able spaces. To tackle problems with continuous state
spaces, several versions of continuous BP have been
proposed [19]–[21]. Non-parametric Belief Propagation
(NBP) approximates BP inference for a continuous latent
variable space by representing arbitrary density func-
tions using particles, each particle being the mode of
a Gaussian in a Mixture of Gaussians distribution. It is
reported that 100 ∼ 200 Gaussians suffice for an accurate
representation of arbitrary densities [19], [21]. However,
the standard NBP algorithm is slow due to the sampling
process [21]. In our current problem, it would also be
slow when the number of nodes in the graphical model
becomes large due to a large number of repeating pattern
elements, such as windows on a skyscraper.

3 MEAN-SHIFT BELIEF PROPAGATION

We have developed a heuristic method called Mean-Shift
Belief Propagation (MSBP) [15] that works iteratively
with local weighted samples to infer max-marginals
within a large or continuous state space. We note that
mean-shift is equivalent to finding a local mode within
a Parzen window estimate of a density function, and
use mean-shift as a non-parametric mode-seeking mech-
anism operating on weighted samples generated within
the belief propagation framework. Geometrically, we can
visualize this process as performing mean-shift on the
implicit belief surface or marginal density generated by
the belief propagation algorithm (Fig. 3). Because the
mean-shift algorithm only needs to examine the values
of the belief surface within its local kernel window, we
can avoid generating the entire belief surface, yielding
great computational savings. Since the approach needs
a significantly smaller number of samples than particle
filtering, computation time is reduced as compared to
NBP [15].

Instead of evaluating all the possible states of the
latent variable space, MSBP works within a local regular
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grid of samples centered at the predicted state. This grid
of samples becomes a new latent variable space within
which BP message passing is performed to compute a
weight (belief) for each sample. Once weights are com-
puted, mean-shift on the samples at each node performs
hill-climbing to reach a new predicted state for each
node. A new discrete grid of samples is then generated,
centered on this predicted state, and the process repeats.

(a) (b)

Fig. 3: (a) Illustration of a 2D marginal density computed
by the BP process, and (b) mean-shift hill-climbing on
that belief surface. Only a small local grid of belief values
within the mean-shift window need to be computed
during any iteration, so the majority of the belief surface
can remain implicitly defined (and thus not computed).
Computational savings increase as the dimensionality of
the belief surface increases.

3.1 Samples

Consider a 2D lattice graph where the latent variable
space xi is the continuous-valued (x, y) location of a texel
represented by node i. We first resample the continuous
latent variable space into a local regular grid of samples
for each node. This is a standard method in the context
of density estimation [22]. We build a regular grid of
samples centered at the initial variable estimates and
compute data values for those samples using Parzen-
window estimation. Let ẋi = {(x, y) |x ∈ xi

1, ...x
i
n, y ∈

yi
1, ...y

i
m} be the set of local samples centered at the cur-

rent predicted state for node i. This is a new discretized
latent variable space over which the pairwise and joint
compatibility functions are computed. The observations
and belief arrays at each node have size equal to the
number of samples in the local grid used to approximate
the continuous latent variable space at each iteration.

3.2 Weight

Sample weights for performing mean-shift are generated
by using standard message passing to compute a belief
value for each sample.1 Specifically, message passing

1. The equations presented in this section are identical to BP except
that MSBP works on the grid of local samples approximating the latent
variable space at each node.

from node i to j is computed according to the sum-
product rule

m
(n+1)
i→j (ẋj) =

∑
ẋi

φi(xi, zi)ψij(xi,xj)
∏

s∈N(i)\j

m
(n)
s→i(xi)

(2)
where N(i) \ j means all neighbors of node i except j,
φi is the joint compatibility function at node i, and ψij is
the pairwise compatibility function between node i and
j. Note that sample points and summation are restricted
to a discrete grid of points.

After passing of messages according to the message
update scheme, the belief about the state of node i
(probability of the state of node i based on evidence
about i gathered from its neighbors, plus the image
observation at node i) is computed by

bi(ẋi) = kφi(ẋi, żi)
∏

s∈N(i)

ms→i(ẋi) (3)

where k is a normalization constant. This belief value
becomes the sample weight. For a visual intuition of the
meaning of samples and their weights as an approxima-
tion to the belief surface, refer back to Fig. 3.

3.3 Mean-shift on weighted samples
Once the grid of samples is defined and their weights
are computed within the BP framework, the next step
is to perform mean-shift on the set of weighted sam-
ples. Recall that the sample weights are belief values,
that is, values of the marginal posterior for that node.
The mean-shift result for each node therefore gives an
updated estimate of the mode of the marginal posterior.
The procedures of resampling, weight computation, and
mean-shift hill-climbing are repeated, centered on the
new estimate, until convergence. We compute a mean-
shift update as

x(n+1) =
∑

iK(xi − x(n))b(xi)xi∑
iK(xi − x(n))b(xi)

(4)

where b(xi) is the weight computed in Equation 3, x(1)

is the initial predicted location, x(n) is the estimated
location after the nth iteration, and xi is a sample inside
the mean-shift kernel K.

MSBP is efficient because it only needs to explore a
relatively small number of sampled local windows as
it proceeds on the path to a local mode of the belief
surface (Fig. 3). Therefore, the surface can be sampled
both densely and efficiently. The more detailed analysis
of the surface leads to more accurate and stable solutions
than can be achieved, using the same number of samples,
by either DBP (via quantization of the space) or NBP.

3.4 Simulations
Although the mean-shift algorithm is a hill-climbing
method that can converge to the wrong peak in multi-
modal data, its behavior within MSBP is constrained by
the pairwise compatibility function between neighboring
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nodes. It is as if multiple climbers are asked to climb
a mountain while being tied together with ropes that
force them to move jointly. As a result, while mean
shift applied independently at each variable node would
suffer in the face of multimodal joint compatibility den-
sities, the joint hill-climbing behavior of MSBP leads
to coupled behavior that can overcome multimodality
in the individual nodes. To illustrate this behavior on

(a) Surface z(x, y) (b) Samples of Joint Compatibility

(c) Given measurement of z(x, y) (d) Initialization

Fig. 4: (a) Surface z(x, y) = (x2 + y2)/50 (b) Sample
non-Gaussian joint compatibility functions out of 25×25
functions (c) Actual measurement where only 20% of the
nodes are measurable (d) Random initialization of pixel
labels at the 2D grid points

multimodal data, we adopt the approach of Weiss and
Freeman [23], but using a non-Gaussian joint compat-
ibility function. We compare DBP, NBP [19], [20], [24],
simulated annealing using Markov Chain Monte Carlo
(MCMC) moves [25], [26], and MSBP for performing
inference on a 25× 25 grid. (Fig. 4)

The joint probability used in the simulation is

P (X, z) = k
∏
ij

e−β(xi−xj)
2 ∏

i

φ(xi, zi), (5)

where k is normalizing constant and β = 0.1 if nodes
xi,xj are neighbors and 0 otherwise. The multimodal
joint compatibility function is

φ(xi, zi) = e−αi(xi−zi)
2
+ 0.7e−αi(xi−zi−ri)

2
, (6)

where αi is randomly selected to be 10−6 or 1 with
probability of 0.8 and 0.2 respectively and ri is ran-
domly chosen between [0, 5] (Fig. 4b). When αi = 1,
we set measurement zi to be a sample from the surface
z(x, y) = (x2 + y2)/50 and zi = 0 otherwise. This setup
is equivalent to an approximation problem from sparse
data where only 20% of the nodes are visible with a weak

prior of zero for the unobserved nodes, as can be seen
in Fig. 4c. Note that zi is a measurement at node i, one
of the 2D grid points expressed by (x, y).

(a) DBP (b) NBP

(c) Simulated Annealing (d) MSBP

(e) Accuracy vs Time by Mean Squared Error

(f) Accuracy vs Time by −log(P (X, z))

Fig. 5: (a) Result of DBP at time t (b) Result of NBP
at time t (c) Result of simulated annealing with MCMC
move at time t (d) Result of MSBP at time t (e) Accu-
racy vs time trade off by Mean Squared Error between
groundtruth (max-marginal) and estimate of each algo-
rithm (f) Accuracy vs time trade off by −log(P (X, z))

To avoid implementation inconsistency and facilitate
cross-validation, we use publically available MATLAB
tool boxes for NBP [24] and simulated annealing [25].
Algorithm-specific parameters are set as follows: for
DBP, we discretize the continuous latent variable space
into a discrete space of −5 ∼ 30 with step size of 0.015;
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for MSBP, we discretize into 11 bins with a bin size
of 1; for NBP, we use 200 samples; and for simulated
annealing, we use Equation 6 as a proposal function.
For MSBP, we generate a random starting point for X as
illustrated in Fig. 4d and run for 100 times and report the
average. All the experiments are performed in MATLAB
on an Intel dual core T7500 with 2.2 GHz and 3070 MB
memory.

Since our goal is to have estimates of the max-marginal
(MM), we need to score accuracy of each method by the
value of the marginal. However finding exact marginals
for a Markov network with multiple loops as in our
simulation is computationally prohibitive [23], [27], [28].
For example, we could use analytic belief propagation
to compute marginals in the real-valued MRF in our
simulation since all the compatibility functions and mea-
surements are mixtures of Gaussians. However, for BP
to converge, BP needs many iterations and as it iterates
the number of Gaussian components increases exponen-
tially.

Another candidate for computing ground truth is
to use sampling. We notice that non-parametric belief
propagation is the sampling technique that is designed
to compute marginals in a way that can take advantage
of factorization in the MRF. However, as can be seen in
Fig. 5, the NBP estimate cannot be used as a metric due
to non-convergence and inaccuracy for this example.

Fortunately, since latent variables in our simulation
are scalar variables, we can do uniform sampling for
each latent variable space into 10,000 bins with a step
size of 0.01 without suffering from high dimensionality.
Then we use DBP to compute marginals in a C++ imple-
mentation, otherwise it takes too long until convergence
(our DBP MATLAB simulation with 3,000 bins took more
than 8 hours until convergence). We use MM estimates
of DBP on the densely sampled latent variable space as
groundtruth. We compute and report the Mean Squared
Error (MSE) between groundtruth and estimates of each
algorithm. We also measure the accuracy of each method
by −log(P (X, z)) for cross-validation since our objective
is not to estimate the maximum a posteriori (MAP)
solution.

For MM estimation, MSBP is the most accurate of
all the competing methods as illustrated in Fig. 5e. It
can be seen in Fig. 5 that at a time t (1.75h) when all
methods are able to yield an answer, MSBP is the most
accurate in terms of both MAP and MSE. After 8 hours
of simulation time, DBP yields better numerical accu-
racy than MSBP for the MAP estimate, however, as the
dimension increases, the discretization of the continuous
latent variable space becomes even more intractable for
DBP. MSBP converges over an order of magnitude faster
for a given level of accuracy than all competing methods
(Fig. 5e, 5f, and TABLE 1).

4 DEFORMED LATTICE DETECTION
There exists a perfect conceptual match between 2D wall-
paper patterns and a degree-4 statistical graph model.

DBP NBP MCMC MSBP
Convergence Time 8h 46min 5h 32min 1h 6min 2min 38sec

TABLE 1: Convergence time

The property that neighboring texels in a lattice are
spatially related by two linearly independent (t1, t2) vec-
tors is represented as a pairwise compatibility function
within an MRF. The property that each texel appearance
is highly correlated with the appearance of one reference
pattern element is enforced by the joint compatibility
function (observation model). Once a lattice model is
represented by an MRF, inferencing via belief propaga-
tion over a latent variable space of 2D texel locations can
be used to find a deformed lattice of texels in an image.

In this section, we present an end-to-end algorithm
for automatically detecting near-regular textures in real-
world images by finding their deformed lattice. The
algorithm is divided into three phases (Fig. 6). Phase I is
a discovery phase where the unknown pattern element
and (t1, t2) vector pair are learned and an MRF model
is constructed. In Phase II, MRF inference via MSBP
spatially “tracks” the texels in the image to seed, localize
and expand the lattice. In Phase III, a transition phase,
regularized thin-plate spline warping rectifies the found
deformed lattice into a regular lattice. Then a new round
of lattice inference/expansion starts (Fig. 6).

Fig. 6: Flowchart of the overall proposed algorithm.
There are three phases: lattice model proposal, spatial
tracking and incremental thin-plate spline warping.

4.1 Phase I: Lattice Model Proposal

We view this phase as a discovery process starting with
low level vision cues such as pixels, corners, and edges
and ending with a high level lattice model proposal.
We first generate feature points, group them by their
appearance similarities through unsupervised clustering,
then seek a lattice model consistent with the geometric
relationship between candidate point clusters. The out-
put is a proposed (t1, t2) vector pair and a representative
texel.

4.1.1 Interest point extraction
Any interest point detector can be used in this stage.
The key trade-off is to extract enough feature points
to expose some repeated structure of the near-regular
texture reliably without overwhelming the subsequent
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Fig. 7: Intermediate results illustrating stages of the lat-
tice finding algorithm. (a) input image. (b) lattice model
proposal (result of Phase I in Fig. 6). (c) intermediate
result after one iteration of MSBP and TPS warping
(Phases II and III). (d) the final detected lattice.

lattice finder with false positives. Our initial experiments
using the KLT corner extractor [29] show low hit rate
on repeating substructures (Fig. 10a). This is because
KLT points are sorted by corner strength, and points
with strength below Smax × Q are discarded, where
Smax is the highest corner strength and Q is a user
settable threshold. Rather than being scattered uniformly
throughout the image, KLT points tend to be clustered
in high-contrast regions (Fig. 10a). Instead of applying
KLT to the whole image, the simple alternative of ap-
plying KLT in a block-wise fashion causes it to adapt
locally, thus revealing almost all repeating points (Fig.
10b). Although threshold parameter Q is input-image
dependent, our algorithm varies the value automatically
until the number of detected features is more than Ns in
every block. All experiments in this paper use a 50× 50
pixel block size and Ns = 30.

(a) KLT (b) Block-wise KLT

Fig. 8: (a) The results of the default KLT detector, run on
the whole image. (b) Results of performing block-wise
KLT detection with automatic thresholding.

4.1.2 Clustering
To detect repeating features, we cluster interest points
by image patch appearance. We use mean-shift cluster-
ing, since other clustering algorithms such as K-means
require knowing the number of clusters in advance. For
each detected feature point, a centered 11 × 11 image
patch is extracted and normalized in the standard way
by subtracting the mean intensity and dividing by its
standard deviation. The patch is then reshaped into
a 1 × 121 row vector, and these row vectors become
the input for mean-shift clustering. Although mean-
shift clustering relies on a bandwidth parameter, this
can be set to a constant in our case, since the feature
space is normalized. We experimented with varying the
bandwidth parameter from 1 to 20; by visual inspection,
these experiments showed that a bandwidth of 7 works
the best.

Fig. 9: Phase I results: The green L-shape inside the
red enlarged rectangular window is the proposed (t1, t2)
vector pair, and the red L-shapes are its supporting mem-
bers (inlier votes). The images are cropped to emphasize
the area of interest.

4.1.3 Lattice model proposal
Proposing a lattice model involves examining a cluster
of feature points with similar appearance to determine
a (t1, t2) vector pair and pattern element. This step
differs significantly from [12] in two ways. First, each
lattice unit found is composed of the current point under
consideration and its two nearest matched neighbors,
forming an L-shaped (t1, t2) vector pair (Fig. 9), as op-
posed to considering t1 and t2 sequentially [12]. Second,
the final proposal is generated by a consensus vote of
all potential (t1, t2) vector pairs. This is equivalent to
imposing higher-order constraints upfront, rather than
waiting to prune infeasible lattice hypotheses at a later
stage [12].

We adopt a voting mechanism similar to [30]. For each
detected feature point cluster, we randomly sample three
points {a, b, c} and compute the affine transformation
that maps them from image space into the integer lat-
tice basis {(0, 0), (1, 0), (0, 1)}. We can now transform all
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remaining points from image space into their equivalent
lattice positions via the same affine transform, and count
those inlier points whose lattice space coordinates are
within some threshold of an integer position (i, j). If the
three chosen points {a, b, c} define a (t1, t2) vector pair
corresponding to the generators of a wallpaper pattern,
many additional supporting votes should emerge from
other interest points having a similar spatial configura-
tion. Although the use of an affine transform may not
model the exact deformation that occurs, the proposal of
a (t1, t2) vector pair based on local regions suffices when
the overall deformation in the image can be approxi-
mated by a piece-wise smooth affine transform. We fur-
ther consider the proximity of points when computing
the transformation, to increase the likelihood of finding
a feasible transform. Given a point a chosen at random,
points b and c are chosen as the two points with least
distance from point a.

(a) Before (b) After

Fig. 10: (a) Proposed (t1, t2) basis vector pair and its
supporting members: the green L-shape is the (t1, t2)
vector pair and the partial lattice contains its supporting
members. (b) Rectified image using a global projective
image transformation found from the lattice model pro-
posal.

Random selection of three points (a, b, c) is repeated
multiple times, and the (t1, t2) vector pair with the
largest number of votes (inliers) is chosen as the lattice
generator proposal. Fig. 10(a) illustrates a sample (t1, t2)
proposal and its inlier set of supporting members. Fur-
thermore, a global projective transformation is applied
to the image, based on selecting four points from the
detected substructure, to perform an initial, global image
rectification in the hope of aiding subsequent inference
procedures in the following phase (this is a heuristic,
based on the observation that repeated textures often lie
on planar surfaces). Finally, an estimate of the reference
pattern element, T0 (a texel template), centered at the
origin of the proposed (t1, t2) vector pair is extracted.

4.2 Phase II: Lattice expansion - spatial tracking
with MSBP
We treat the discovery of the deformed lattice in an
image as a multitarget tracking problem. Without know-
ing the target to start with, Phase I of our algorithm

proposes a pattern element template T0 as a potential
target and a (t1, t2) vector pair as a prediction model.
As discussed in Section 2, a degree-4 MRF model is a
natural choice for inferring texel locations while enforc-
ing spatial lattice constraints. Since the lattice may be
geometrically distorted in the image, it is dangerous to
try to predict the whole lattice at once. Instead, an initial
small seed lattice is predicted, refined, and gradually
grown outwards into a larger and larger lattice, while
the image is progressively unwarped to “straighten out”
geometric deformations.

Given its efficiency, we use the MSBP algorithm ( [15],
and section 3) as our inference engine for refining pre-
dicted texture element locations. An initial lattice is built
from the (t1, t2) proposal generated in Phase I, and the
pattern element template T0 is used to generate an image
likelihood map via normalized cross-correlation (NCC).
This image likelihood map is taken as a prior density
function for the location of other texels. To increase
the discriminative power of the image likelihood, we
augment intensity-based appearance comparison with
an additional comparison of edge magnitude. The joint
compatibility function (observation model) in the MRF
is thus given by

φ(x[i,j], z[i,j]) = exp(−α(1− z[i,j])),
z[i,j] = NCC(T0, I(x[i,j]))×NCC(em(T0), em(I(x[i,j])))

(7)

where x[i,j] is the 2D location of node [i, j] at the ith

row and jth column in the lattice, I(x[i,j]) is an image
patch centered at the location of node [i, j], T0 is the
appearance template, and em(I) is the edge magnitude
of an image patch. Equation (7) is of a form typical for
data compatibility functions that measure likelihood by
appearance similarity. Parameter α is a fixed constant
that is set empirically.

The second kind of function for the MRF is the pair-
wise compatibility function that specifies the spatial con-
straints between neighboring pairs of texture elements.
In the context of lattice tracking, the pairwise compat-
ibility function governs the geometric characteristics of
(t1, t2) vector pairs in the lattice. We measure the spatial
consistency of two such vector pairs, (ti1, t

i
2) and (tj1, t

j
2),

using the normalized error term defined below:

E(ti1, t
i
2, t

j
1, t

j
2) = max(

∥∥∥ti1 − tj1

∥∥∥
2∥∥ti1∥∥2

,

∥∥∥ti2 − tj2

∥∥∥
2∥∥ti2∥∥2

) (8)

where ‖‖2 is L2 vector norm, and we define our pairwise
compatibility function as

ψ(x[i,j],x[i,j±1]) = exp(−β × h(x[i,j],x[i,j±1])2),
h(x[i,j],x[i,j±1]) =

E(
−−−−−−−−→
x(it)

[i,j]x
(it)
[i,j±1],

−−−−−−−−→
x(it)

[i,j]x
(0)
[i+1,j],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i,j±1],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i+1,j])

(9)



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

ψ(x[i,j],x[i±1,j]) = exp(−β × v(x[i,j],x[i±1,j])2),
v(x[i,j],x[i±1,j]) =

E(
−−−−−−−−→
x(it)

[i,j]x
(it)
[i±1,j],

−−−−−−−−→
x(it)

[i,j]x
(0)
[i,j+1],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i±1,j],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i,j+1])

(10)

where E is given by equation (8) and measures the error
between a hypothetical pair of lattice element vectors
(t(it)1 , t

(it)
2 ) at iteration2 it with the original proposed

vectors (t(0)1 , t
(0)
2 ). Note that equations (9,10) are indeed

pairwise functions because only the terms with super-
scripts it are random variables and the rest are constants.
Since our image likelihood is getting closer to the one
that would have been produced by a perfectly periodic
pattern through regularized thin-plate spline warping,
this pairwise function is a good approximation to a
ternary function with three random variables that form
a local deformed version of the (t(0)1 , t

(0)
2 ) vector pair.

Equation (9) with subscripts [−] and [+] is used for
left-right and right-left message passing respectively.
Equation (10) with subscripts [−] and [+] is used for
up-down and down-up message passing respectively.
The β parameter is a fixed parameter that is set em-
pirically. Because the error term is normalized, a fixed
β parameter can be used for all images regardless of
spatial scale of the lattice elements. We use α = β = 5
in all our experiments. Using the compatibility equations
defined above, MSBP [15] is performed. The use of MSBP
is critical for speeding up the inference process in real
applications, as otherwise the inference process would
be very slow.

Once the optimization via MSBP converges for this
intermediate stage of lattice growth, verification of the
converged texture element positions is performed. This
is necessary because propagation of incorrect informa-
tion to other nodes in the graph may corrupt the op-
timization process. Verifying whether the inferred lo-
cations are significant local maxima or “peaks” in the
likelihood image gives us a safety measure for finding
reliable correspondences between the deformed image
lattice and a hypothetical regular lattice, which will be
used for regularized thin-plate spline warping in Phase
III. Rather than a hard-coded threshold, we use the
region of dominance idea introduced by Liu. et al [10] to
determine if an estimated texture element position can
be trusted. If the current estimated location is a dominant
peak within its neighboring region (that is, if it is a local
maximum with a significantly high likelihood score, but
is not located close to another local maximum with an
even higher score) we select it as a peak location.

Possible mis-alignment at a certain iteration of our
algorithm is acceptable because it can be corrected in
later iterations. After one iteration of Phase II and Phase
III, the lattice structure is expanded from the initial

2. Note that iteration it is not the iteration involved in computing
belief but the mean-shift iteration on the computed belief surface.

lattice, and the growing process continues until no more
texels are found. A flowchart of the overall algorithm
and the results of subsequent iterations are shown in
Fig. 6 and Fig. 7 respectively. A movie demonstrates the
dynamic inferencing process of Phase II and Phase III
can be found in the supplemental material.

4.3 Phase III: Regularized Thin-plate Spline Warping
Once a partial lattice is found in an image, it is natural
and useful to relate the found lattice to its regular origin:
a wallpaper structure [6], [9], [10]. It is natural since
the detected degree-4 lattice has the same topological
structure as the regular wallpaper patterns [9], and it is
useful since straightening out (rectifying) the deformed
lattice and its neighborhood helps the iterative algorithm
to expand its search for larger and larger lattice struc-
tures in the image (Fig. 7). We achieve this unwarping
step using regularized thin-plate spline warping with a
smaller regularization term than was used in [12] for
speed-up of the rectification of the deformed lattice.

The practical benefits of this phase include: 1) it allows
us to deal with deformation discontinuity in the scene; 2)
it facilitates analysis of corresponding pixels in the set of
found texels to help overcome geometric variations; and
3) it ensures the stability of the regularized lattice model
throughout the entire iterative procedure. Unwarping of
the current lattice and spatial tracking on the rectified
image are repeated, iteratively, until the growing lattice
reaches the edge of the image or there are no more texels
to track (Fig. 7).

One of the major advantages of coupling BP with MRF
and thin-plate spline warping is that, as BP converges,
the inference engine provides the deformation corre-
spondences explicitly to the thin-plate spline procedure;
and, as the thin-plate spline rectifies the image, it pro-
vides better observation and compatibility measures to
the MRF model, resulting in enhanced correspondences
on deformed patterns.

5 GROUND TRUTH AND EVALUATION METHOD

We have collected a diverse dataset of 261 real-world
images containing 2D wallpaper patterns, for evaluat-
ing deformed lattice detection algorithms (Fig. 11). The
images are divided into three categories. Data set 1
(D1) contains 67 images where the texels are opaque,
and appearance variations of the repeating elements
come from different viewpoint and lighting conditions.
(Fig. 11a). Data set 2 (D2) contains 73 images with see-
through or wiry structures, thus high variation in texel
appearance often occurs due to the changing background
(Fig. 11b). Data set 3 (D3) contains 121 images with
urban views of city buildings where there are multiple
repeating patterns with perspective distortion (Fig. 11c).
The whole data set (D) is composed of D1, D2, and D3.3

3. The whole test image set can be viewed at PSU Near-Regular
Texture Database, http://vivid.cse.psu.edu/texturedb/gallery/ and
downloaded at http://vision.cse.psu.edu/MSBPLattice.htm
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(a) Data Set 1 (b) Data Set 2 (c) Data Set 3

Fig. 11: (a) Data set 1 contains 67 images where the texels
are opaque, and appearance variations of the repeating
elements come from viewpoint and lighting changes. (b)
Data set 2 contains 73 images with see-through or wiry
structures, thus high variation in texel appearance often
occurs due to the changing background. (c) Data set 3
contains 121 urban views of city buildings, where many
images contain multiple repeating structures.

5.1 Ground Truth
Using a graphical interface designed to generate 2D
lattice ground truth for real photos, a human user in-
teractively draws and edits a lattice structure on top
of the image. Partial occlusion and texels that extend
outside of the actual image are counted as a valid texel
if approximately half or more (as judged by the user) of
the area of the texel is visible.

(a) (b) (c)

Fig. 12: (a) Original images (b) Different quadrilateral
lattices (texel shapes) that can model the same wallpaper
pattern. (c) A case with a global offset between ground
truth and the detected lattice (solid line: groundtruth,
dotted line: the detected sample lattice). Our evaluation
procedure counts a quadrilateral lattice as being “cor-
rect” if it connects all found texels.

Ground truth generation of lattices is challenging be-
cause many different equivalent lattice shapes exist. That
is, there may be several ways to draw a quadrilateral
lattice in the same image, as depicted in Fig. 12b. For
locally regular portions of a lattice, the ideal texel to
use is the one that has the shortest combined edge
length in t1 and t2, which is unique and well-defined [9].
However, in curved or warped wallpaper patterns, this
definition is ambiguous, since the vector lengths may
vary throughout the distorted image. In our evaluation

of a lattice, we only require the detection method to find
a repeated quadrilateral of some shape as a valid texel,
not necessarily the one with minimum edge length.

5.2 Evaluation Method
We are interested in computing the success rate of an
automated lattice detection algorithm, DT / GT, where
GT is the number of ground truth texels and DT is the
number of valid texels detected by the algorithm. Com-
puting the validity of texels turns out to be a complex
problem. Most commonly, as illustrated in Fig. 12c, there
is a global offset between the detected lattice and the
ground truth, but these offsets do not alter the fact that
each texel encompasses one unit of a repeating pattern
and thus should be considered as a valid solution.

To overcome these difficulties, we have created an
automated method of lattice evaluation that establishes
a mapping between a detected lattice T and the ground
truth lattice G. First, every lattice point in T marks the
lattice point in G that is the closest to it as a match, and
vice-versa (points in G mark the closest points in T). If
two lattice points mutually claim each other as matches,
then we consider these two points to be “married”. These
marriages constitute our correspondence mapping from
one lattice to the other.

In order to compensate for a global offset to the
lattice, we move all points in the detected lattice T by
the average offset to a marriage partner. The lattices
become significantly more aligned by eliminating the
global offset. We then generate matches and marriages
again, usually gaining a few additional correspondence
thanks to the realignment.

To determine each texel’s validity, we must first an-
alyze texel shape. For each complete texel in T, we
test whether or not all of its corner points are married
and, if so, whether their marriage partners in G form
a quadrilateral that can be tiled to mimic the original
lattice (Fig.12). Additionally, the texel in T must have an
area in pixels between 50 percent and 150 percent of the
area of its corresponding shape in G. If the shape of the
texel is potentially valid, then its shape is recorded. Each
texel in T with a particular shape counts as one “vote”
for that shape in the correspondence between lattices.
Once all the texels of T are either voted for or rejected
as invalid texels, the texel shape that receives the most
votes is regarded as the “correct” texel shape. All texels
that voted for that shape are labeled as valid texels, and
all other texels in T are regarded as invalid.

This method works very reliably in most cases. In rare
cases it can generate false positives due to odd boundary
conditions caused by occluding objects or the edge of the
image. For this reason, a visual inspection is carried out
by the user to be sure that only texels that are occluded
by half or less are counted as valid.

6 EXPERIMENTAL RESULTS
We quantitatively evaluate our proposed approach from
different perspectives by measuring: 1) the success rate
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Lattice Proposal Data set 1 (D1) Data set 2 (D2) Data set 3 (D3) All
Success Rate (67 images) (73 images) (121 images) (261 images)

ECCV2008 [31] 70.1% 64.4% 66.1% 66.7%
Proposed 82.1% 80.1% 89.3% 84.7%

TABLE 2: Quantitative evaluation of success rate of Phase I (lattice model proposal success rate). The comparison
is between an earlier version of our method [31], and the new method proposed in this paper. The success rate
is defined as the ratio of the number of images for which a feasible (t1, t2) vector pair is proposed over the total
number of images tested.

Detection ECCV2008 [31] set subset of D1 subset of D2 subset of D3 subset of D
Rate (%) (32 images) (58 images) (51 images) (34 images) (143 images)

Lin and Liu [14] 18.3± 20.0 N/A N/A N/A N/A
Hays et al [12] 33.0± 35.2 65.76± 37.05 21.49± 31.10 14.93± 26.35 35.72± 39.28

Ours 69.9± 21.5 75.69± 23.26 50.19± 31.17 75.78± 20.54 65.78± 28.79

(a) Detection Rate

Average Run Time Data set 1 Data set 2 Data set 3 D
(min) (67 images) (73 images) (121 images) (261 images)

Hays et al [12] 43.13± 33.1 35.45± 32.56 36.69± 17.53 38.00± 26.65
Ours 4.48± 2.47 4.91± 2.98 5.89± 4.30 5.09± 3.57

(b) Average running time

Average Run Data set 1 Data set 2 Data set 3 D
Time Ratio (67 images) (73 images) (121 images) (261 images)

Run Time of [11]
Run Time of Ours

12.61± 8.58 8.76± 6.28 9.33± 6.93 9.98± 7.34

(c) Average running time ratio

TABLE 3: Quantitative evaluation of Hays’ algorithm [12] and our proposed method on various data sets. Since
we only have ground truth for 143 images available at this time, we report the detection rates for 143 out of the
261 images in the entire data set D. The average running time, however, is for all 261 images in the data sets. The
success rate is defined as the ratio of the number of correctly detected texels over the total number of ground truth
texels. The run time ratio is defined by the ratio of the time used by [12] to detect the lattice over the time used
by our proposed method.

of the current lattice model proposal (Phase I) versus
an earlier alternative [31]; 2) the success rates of our
approach versus two state-of-the-art lattice detection
algorithms [12]–[14].

6.1 Phase I Success Rate (TABLE 2)

With respect to discovery of an the initial lattice pro-
posal (Phase I), two main improvements of our current
approach over [31] are: 1) the use of a block-wise KLT in-
terest point detector with automatic thresholding, and 2)
applying mean shift clustering to group texels with sim-
ilar appearance. To evaluate whether these differences
are indeed an improvement, we compare the success
rates of these two Phase I approaches on 261 images.
Table 2 shows that the average success rate of proposing
a feasible (t1, t2) vector pair increases from 66.7% [31]
to 84.7% for 261 images. This almost 20% improvement
comes from a more aggressive search and a more relaxed
acceptance of candidate repeating structures. Robustness
against false positives is provided by the generality of
the degree-4 graph model of repeated patterns, joint
search for (t1, t2) vector pair, and a reliable statistical
voting scheme.

6.2 Comparison with State-of-the-Art (TABLE 3)
We next compare lattice detection results of our approach
against two state-of-the-art algorithms, the method of
Lin and Liu [13], [14] and the method of Hays et.al. [12].
Since the work of Lin and Liu requires a lattice unit to be
given by the user, we do not report its average runtime,
and we only report its success rate for the same 32-image
data set used in [31]. For that 32-image data set, the
detection rate of Lin and Liu is 18.3±20.0%, Hays et al is
33.0± 35.2% and ours is 69.9± 21.5%. Since the current
ground truth also includes texels that are at least half
visible, the detection rates tend to be somewhat lower
than what we reported in our previous work [31].

We extensively compare the automated method of
Hays et.al. with our proposed method in terms of run-
ning time on 261 real world images and success rate
on 143 real world images4. As illustrated in Table 3,
our detection rate for the 143 images is 65.78 ± 28.79%
and the rate for Hays et al is 35.72 ± 39.28%. The
detection rate is computed as the ratio of the number of
valid detected texels over the number of ground truth
texels. Since the algorithm of Hays et al [12] includes
an element of randomness, it is run multiple times and

4. Ground truth labeling has only been completed for 143 of 261
images at the time of submission.
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the best result is chosen according to a modified A-
score5. However, we note that the “best” result chosen
automatically sometimes does not necessarily cover the
largest image area. Since the Hays et al [12] algorithm
has to propose multiple lattice models to maintain a
certain level of detection rate, it has to deal with the
problem of choosing the best out of many generated
results. Our proposal phase tends to generate fewer
lattice proposals of higher quality, and we do not suffer
from the post-detection lattice selection problem.

As we compare results of Hays et al [12] with ours on
143 images across three image sets, we tabulated results
of algorithm successes and failures, counting accurate
detection of any valid texels as a success. On 80 images,
both methods succeed. On 53 images, our method suc-
ceeds while Hays et al [12] fails. There are no images
for which the Hays et al [12] method succeeds and ours
fail, but there are 10 images for which both methods fail.
Sample results can be seen in Figures 13 - 15 where we
use a shorthand index ’DXY Z’, where ’DX’ indicates
data set X is used (X = 1, 2, or 3); “Y ”(“Z”) takes
values S (success) or F (failure) to indicate the outcome
of the lattice algorithm by Hays et al [12] (our proposed
method) respectively.

These results (TABLE 3) show that our new approach
is almost twice as robust (66% vs 36%) at finding lat-
tice structures in real images, particularly when the
scene contains chain link fences (50% vs 22%) where
each texture element is dominated by the varying back-
ground, and in images of buildings (76% vs 15%) with
considerable planar perspective distortions and many
small repeated elements. Table 3b shows that the average
running time of our proposed method over that of Hays
et. al. [12] is close to a 10-fold speed-up on average
(TABLE 3c).

7 CONCLUSION

We develop a novel and efficient Mean-shift belief prop-
agation (MSBP) algorithm for inferencing on real-valued,
non-Gaussian MRFs. We propose a novel MRF graphical
framework and show the effectiveness of MSBP for
automatic detection of deformed 2D wallpaper patterns
in real images. The underlying lattice of a wallpaper
pattern generated by a pair of independent basis vectors
has a perfect conceptual match with a degree-4 graphical
model. Since the repeating texel and the lattice basis
vectors are not given apriori, these unknowns are discov-
ered through unsupervised clustering of interest regions.
Extensive experimentation on real world images demon-
strates superior performance of our proposed approach
over state-of-the-art lattice detection algorithms. More
specifically, our main contributions include 1) proposing
and utilizing an efficient method (MSBP) for inferencing

5. A-score, originally introduced in [6], is the average per-pixel
standard deviation among the final, aligned texels. The modified score
includes

√
n in the divisor to bias the A-score toward rewarding more

complete lattices [12], where n is the number of detected texels.

Fig. 13: Sample results on data set 1. D1SS - sample
results where both algorithms succeed. D1FS - sample
results where Hays et.al. [12] fails while ours succeeds.
D1FF - sample results where both algorithms fail (it is
interesting to note that both algorithms detect texels that
are half the size of the valid texel). For each pair of
images shown, the left is the result of Hays et.al. [12]
and the right is the result of our proposed method.

in large, continuous latent variable spaces; 2) discovering
highly plausible lattice proposals by considering higher-
order constraints and low-level feature points upfront
and collectively; 3) coupling spatial and appearance
compatibilities, as well as spatial tracking and TPS warp-
ing, within an MRF model; 4) providing an end-to-end
lattice detection algorithm that has a deterministic com-
putational complexity linear in the number of texels in
the scene; and 5) developing a lattice detection ground-
truth labeling and evaluation tool.

There is a rich set of current and future applications
for such a deformed lattice detection algorithm [6], [10],
[11], [13], [14], [30], [32]–[35]. Since our approach is
formulated as a tracking algorithm, it is equally appli-
cable to tracking dynamic near regular textures in video
sequences. Our future research will further investigate
the problem of fully automatic dynamic lattice discovery
and its use for temporal tracking in challenging, multi-
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target video tracking scenarios.

Fig. 14: Sample results on data set 2. D2FS - sample
results where Hays et.al. [12] fails while ours succeeds.
D2SS - sample results where both algorithms succeed.
D2FF - sample results where both algorithms fail. For
each pair of images shown, the left is the result of Hays
et.al. [12] and the right is the result of our proposed
method.
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