
1

View-Dependent Selective Refinement for Fast
Rendering

Kyle Brocklehurst
Department of Computer Science and Engineering

The Pennsylvania State University
kpb136@psu.edu

Abstract—Triangle meshes are used for surface representa-
tions of objects in almost all computer graphics software and
hardware. The computational demand of rendering increasingly
complex geometry has necessitated techniques to simplify or
remove geometry from the rendering pipeline without nega-
tively affecting the users visual experience. Here we present an
approach using progressive meshes to build a very simplified
version of a mesh, and we introduce a simple criteria that can
be evaluated by a GPU during rasterization to determine areas to
be refined, leading to a scalable representation of object surfaces
that renders visually similar output at a greatly reduced polygon
count.

I. INTRODUCTION

The structuring and simplification of surface meshes is a
well-explored area of research, but many methods can only
compress a mesh to some finite number of levels of detail [1].
Traditional graphical applications switch between models with
different levels of detail as object move closer or further from
the camera. This works to reduce the total amount of geometry
to be rendered, but can result in noticable visual artifacts as an
object hits a distance threshold and suddenly changes sharply
in detail.

We are intrigued by the work of Hoppe [2] as it allows
for individual, targeted refinements to a compressed mesh and
thus a near-continuous level of detail. This method allows
for selective refinement, which means that it can be used to
refine only areas of the mesh that meet some criteria. We
propose a general and broadly applicable weighting function
for vertex importance. This function is dependent only on
object geometry and view location, information that is known
to graphics hardware during rasterization. Thus, it would be
appropriate for our method to be implemented on a GPU. This
allows the GPU to refine the mesh only in areas of greatest
importance under the current view. We show that a software
implementation of our method can substantially reduce the
overall polygon count of a surface while keeping detail high
in the areas where it is needed from a specific camera.

II. RELATED WORK

Schroeder et al. [1] present a method capable of remov-
ing 90% of the vertices from a surface mesh while retain-
ing visually-pleasing similarity to the original quality. Their
method, however, acts over the entire surface equally, and
thus does not take advantage of the viewers position, which
is commonly known in graphical applications.

Progressive meshes, introduced by Hoppe [2], introduce
a representation of a mesh that allows for heavy simplifi-
cation and retains the information needed to refine back to
the original level of detail. Their method allows for either
global or selective simplification / refinement of a mesh, and
is also useful in that the mesh can be rendered as it is
being transmitted to yield an effect of iterative refinement
as transmission progresses. This method allows for selective
refinement, but the author offers little discussion of what
refinement criteria may be, noting that it is largely specific to
particular applications. His work merely notes that a function
call to an application with higher understanding of vertex
importance could be used to specify, for each vertex, whether
it should be simplified or refined.

III. COMPRESSING THE MESH

Compression of the mesh is performed similarly to [2].
Compression can be accomplished solely by the edge collapse
operation, illustrated in Fig. III. An edge collapse replaces an
edge with a vertex, removing to triangles from the mesh. The
information needed to invert the edge collapse and perfectly
restore the mesh can be recorded when the collapse is per-
formed and applied later as a vertex split operation.

Fig. 1. The edge collapse and vertex split operations are the heart of Hoppe’s
method [2]. An edge collapse takes an edge (Vs to Vt above) and replace it
with one vertex, removing two triangles in the process. A vertex split inverts
one edge collapse, restoring the mesh perfectly to how it was prior to the
collapse.

We represent a mesh with a vector V : a vector of vertex
locations in 3D, S: a vector of colors (Si is the color at Vi),
K: the connectivity vector (in which each entry has 3 index
values indicating the index of the vertices that create a triangle
of the surface), and E: a vector of all edges on the surface.



2

Compression progresses by iteratively collapsing edges until
we have reduced our mesh to a specified number of trian-
gles. In each iteration, the edge collapse with lowest cost
is performed. Cost is illustrated in Fig. III. It is formulated
as cost = (Gerr)2 + (length)2 + sqrt(length ∗ ∆color),
where ∆color is the distance between the colors at V 1 and
V 2 in RGB space. The (Gerr) term is the distance from the
vertex that would be created between V 1 and V 2 and the true
closest point on the original mesh (shown in black); it prevents
the compression from removing important geometric detail
from the surface. The sqrt(length ∗ ∆color) term prevents
the compression from removing changes in color, or blurring
the changes by stretching them over a triangle edge that is
very long. The last term (length)2 works to keep all edges of
roughly equal size. This is described in [2] as a spring energy
equation, but we find this formulation unneeded as the term
need only depend on (length)2 to keep compression from
focusing too strongly in one area.

Fig. 2. The black squares represent actual values of the original mesh. V 1
and V 2 are vertices of an edge of a somewhat compressed mesh, such that
the edge between them (blue line) is spanning multiple edges of the original
mesh. The cost of collapsing this edge is dependent on the its length as well
as on the distance from the midway point of the edge to the original mesh
(red line). Cost is also dependent on the difference in color values at V 1 and
V 2 (not illustrated).

Initially, cost is computed for all edges in E and E is sorted
by cost. In each iteration, the lowest cost edge is collapsed and
all affected edges (those that had been connecting to V 1 or
V 2 as illustrated in Fig. III) have their cost recomputed. Then
E is sorted again and the process repeats until the specified
number of triangles have been removed. Figures III and III
show the results of compressing a surface mesh to 25% of the
original number of triangles.

An interesting change that I make from [2] is that I do not
delete any triangles during an edge collapse. I use an additional
vector of boolean variable to note, for each triangle in K,
whether or not that triangle should be displayed. Thus, I can
simply turn triangles off as I collapse edges so that they can be
turned back on during refinement, sparing the time to delete
and reallocate the two triangles in each operation. This means
that triangles are not removed from memory, so simplification
of the surface does not reduce the amount of memory used to
store the mesh, but this is of little concern as modern graphics
hardware has an abundance of memory and the triangles that
are turned off need not be rendered, and thus do not slow the
rendering process.



3

Colormap Heightmap

Original Detail Original Detail (top)

25% Detail 25% Detail (top)
Fig. 3. A surface mesh of a terrain is created using the colormap and heightmap shown. At original detail, the mesh has 20,000 triangles. We have reduced
this to 5,000 triangles with little decrease in quality. Not how detail is highest near changes in color or height.



4

Colormap Heightmap

Original Detail Original Detail (top)

25% Detail 25% Detail (top)
Fig. 4. A surface mesh of a terrain is created using the colormap and heightmap shown. At original detail, the mesh has 20,000 triangles. We have reduced
this to 5,000 triangles with little decrease in quality. Not how detail is highest near changes in color or sharp changes in height.



5

Fig. 5. The information that is known to the GPU during rasterization of a
triangle includes the location, view direction, and FOV (anguar field of view)
of the camera, the location of the triangles vertices, and the normal to the
triangle’s surface. The theta value shown is simply the angle between the
normal and a vector from the eye to the triangle’s center (α=0.5 β=0.5 in
barycentric coordinates).

IV. SELECTIVE REFINEMENT

We require a scheme to selectively refine the lattice to max-
imize quality of the image under the current view conditions
while keeping the number of triangles being rendered low and
the time required to render quick. Rendering progresses first
through rasterization, a process using only the properties of
the camera and the geometry of the objects to position each
triangle in the image. One the geometry of the scene has been
rasterized, the more time-consuming process of shading the
geometry uses a multitude of other knowledge of the scene,
such as the lights and their properties, reflection, transparency,
or other effects such as fog to make a scene look as realistic
as possible. The geometry of a scene is established during
rasterization, the shading process cannot change it, merely
change the colorization of what has been rasterized to yield a
more convincing image. Thus, a selective refinement method
that could intelligently decide what areas of the mesh need
refinement to appear more accurate under the current view
must be performed during rasterization, rather than shading,
and thus must use only the information available during
rasterization: the physical geometry of the triangles and the
properties of the camera. This information is visualized in Fig.
IV.

We use the information available during rasterization to
determine whether or not a vertex split should be performed on
the vertices of each triangle. As each triangle is rasterized, if it
should be refined, a vertex split is performed on every vertex
of the triangle for which vertex split exists (only vertices that
were created as a result of edge collapse can be split). When
an edge is collapsed, an entry is created in a vector of vSplits,
or vertex splits. A vSplit contains the index within V of the

Fig. 6. In determining the importance of a triangle, we also utilize the
triangles area and the distance from the eye to the triangle’s center. Both of
these values are calculable from the information presented in Fig. IV.

vertex that it splits, the indices within K of the two triangles
that are turned back on after the split, and the information
needed to reconnect neighboring triangles to the vertices at
the end of the edge being recreated (the triangles neighboring
Vs and Vt in Fig. III.

To determine whether or not to perform vSplits at the ver-
tices of a triangle being rasterized, we first verify that the trian-
gle is in view from the camera, if so, we formulate an equation
for the importance of the triangle under the current view.
We specify importance = area/(distance ∗ tan(FOV )) ∗
max(−cos(θ), sin(θ)), visualized in Fig. IV. Where area is
the area of the triangle. 1/(distance∗tan(FOV )) models the
projected size that an object would have at the current distance.
max(−cos(θ), sin(θ)) weights the importance of the angle
between the triangle’s normal vector and a vector from the eye
to the center of the triangle. This value is highest when the
triangle is either orthogonal to or tangent to the current view;
we find these to be the most important cases as orhtogonal
triangles occupy maximal screen space for their size, making
refinement significant to quality, and triangles tangent to the
current view make up much of the contour of the object,
making refinement there also very important so the silhouette
of the object is as accurate as possible. All triangles with an
importance above a given threshold have vSplits performed on
each of their vertices for which a vSplit exists. We find that a
threshold of 0.3 produces pleasing results, but this is largely
dependent on the needs of the system: a balancing act to keep
quality high and polygon count low, which can be tuned by
a user or learned over time by trying to acheive a consistent
frame rate.

Our function of vertex importance results in selective re-
finement that is focused on areas in view of the camera, near
the camera, and at the most important areas of the object. In
Fig. IV it is clear that the refinement decreases with distance



6

from the camera, and it is intuitive that it is less necessary in
areas where perspective makes objects appear smaller. In Fig.
IV, it can be seen that the refinement is more concentrated on
the side of the white hill that directly faces the camera.

V. RESULTS

Our method is implemented in OpenGL using simplification
of the mesh on the CPU to verify the level of simplification
and selective refinement that could be acheived on a GPU.
Currently, initial mesh simplification (to 10% the initial num-
ber of triangles) takes about 5 seconds for a mesh initially
containing 5000 triangles and about 30 seconds for a mesh
initially containing 20000 triangles. Selective refinement from
a specified view takes less than a second. Actual speed and
computational advantages could only be realized through GPU
programming and, for some hardware, redesign to allow for
the interruption of rasterization for vSplits. We demonstrate
that our method is able to significantly simplify a mesh
(easily to 10% the initial number of triangles), and that
selective refinement yields significantly improved views from
the current camera in Figures V and V.

VI. CONCLUSION

We present a modification of progressive meshes [2] built
around the idea of improving rendering performance on a
GPU. We introduce a modified version of edge collapse cost
which proves effective in guiding significant simplication of
an input mesh while depending only on information local
to the edge being considered. We formulate a measure of
a triangle’s importance under a current view using only the
triangle’s geometry and the camera properties, thus making
it appropriate for evaluation during rasterization, when vertex
splits can be easily performed to enhance the surface where
needed. We have implemented our method and shown that
it produces pleasing results, adapting well to a variety of
views and focusing refinement on areas where significant and
noticeable detail is recovered.



7

Compressed (10% Detail)

Current View Selectively Refined

Fig. 7. We compress the surface from the colormap and heightmap of Fig. III to 10% of the original numer of triangles, then selectively refice from the
given view. Note how detail is only increased in view of the camera and is most increased nearer the camera.



8

Compressed (10% Detail)

Current View Selectively Refined

Fig. 8. We compress the surface from the colormap and heightmap of Fig. III to 10% of the original numer of triangles, then selectively refice from the
given view. Note how detail is only increased in view of the camera and is most increased in important areas nearer the camera.



9

Colormap Heightmap

10% Detail 10% Detail (top)

Selectively Refined Selectively Refined (top)

Original Detail Original Detail (top)
Fig. 9. We show the original mesh, compressed mesh at 10% the number of triangles, and selectively refined mesh for one view of the colormap and
heightmap shown.



10

Colormap Heightmap

10% Detail 10% Detail (top)

Selectively Refined Selectively Refined (top)

Original Detail Original Detail (top)
Fig. 10. We show the original mesh, compressed mesh at 10% the number of triangles, and selectively refined mesh for one view of the colormap and
heightmap shown.



11

REFERENCES

[1] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle
meshes,” in ACM SIGGRAPH, 1992, pp. 65–70.

[2] H. Hoppe, “Progressive meshes,” in ACM SIGGRAPH, August 1996, pp.
99–108.


