
Motion Texture

Harriet Pashley
Advisor: Yanxi Liu

Ph.D. Student: James Hays

1. Introduction

 Motion capture data is often used in movies
and video games because it is able to
realistically depict human motion. One of its
greatest limitations is the inflexibility for reuse
in different projects. To get the exact shot that
you would like requires an individual motion
capture session. This is not only costly but time
consuming as well. We would like to be able to
easily take existing data and synthesize more of
it or be able to modify it slightly to suit our
needs. Motion capture databases such as
Carnegie Mellon’s [http://graphics.cs.cmu.edu]
divide clips into different actions. It is difficult
to piece these clips together in a reasonable way
to create a desired longer motion.
 There have been many successful results in
texture synthesis for a variety of textures using
different approaches. Some synthesize texture
pixel by pixel based on the pixel’s neighborhood
[Efros and Leung, 1999], while others use
patches which are overlapped and then sewn
together along a certain optimal seam [Efros and
Freeman, 2001]. Recently there have been many
advances made in the texture synthesis realm
which can be applied to the growth of motion
capture data, namely the specific treatment of
near-regular textures [Liu, Lin, Hays, 2004].
This specific classification of textures has
regularities and symmetries with the addition of
a limited amount of random noise and
imperfections. Near-regular textures are seen all
over in nature, including cloth patterns, brick
walls, and even gait patterns [Liu, Collins, Tsin,
2002]. Algorithms have been tailored to near-
regular textures to exploit their regularity while
still preserving their subtle differences [Liu, Lin,
Hays, 2004]. These synthesis methods use PCA
to find the average tile and then deviate from it
to form new tiles. These tiles are then pieced
together to form a larger texture. We extend this
concept to stride cycles in motion capture data
for motion capture data. In Fig. 1 the repetitive

nature of the foot and arm joints are apparent
over the course of three different cycles.
Texture synthesis algorithms are able to
faithfully reproduce arbitrary amounts of a given
input texture.

Figure 1: The frame of the motion is viewed as a row of
the graph. Time is increasing from top to bottom. The
periodicity can be observed in the feet and the arm joints
across three different cycles.

2. Related Work

 There have been many papers published on
the subject of motion synthesis. Researchers
have been able to piece together segments of
motion capture data by specifying descriptions
of motion in a specific order, such as “walk, run,
jump” [Arikan, Forsyth, and O’Brien, 2003]. To
reduce an animator’s workload, research has
been done to key-frame a small number of joints
and use motion capture data to fill in the
remaining joints based on the correlation
between the joints [Pullen and Bregler, 2002].
Our work deviates from previous work which
synthesizes human motion by segmenting data
together which is statistically similar. Motion is
viewed as a set of linear dynamic systems and
their accompanying matrix of transitions which
contains how likely one system will transition to
another [Li, Wang and Shum, 2002]. The most
widely used method to transition between two

Feet Arms

motion clips is linear interpolation. The
physical correctness of interpolated motions has
been justified by evaluating it in terms of
standard physical properties such as linear and
angular momentum, the contact between feet
and the floor and the continuity of velocity.
However, it is still not guaranteed to look
natural. [Safanova et al., 2005].
 In this paper we will examine each category
of texture synthesis algorithms as mentioned
above as well as explore the importance of
correlation between joints.

3. Texture Synthesis Algorithms

3.1 Pixel-Based Methods

 In Efros and Leung’s 1999 paper they were
able to create arbitrary amounts of texture by
creating a data structure of textons (see Fig. 2).
Textons define the basic unit of a texture, which
contain the color information of the center pixel
and of those pixels in its immediate vicinity
which are called neighbor pixels. Textons can be
created for all pixels of the input texture. When
synthesizing, the texton t composed of a
neighborhood of size n around the current pixel
p is compared with each texton of the input
texture t’ by minimizing the distance between
them using distance metric d. The center pixel
of texton t’ with the smallest distance from the
center of t is the value of p. This process is
repeated for each pixel to be synthesized.
Applying this to motion capture data, we
equated each “pixel” to each angle value a at
frame f and degree of freedom of joint x. Our
“texton”, which we will refer to as a motion
texton is the neighboring angles around the
current angle. This is not the same definition
used by Li, Wang, and Shum (2002). We
deviate from Efros and Leung’s method only in
the search space for each angle a. If we
searched over the entire original motion we
could synthesize a head joint angle with a foot
joint angle. To avoid this, we minimize the
distance between a and a’, where

z
aaa ...'

1
!

and z is the length of the input motion sequence.
This produced a visually pleasing result when
given a sufficiently large neighborhood size.

The neighborhood size was dependent on the
gait cycle, about 20 frames on average.

Figure 2: A visualization of a texton.

3.2 Patch-Based Methods

 Another approach for texture synthesis is the
image quilting method of Efros and Freeman.
They create a set of blocks from the input image
which are “all such overlapping blocks in the
input texture image” of a size specified by the
user. The initial block is selected and placed in
the larger image. The patch set is searched for
the block which has the least variation in the
overlapped region between the two neighboring
blocks (see [Efros and Freeman, 2001). This
process is repeated for each patch as they are
placed in the larger image. An optimal path is
computed in the overlapped region to seamlessly
join the patches. Relating this to motion capture
data, we take two motions m1 and m2 (which
may be the same motion) and search for the best
overlap between them over n frames. This
occurs at frame t1 of m1 and t2 of m2. We
compute the optimal seam between m1 and m2
joint by joint, where x is each joint as seen in
this pseudocode:

for i = t1 to t1 + n
 for j = t2 to t2 + n
 calculate distance between m1x[i] and m2x[j]

return i and j of minimum distance computed

This means that over the n transitional frames
each joint x could transition between m1 and m2
at different frames for a smoother transition.
When m1 and m2 are the same motion, a
threshold needs to be set for how quickly the
motion can transition (the minimum value of t1).
Without this threshold the best overlap will be
computed at frame 1.

3.3 Tile-Based Methods

 When using a pixel based texture synthesis
algorithm the size of the neighborhood has a
large impact on the quality of the results. A
small neighborhood will not incorporate the
structure of the texture into the distance
calculation. Even an arbitrarily large window
does not capture the correct regularity. For all
of the infinite number of regular textures there
are only 17 different lattice/tile structures that
define the symmetry of the texture. The lattice
can be detected in a texture and the tiles used for
synthesis. Tiles are placed and then blended
together using dynamic programming. This
preserves the intensity/color variations of the
texture as well as the regularity of the texture
[see Liu, Tsin and Lin, 2005].
 While the structural regularity is not
preserved when using a large neighborhood size,
the correct choice of neighbors is an important
part of patch-based texture synthesis methods.

4. Correlation Between the Degrees of

Freedom of Joints

 The format of motion capture data is that
each joint is given a number and these numbered
joints are laid out in sequential order in an array.
Thus adjacent neighbors in the data structure
may not be logical numbers. For example, in
Fig. 3 the lower back joint is stored next to the
right toe joint. When using Efros and Leung’s
method (1999) these kinds of neighborhoods
may be meaningless. To make the
neighborhood meaningful we look at the
correlation score between joints. We quantify
this correlation using Pearson’s correlation
coefficient, ρ. This coefficient is a value
between -1 and 1 which measures the linear
relationship between two sets of numbers s1 and
s2. 1 is a perfect correlation between s1 and s2,
0 is no relationship between the two sets, and -1
is an inverse relationship between the two.

Figure 3: The physical neighbors of a joint are not logical
neighbors of a joint. The lower back and right toe are not
correlated joints, yet using Efros and Leung’s method
(1999) their values would affect one another when
synthesizing a joint.

 Applying this to our motion synthesis, we
compute ρ for every pair of degrees of freedom
in motion m. If))(()(yxxy

xy
!=" ,

yx

xy

!!

!
"

#
= . We store these values in an array

and use them to weight the value of the physical
neighbors of the degrees of freedom of joint x
during synthesis. The same algorithm is used as
described in the previous section with the
exception of the distance metric d. For each
degree of freedom of joint x,

!
=

"=
n

i

T

iframeweightsneighborabsd
1

)_(,

where n is the size of the neighborhood. The
absolute value is taken because we want to
weigh positively and negatively correlated joints
equally as they provide the same amount of
information about the motion.

5. PCA Tiling of Motion

 A near-regular texture [Liu, Lin and Hays,
2004] can be decomposed into two parts, a
regular texture and its deformation field. When
synthesizing a brick wall the authors find the
average brick which they call the mean tile.
They then use PCA to construct the bases of the
tile and create a linear combination of the mean
tile and its bases. We look at motion capture
data in this light we manually segment a walk
into strides. We define a stride to start at the
first frame at which the right food touches the

Frame t

Joints 1 … n

ground and the end of the stride to be the last
frame before the right foot touches the ground at
the end of the walking cycle. These strides are
then averaged together to form the mean stride.
The bases are constructed and new motion can
be created by forming a linear combination of
the mean stride and its bases. The strides
created by this method can be pieced together
using any of the three methods described in
Section 3.
 One of the difficulties of this approach is to
create motions without foot sliding. To compute
the mean stride, cycles must be interpolated to
be the length of the longest stride. This causes
the shorter cycles to be stretched, thus causing
feet to slide. We are currently working on ways
to mitigate this problem as explained in our
future work. Also, it would be instructive to
find a means of computing a threshold for
eigenvector coefficients to produce realistic
motions.

6. Future Work

 We are looking to expand our work firstly by
acquiring better data for PCA. By using many
cycles of a motion a more meaningful average
stride can be computed. We are going to also
examine our method with data where the feet are
fairly regular (similar stride lengths and times)
and the hands are uncorrelated. We would like
to expand the autonomy of our method, by being
able to automatically detect the beginning and
end of each cycle in a motion. This will greatly
reduce the pre-processing steps of our current
method for synthesis using PCA.
 Currently, our method needs a post-
processing step to clean up foot sliding. We are
hoping to use correlation to automatically detect
sliding feet. When feet begin to slide we
hypothesize that the correlation between the
velocity of the feet and velocity of the root will
change. The velocity of the root can be
calculated by finding the difference between the
different positions of the root over the duration
of the motion. Finding the velocity of the feet in
world coordinates would allow for a comparison
between the velocities of the two joints.
 We are also aware that it may be better to
synthesize each joint of the motion instead of
synthesizing the degrees of freedom of the joint

separately. This is not straightforward as
different joints have different numbers of
degrees of freedom. It involves turning each
joint from a Euler angle representation into a
quaternion representation. This affects how the
correlation between joints is computed as the
correlation of two vectors is yet to be defined
precisely.
 Our computational treatment of motions as
near-regular textures may provide valuable
insights into the improvement of motion
transplants [Ikemoto and Forsyth, 2004]. Using
graph cuts [Kwatra, Schödl, et al, 2002] we will
be able to stitch together subsets of different
motions across time, hopefully improving
existing results.

 REFERENCES

Arikan, O., Forsyth, D.A., and O’Brien, J.F. 2003. Motion

synthesis from annotations. ACM Transactions on
Graphics, 22(3):402:408.

Efros, A.A. and Freeman, W.T. 2001. Image quilting for

texture synthesis and transfer. In SIGGRAPH, pp. 35-42.

Efros, A.A. and Leung, T.K. 1999. Texture synthesis by

non-parametric sampling. In International Conference
on Computer Vision.

Ikemoto, L. and Forsyth, D.A. 2004. Enriching a motion

collection by transplanting limbs. ACM Transactions of
Graphics, pp. 99-108.

Kwatra, V., Schödl, A, et al. Graphcut Textures: Image and

Video Synthesis Using Graph Cuts. ACM Transactions
of Graphics, 22(3):277:286.

Li, Y., Wang, T., Shum, H.Y. 2002. Motion Texture: a

two-level statistical model for character motion
synthesis. ACM Transactions of Graphics, pp. 465-472.

Liu, Y., Lin, W.C., and Hays, J. 2004. Near-regular

texture analysis and manipulation. ACM Transactions of
Graphics, 23(3):368-376.

Liu, Y., Collins,R.T. and Tsin, Y. 2002 ``Gait Sequence

Analysis using Frieze Patterns'', European Conference
on Computer Vision. Copenhagen, Denmark. May 28-
31, 2002.

Liu, Y., Tsin, Y., Lin, W. The Promise and Perils of Near-

regular Texture. International Journal of Computer
Vision, Vol. 62, No. 1-2, April, 2005, pp. 145 - 159.

Pullen K., Bregler C. 2002. Motion capture assisted

animation. SIGGRAPH 02.

Safanova, A., Hodgins, J.K. 2005. Analyzing the physical

correctness of interpolated human motion. ACM
Transactions on Graphics, pp. 171 – 180.

