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1.  Introduction 
 
     Motion capture data is often used in movies 
and video games because it is able to 
realistically depict human motion.  One of its 
greatest limitations is the inflexibility for reuse 
in different projects.  To get the exact shot that 
you would like requires an individual motion 
capture session.  This is not only costly but time 
consuming as well.  We would like to be able to 
easily take existing data and synthesize more of 
it or be able to modify it slightly to suit our 
needs.  Motion capture databases such as 
Carnegie Mellon’s [http://graphics.cs.cmu.edu] 
divide clips into different actions.  It is difficult 
to piece these clips together in a reasonable way 
to create a desired longer motion. 
     There have been many successful results in 
texture synthesis for a variety of textures using 
different approaches.  Some synthesize texture 
pixel by pixel based on the pixel’s neighborhood 
[Efros and Leung, 1999], while others use 
patches which are overlapped and then sewn 
together along a certain optimal seam [Efros and 
Freeman, 2001].  Recently there have been many 
advances made in the texture synthesis realm 
which can be applied to the growth of motion 
capture data, namely the specific treatment of 
near-regular textures [Liu, Lin, Hays, 2004].   
This specific classification of textures has 
regularities and symmetries with the addition of 
a limited amount of random noise and 
imperfections.  Near-regular textures are seen all 
over in nature, including cloth patterns, brick 
walls, and even gait patterns [Liu, Collins, Tsin, 
2002].  Algorithms have been tailored to near-
regular textures to exploit their regularity while 
still preserving their subtle differences [Liu, Lin, 
Hays, 2004].  These synthesis methods use PCA 
to find the average tile and then deviate from it 
to form new tiles.  These tiles are then pieced 
together to form a larger texture.  We extend this 
concept to stride cycles in motion capture data 
for motion capture data.  In Fig. 1 the repetitive 

nature of the foot and arm joints are apparent 
over the course of three different cycles.  
Texture synthesis algorithms are able to 
faithfully reproduce arbitrary amounts of a given 
input texture. 
 

 
Figure 1:  The frame of the motion is viewed as a row of 
the graph.  Time is increasing from top to bottom.  The 
periodicity can be observed in the feet and the arm joints 
across three different cycles. 
 
2.  Related Work 
 
     There have been many papers published on 
the subject of motion synthesis.  Researchers 
have been able to piece together segments of 
motion capture data by specifying descriptions 
of motion in a specific order, such as “walk, run, 
jump” [Arikan, Forsyth, and O’Brien, 2003].  To 
reduce an animator’s workload, research has 
been done to key-frame a small number of joints 
and use motion capture data to fill in the 
remaining joints based on the correlation 
between the joints [Pullen and Bregler, 2002].  
Our work deviates from previous work which 
synthesizes human motion by segmenting data 
together which is statistically similar.  Motion is 
viewed as a set of linear dynamic systems and 
their accompanying matrix of transitions which 
contains how likely one system will transition to 
another [Li, Wang and Shum, 2002].  The most 
widely used method to transition between two 
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motion clips is linear interpolation.  The 
physical correctness of interpolated motions has 
been justified by evaluating it in terms of 
standard physical properties such as linear and 
angular momentum, the contact between feet 
and the floor and the continuity of velocity.  
However, it is still not guaranteed to look 
natural.  [Safanova et al., 2005]. 
    In this paper we will examine each category 
of texture synthesis algorithms as mentioned 
above as well as explore the importance of 
correlation between joints. 
 
3. Texture Synthesis Algorithms 
 
3.1 Pixel-Based Methods 
 
      In Efros and Leung’s 1999 paper they were 
able to create arbitrary amounts of texture by 
creating a data structure of textons (see Fig. 2).  
Textons define the basic unit of a texture, which 
contain the color information of the center pixel 
and of those pixels in its immediate vicinity 
which are called neighbor pixels. Textons can be 
created for all pixels of the input texture.  When 
synthesizing, the texton t composed of a 
neighborhood of size n around the current pixel 
p is compared with each texton of the input 
texture t’ by minimizing the distance between 
them using distance metric d.  The center pixel 
of texton t’ with the smallest distance from the 
center of t is the value of p.  This process is 
repeated for each pixel to be synthesized.  
Applying this to motion capture data, we 
equated each “pixel” to each angle value a at 
frame f and degree of freedom of joint x.   Our 
“texton”, which we will refer to as a motion 
texton is the neighboring angles around the 
current angle.  This is not the same definition 
used by Li, Wang, and Shum (2002).  We 
deviate from Efros and Leung’s method only in 
the search space for each angle a.  If we 
searched over the entire original motion we 
could synthesize a head joint angle with a foot 
joint angle.  To avoid this, we minimize the 
distance between a and a’, where 
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and z is the length of the input motion sequence.  
This produced a visually pleasing result when 
given a sufficiently large neighborhood size.  

The neighborhood size was dependent on the 
gait cycle, about 20 frames on average.  
 

 
Figure 2:  A visualization of a texton. 

 
 
3.2 Patch-Based Methods 
      
      Another approach for texture synthesis is the 
image quilting method of Efros and Freeman.  
They create a set of blocks from the input image 
which are “all such overlapping blocks in the 
input texture image” of a size specified by the 
user.  The initial block is selected and placed in 
the larger image.  The patch set is searched for 
the block which has the least variation in the 
overlapped region between the two neighboring 
blocks (see [Efros and Freeman, 2001).  This 
process is repeated for each patch as they are 
placed in the larger image.  An optimal path is 
computed in the overlapped region to seamlessly 
join the patches.  Relating this to motion capture 
data, we take two motions m1 and m2 (which 
may be the same motion) and search for the best 
overlap between them over n frames.  This 
occurs at frame t1 of m1 and t2 of m2.  We 
compute the optimal seam between m1 and m2 
joint by joint, where x is each joint as seen in 
this pseudocode:   
 
for i = t1 to t1 + n 
   for j = t2 to t2 + n 
      calculate distance between m1x[i] and m2x[j]  
 
return i and j of minimum distance computed  
 
This means that over the n transitional frames 
each joint x could transition between m1 and m2 
at different frames for a smoother transition.  
When m1 and m2 are the same motion, a 
threshold needs to be set for how quickly the 
motion can transition (the minimum value of t1).  
Without this threshold the best overlap will be 
computed at frame 1. 
 
 
 



3.3 Tile-Based Methods 
 
      When using a pixel based texture synthesis 
algorithm the size of the neighborhood has a 
large impact on the quality of the results.  A 
small neighborhood will not incorporate the 
structure of the texture into the distance 
calculation.  Even an arbitrarily large window 
does not capture the correct regularity.  For all 
of the infinite number of regular textures there 
are only 17 different lattice/tile structures that 
define the symmetry of the texture.  The lattice 
can be detected in a texture and the tiles used for 
synthesis.  Tiles are placed and then blended 
together using dynamic programming.  This 
preserves the intensity/color variations of the 
texture as well as the regularity of the texture 
[see Liu, Tsin and Lin, 2005]. 
      While the structural regularity is not 
preserved when using a large neighborhood size, 
the correct choice of neighbors is an important 
part of patch-based texture synthesis methods. 
 
4.  Correlation Between the Degrees of 

Freedom of Joints 
             
     The format of motion capture data is that 
each joint is given a number and these numbered 
joints are laid out in sequential order in an array.  
Thus adjacent neighbors in the data structure 
may not be logical numbers.  For example, in 
Fig. 3 the lower back joint is stored next to the 
right toe joint.  When using Efros and Leung’s 
method (1999) these kinds of neighborhoods 
may be meaningless.  To make the 
neighborhood meaningful we look at the 
correlation score between joints.  We quantify 
this correlation using Pearson’s correlation 
coefficient, ρ.  This coefficient is a value 
between -1 and 1 which measures the linear 
relationship between two sets of numbers s1 and 
s2.  1 is a perfect correlation between s1 and s2, 
0 is no relationship between the two sets, and -1 
is an inverse relationship between the two. 
         

 
Figure 3:  The physical neighbors of a joint are not logical 
neighbors of a joint.  The lower back and right toe are not 
correlated joints, yet using Efros and Leung’s method 
(1999) their values would affect one another when 
synthesizing a joint.   
 
      Applying this to our motion synthesis, we 
compute ρ for every pair of degrees of freedom 
in motion m.  If ))(()( yxxy
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and use them to weight the value of the physical 
neighbors of the degrees of freedom of joint x 
during synthesis.  The same algorithm is used as 
described in the previous section with the 
exception of the distance metric d.  For each 
degree of freedom of joint x, 

!
=

"=
n

i

T

iframeweightsneighborabsd
1

)_( , 

where n is the size of the neighborhood.  The 
absolute value is taken because we want to 
weigh positively and negatively correlated joints 
equally as they provide the same amount of 
information about the motion. 
 
5.  PCA Tiling of Motion 
 
      A near-regular texture [Liu, Lin and Hays, 
2004] can be decomposed into two parts, a 
regular texture and its deformation field.  When 
synthesizing a brick wall the authors find the 
average brick which they call the mean tile.  
They then use PCA to construct the bases of the 
tile and create a linear combination of the mean 
tile and its bases.  We look at motion capture 
data in this light we manually segment a walk 
into strides.  We define a stride to start at the 
first frame at which the right food touches the 
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ground and the end of the stride to be the last 
frame before the right foot touches the ground at 
the end of the walking cycle.  These strides are 
then averaged together to form the mean stride.  
The bases are constructed and new motion can 
be created by forming a linear combination of 
the mean stride and its bases.  The strides 
created by this method can be pieced together 
using any of the three methods described in 
Section 3.   
      One of the difficulties of this approach is to 
create motions without foot sliding.  To compute 
the mean stride, cycles must be interpolated to 
be the length of the longest stride.  This causes 
the shorter cycles to be stretched, thus causing 
feet to slide.  We are currently working on ways 
to mitigate this problem as explained in our 
future work.  Also, it would be instructive to 
find a means of computing a threshold for 
eigenvector coefficients to produce realistic 
motions.         
 
6.  Future Work 
 
     We are looking to expand our work firstly by 
acquiring better data for PCA.  By using many 
cycles of a motion a more meaningful average 
stride can be computed.  We are going to also 
examine our method with data where the feet are 
fairly regular (similar stride lengths and times) 
and the hands are uncorrelated.  We would like 
to expand the autonomy of our method, by being 
able to automatically detect the beginning and 
end of each cycle in a motion.  This will greatly 
reduce the pre-processing steps of our current 
method for synthesis using PCA. 
     Currently, our method needs a post-
processing step to clean up foot sliding.  We are 
hoping to use correlation to automatically detect 
sliding feet.  When feet begin to slide we 
hypothesize that the correlation between the 
velocity of the feet and velocity of the root will 
change.  The velocity of the root can be 
calculated by finding the difference between the 
different positions of the root over the duration 
of the motion.  Finding the velocity of the feet in 
world coordinates would allow for a comparison 
between the velocities of the two joints. 
     We are also aware that it may be better to 
synthesize each joint of the motion instead of 
synthesizing the degrees of freedom of the joint 

separately.  This is not straightforward as 
different joints have different numbers of 
degrees of freedom.  It involves turning each 
joint from a Euler angle representation into a 
quaternion representation.  This affects how the 
correlation between joints is computed as the 
correlation of two vectors is yet to be defined 
precisely.     
     Our computational treatment of motions as 
near-regular textures may provide valuable 
insights into the improvement of motion 
transplants [Ikemoto and Forsyth, 2004].  Using 
graph cuts [Kwatra, Schödl, et al, 2002] we will 
be able to stitch together subsets of different 
motions across time, hopefully improving 
existing results.     
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