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Abstract

In this work, we demonstrate the promise and per-

ils of texture analysis and texture synthesis applied

to near-regular patterns. We propose a novel view

of texture as statistical departures from regular pat-

terns. We shall show that a true understanding of

near-regular texture structures based on their transla-

tion symmetries can enhance existing methods of tex-

ture synthesis. Our texture synthesis result shows the

promise of faithfully preserving the regularity as well

as the randomness presented in a texture sample.

1 Motivation

Near-regular textures are common in our daily life.

They can be observed in man-made (machine-made)

environments ranging from buildings to fabrics, as well

as in nature [7, 2, 20, 26, 9]. Humans have an innate

ability to perceive and take advantage of symmetry

[12] in everyday life, but it is not obvious how to au-

tomate this powerful insight. [18] shows, in particular,

that regularity plays an important role in human tex-

ture perception.

Mathematically speaking, regular texture refers to

those patterns that present some kind of translation,

rotation, or re
ection symmetry [17, 4, 8]. Periodic

patterns are referring to those images that present

non-trivial translational symmetry. When studying

periodic patterns, a useful fact from mathematics is

the answer to Hilbert's 18th problem: there is only a

�nite number of symmetry groups for all possible pe-

riodic patterns in dimension n [1]. In computer vision

and graphics, the application of classic mathematics

to near-regular pattern analysis has yet to be fully ex-

plored. Only recently, symmetry group classi�cation

algorithms have been developed for periodic patterns

under Euclidean [15] and aÆne transformations [16],

where the basic tile shape and size of periodic patterns

are utilized extensively. One interesting recent work

in computer graphics [11] is to �nd Escher-like tilings

from a given single closed planar �gure.
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In the real world, however, rarely anything is

strictly regular. Our research interest is to combine

the mathematical theory of regular patterns with sta-

tistical modeling of data in texture analysis and syn-

thesis.

Existing work on texture synthesis has achieved im-

pressive results for a variety of textures e.g. [6, 5, 13,

10, 24, 25, 27]. While the evaluation on most syn-

thesized results is hard to quantify, when the texture

sample is near-regular, the structural regularity of the

pattern becomes an objective measurement. However,

we have observed from existing work on texture syn-

thesis that when the original texture sample is near-

regular, the regularity is usually not preserved in the

synthesized texture. To the best of our knowledge, we

have not yet seen an existing texture synthesis algo-

rithm that preserves the regularity in an input brick

wall sample (Figure 1).

This situation motivates us to �rst apply texture

analysis for texture synthesis, such that the recovery

of near-regular texture can be achieved with higher �-

delity. Figure 2 demonstrates two sample results from

our texture analysis/synthesis algorithm in compari-

son with the texture synthesis results in Figure 1 and

results from naive direct tiling.

2 Our Method for Texture Synthesis

The essential element in our method is to acknowl-

edge the regularity or periodicity in a near-regular

texture by locating the generating \tile" explicitly.

In [15], we have formulated the problem of periodic

pattern perception based on the theory of wallpa-

per groups. A 2D periodic pattern has the follow-

ing property: there exists a �nite region bounded

by two linearly independent translations, which when

acted upon by the translation generators of its sym-

metry group produces simultaneously a covering (no

gaps) and a packing (no overlaps) of the original image

[19, 8]. We call the smallest such bounded region a tile

of the pattern. For a given periodic pattern its tiles

are unique in shape/size/orientation but not unique

in location or content (i.e. its pixel intensity/color



values). In order to �nd such tiles we developed an al-

gorithm [15], called region of dominance, for locating

the underlying lattice of a given pattern. Any o�set of

the lattice on a pattern carves the pattern into a set of

similar tiles, any one of them can potentially tile the

whole 2D plane.

The key insight to our method is to treat a set of

tiles carved by the detected lattice as multiple sam-

ples of the same tile. This gives us the promise of

capturing statistical density/color variations from the

input data, which can be used to give the generated

texture more natural appearance, while reproducing

its regularity.

Algorithm:

Step 1 (analysis): Given a sample texture pattern,

�rst determine its translational symmetry and its un-

derlying lattice. Find all the minimum tiles ti carved

by the lattice structure (no gaps and no overlapping).

For each ti construct a corresponding maximum tile

Ti by enclosing each rhombic shaped tile with a rect-

angular one (Figure 3). Each tile in Ti overlaps with

four other tiles in Ti (Figure 3).

Step 2 (synthesis): 1. For each lattice point, randomly

select a tile from fTig and center it on the lattice point.

2. Blend all the overlapping tiles (two layers) using a

feathering technique [21]. The synthesis time is less

than 10 seconds in Matlab code, on a 800Mhz laptop

computer.

Figure 3 shows both the minimum and the maxi-

mum tiles used in the brick example (Figure 2 (a)). It

may be counter intuitive to some people that the ba-

sic tile for this pattern is NOT the size and shape of

a single physical brick. The reason we are using over-

lapping maximum tiles for feathering is for a smoother

transition on the tile boundaries. Figure 2 demon-

strates the di�erence between simple direct tiling and

our random selection method. Our goal is to preserve

the near-regular nature of the input texture as well as

the variations among and within the tiles1.

3 Discussion
The reason that current texture synthesis algo-

rithms appear to work on certain near-regular pat-

terns (patterns of dots, for example) is due to a ju-

dicious choice of the window size and shape. Con-

versely, the wrong choice of window size and shape

usually causes their failure. It is pointed out in [5]:

\Determining precisely what are the patches for a

given texture and how they are put together is still an

open problem." For near-regular patterns, the window

1More results can be seen on our website http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/user/yanxi/www/images/Texture
/index.html

(patch) size/shape/orientation is a crucial parameter.

It should be realized by now that the regularity preser-

vation problem can not be solved by adjusting window

size alone. One advantage of our approach is that the

tile orientations (not necessarily horizontal/vertical),

and the shape and size are determined up front, explic-

itly and customized to each near-regular input texture

pattern (Figure 4).

One of the perils when approaching near-regular

texture is the temptation to use direct tiling (of a unit

tile) to �ll the whole 2D image. Though tiling is the

central theme and appropriate means for many artis-

tic and design tasks [23, 8], it is usually NOT suited

for providing natural visual e�ects in the context of

texture synthesis. The results from simple tiling are

overly regular, usually more so than the original input

sample. When one really understands the making of a

periodic pattern and its generating regions [19], mod-

i�cations can be made to direct tiling such that more

natural appearance can be achieved. In particular, we

only used translational symmetry in this paper, ro-

tation and re
ection symmetries can also be used to

produce much smaller tiles. This means that a much

larger sample set of observed statistical variations can

be obtained in a principled way.

4 Limitations and Research Directions

In this paper, we provide a new method for near-

regular texture synthesis. Our method di�ers from

most local-neighborhood approaches to texture syn-

thesis in that it �rst does a texture structure analysis.

Also it separates the treatment of spatial layout reg-

ularity (tiles) from the intensity/color regularity (the

content of a tile). A special treatment for near-regular

texture in texture synthesis has been a missing piece

in the texture synthesis puzzle.

One obvious limitation of this paper is its fo-

cus on near-regular texture alone. There are many

ways to combine our approach with existing local-

neighborhood methods. One way is to build a near-

regular texture classi�er F . Given a sample texture

T , if F (T ) = 1 or larger than a certain threshold,

use our near-regular texture algorithm, otherwise re-

sort to one of the local-neighborhood methods. People

have already experimented with such classi�ers, e.g.

[3] provides a score for a textured pattern that seems

to be consistent with human perception. Our lattice

detection algorithm [15] can also serve as a periodicity

measure.

We have constructed the basic framework of our

method to enhance the existing treatment of near-

regular texture. However, the quality of current re-

sults is limited by the simple synthesis technique used



as a quick feasibility study of our ideas. The simple

feathering technique used in our synthesis step can

produce blurring and ghosting e�ects when the tiles

are not well registered (Figure 3 (d)). We are de-

veloping more sophisticated synthesis methods, e.g.

dynamic programming or deformable registration, to

produce high quality, more visually convincing out-

puts.

Our long term goal is to treat near-regular patterns

as part of the chaotic-symmetry continuous spectrum

[14]. Dimensions of near-regular texture include reso-

lution (scale), spatial local or global transformations

(rigid, aÆne, perspective, random ...) [15, 16], color

(single, multi), and density (regular, stochastic) [22].
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(a) (b) (c) (d)

Figure 1: (a),(c): input texture samples. (b),(d): texture synthesis results from [5]. This is one of the best results

on brick wall texture synthesis that we can �nd. However, the regularity in the input texture samples is not

faithfully preserved in the synthesized texture (brick example in (b): two short bricks are stacked together. straw

pattern in (d): one vertical line is terminated midway).

(a) synthesized texture using our current method (b) synthesized texture using our current method

(c) texture from direct tiling (d) texture from direct tiling

Figure 2: (a),(b): random sampling from tile sample sets plus feathering (our method). which preserve both the near-

regular nature of the texture and the variations across tiles. The symmetry group of both patterns is classi�ed as cmm

containing translation, rotation, re
ection and glide-re
ection symmetries [15]. (c),(d): direct tiling results. Though the

regularity of the input texture is preserved, the synthesized texture does not re
ect the intensity variations in the input

texture.



(a) Selected tiles for Figure 2 (a) (b) Selected tiles for Figure 3 ((d)

(c) (d)

Figure 3: The sample tiles (rhombic shaped tiles are minimum tiles ftig and rectangle shaped tiles are maximum tiles

fTig) are shown, they are carved from the input brick texture. (a) and (b) show two di�erent lattice positions. (c) a

sample set of maximum tiles. (d) a failed case of our current method, where double line segments present due to non-exact

match.

Figure 4: Examples of imperfect, real-world near-regular patterns overlayed with automatically detected underlying

lattices.


