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ABSTRACT 

For cervical cancer detection, the performance of multispectral texture (MST) features 
extracted from multispectral Pap smear images is evaluated. In this study we carried out 
pairwise comparisons between different image features, including MST versus average 
spectral texture features (AST, without spectral information), and MST versus 
multispectral intensity features (MSI, without texture information). We demonstrate, 
experimentally, that well-selected MST features combining both multispectral and texture 
information can achieve better classification results (ROC curves) for cervical cancer 
detection from multispectral Pap smear images. Furthermore, we investigate which type 
of wavelet texture features (orthogonal, bi-orthogonal or non-orthogonal) individually or 
in combination is most effective.  

1 Introduction 
Two kinds of image features are commonly used on traditional image modalities for 
cervical cancer detection: namely shape features and texture features [1,2]. Due to the 
noise, scaling, overlapping of the cells, the shape features extracted directly from the 
original images are not always robust for automatic classification task. Though recent 
research on texture analysis has shown that algorithms using the multiresolution wavelet 
transform features achieve good performance on various type of image classification 
problems, given a new image modality, there is no intuitive way to know which mother 
wavelet to choose or to what level the decomposition needs to be taken for a specific 
problem. We are interested in finding out whether multispectral Pap smear images 
provide additional information for cervical cancer detection than traditional image 
modalities. There is little existing work on how to analyze multispectral Pap smear 
images. Most existing work using multispectral images is carried out for mining, remote 
sensing and cloud classification, which are targeted at physically quite different materials 
than what is captured by Pap smear images. In this paper, we study the performances of 
different wavelet texture features in multispectral Pap smear images and provided a 
detailed comparison for  
1. multispectral texture (MST) features and average spectral texture (AST) features  
2. MST features and multispectral intensity (MSI) features; 
3. Finally, orthogonal wavelet transform (DB2 and DB16), bi-orthogonal wavelet 

transform (Bior2.2) and non-orthogonal wavelet transform (Gabor wavelet) features. 



2 Texture Feature Extraction 
For each non-background pixel in a microscopic Pap smear image, different kinds of 
image texture features are extracted from a fixed square window centered at the pixel. 
  

2.1 Intensity statistical features 

Higher-order )3),(( tnxf n statistical approaches have been successfully used in 

textural recognition. We apply both low and high order statistical features to extract the 
cell texture, including maximum, minimum, range, median, mean, standard deviation, 
energy, skewness, kurtosis and entropy [3]. 

2.2 Wavelet transform features 
The filter coefficients used for computing orthogonal wavelet transform are the 2-tap 
(low order) and 16-tap (high order) Daubechies wavelets (DB2 and DB16) [4], and for the 
biorthogonal case we use 5/3 filters (bior2.2) proposed by Le Gall [5], the bior2.2 is also 
evaluated by Ma in texture annotation [6]. In our case, the energies of the approximate 
parts of the cell images are always greater than the other three parts, we adopted therefore 
has the same structure as the pyramid-structured or tree-structured decomposition[7].  
decomposi-tion. We use 2 levels of decomposition of the wavelet transform, which is only 
performed on the approximation part, therefore 8 subbands are generated in the 
decompositions. Gabor wavelets, as a non-orthogonal filter bank, are expected to extract 
different texture features than the above wavelets. These texture features are defined as 
[8] 
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where 1� i , 1V , 2V , W are given, and )sincos( TT yxax m
� c

� , 

)cossin( TT yxay m
�� c

� . By varying these parameters, a filter can be made to pass any 

elliptical region of spatial frequencies. Gabor filters are generated according to different m 
( Mm ...,,1 ) and  ( NTTT ...,,1 ). Considering the performance efficiency and 

computational complexity, we use 3 scales, 4 orientations to generate 12 Gabor filters. 

2.3 Wavelet transform-based features 
The wavelet transformation involves filtering and subsampling. A compact representation 
needs to be derived in the transform domain for classification and detection. The ten 
statistical features mentioned in Section 2.1 from each of the subbands at each 
decomposition level are used to construct the feature vector. This results in 10 feature 
components in each subband, therefore 80 (10x8) features for 2 levels orthogonal and 90 
(10x9) biorthogonal wavelet transformations (80 subband features plus 10 statistical 
features on the original block), and 120 (10x12) features for 12 Gabor filters, totally 370 
features for each pixel-window. 



2.4 Wavelet-based multispectral texture (MST) features 
Using a micro-interferometric spectral imaging setup, a set of multispetral Pap smear 
images is generated containing both normal and cancerous cells. There are total of 52 
bands evenly from 400 nm (band 52) to 690 nm (band 1) for each image. Note, this is 
different from the work by Balas et al, where they use multispectral imaging directly in 
human body [9]. Since the image spectral quality of the first 20 bands (1 to 20) are much 
better than the rest of the 52 bands, we extracted the above wavelet texture features on 
each odd bands of those 20 bands,  thus a total of 3700 features is obtained from the 10 
spectra. 

3 Feature Screening 
Not all the image features in this 3700 feature set are useful for cervical cancer detection. 
We are looking for computationally effective method to rule out irrelevant and redundant 
feature dimensions in this initial feature set. However, existing feature subset selection 
algorithms cannot handle a feature set with thousands of dimensions. In order to reduce 
the feature space dimension we employ sequentially two simple feature quality evaluation 
measures: Information Gain (IG) and Augmented Variance Ratio (AVR). IG of a 
feature X is defined as the difference between the prior uncertainty and the expected 
posterior uncertainty, while AVR is the ratio of the between-class variance to the within-
class variance of the feature, with a penalty for those features with small within-class 
variance but close inter-class means. Details can be found in [10]. 

4 Performance Evaluation 
4.1 Experimental Setup 
The proposed approach for cervical cancer detection in multispectral Pap smear images 
have been evaluated on a database containing 40 images, with a total of 149 cells (41 
cancerous and 108 normal). For each pixel to be classified, various image features are 
extracted in a 16x16 block centered at the pixel over different bands, thus a very high 
dimensional MST feature vector is associated with each pixel. We collect a total of 
156,732 sample vectors from all 40 images.  
Considering the fact that samples from the same image are often highly correlated, we 
randomly choose the image samples (no pixels from the same image exist in both training 
and test sets), IG and AVR ranking scores are first computed, and those irrelevant features 
with low scores are removed from the feature set. Then a modified Gaussian classifier [10] 
is trained based on the selected features. Finally, the classifier is applied to the samples of 
the selected features from the test images. By adjusting the decision threshold in the 
classifier, we record false positive rates (FPR) at different true positive rate (TPR) values. 
This procedure is repeated 40 times, and the results are averaged. 

4.2 Effect of Multispectral Information 
To evaluate the performance of multispectra, we compare the MST features against 
Average Spectral Texture (AST) features. The same intensity and wavelet texture features 
are generated on the average images of the first 20 bands. Since there is only one band for 



the AST features, the feature number of AST is only 1/10 of that of MST. Table 1 shows 
the comparative results.  

Table 1 Feature selection and classification during the feature screening of MST and AST The 
values showed in last three rows are FPRs at different TPR values with STD 

 # of features # of screened features TPR = 0.86 TPR = 0.9 TPR = 0.94 

MST 3700 45 0.0442±0.0727 0.0729±0.1096 0.1028±0.1434 

AST 370 45 0.0692±0.0505 0.0973±0.0674 0.1440±0.0866 

We can see that MST features contain a huge number of irrelevant features, after IG 
screening, the number of features is decreased to 45. Though the numbers of final selected 
features are the same for MST and AST, the AVR value of MST is higher than that of 
AST, this implies the information contained by MST is more discriminative than AST. 
Figure 1(a) gives the ROC curves of the performance of MST and AST showing MST’s 
superiority. 

4.3 Effect of Texture Information  
Another aspect worth to compare is the performance of texture features. To evaluate the 
performance of texture features, the intensity value of each pixel is directly treated as the 
intensity feature of the corresponding pixel in the odd bands of the top 20 bands. 10 MSI 
features are obtained from the odd bands of top 20 bands. Figure 1(b) shows that the 
performances of MSI are much worse than that of MBT. Though we can see from Pap 
smear images there is a big difference between normal and cancerous cell intensities by 
human experts, it is hard to classify cells by the single cue of intensity.  

4.4 Wavelet texture features comparison 
Which type of wavelet features is the best to classify multispectral Pap smear images? 
There is no answer to this important question yet. We choose three basic categories in 
wavelet transforms: orthogonal, bi-orthogonal and non-orthogonal features for a 
comparative study in cervical cancer detection. 
The wavelet texture features we used are DB2, DB16, Bior2.2 and Gabor filters. Table 2 
and Figure 2 shows the feature selection and classification results of the 4 types of 
wavelet features and their combination features.  

0 0.1 0.2 0.3 0.4 0.5 0.6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Rate (FPR)

T
ru

e
 P

os
iti

ve
 R

a
te

 (
T

P
R

)

MST
AST

0 0.2 0.4 0.6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Rate (FPR)

T
ru

e
 P

os
iti

ve
 R

a
te

 (
T

P
R

)

MST
MSI

 
(a)     (b) 

Figure 1 The comparative ROC curves (a) MST versus AST (b) MST versus MSI 



Table 2 Performances of combination and the individual kinds of wavelet features 
Type of features DB2 DB16 Bior2.2 Gabor Combination 

# of features x bands 80x10 80x10 90x10 120x10 3700 

# of screened features  47 35 41 21 45 

TPR = 0.8600 0.0622±0.08 0.0565±0.08 0.0559±0.07 0.0662±0.10 0.0442±0.07 

TPR = 0.9000 0.0980±0.12 0.0778±0.11 0.0850±0.10 0.0812±0.12 0.0729±0.11 

TPR = 0.9500 0.1667±0.18 0.1180±0.15 0.1459±0.15 0.1098±0.16 0.1138±0.15 
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Figure 2 The ROC curves of the combination and 4 kinds of wavelet texture features 

To summarize the observations in multispectral Pap smear images for cancer cell 
detection: 
x In general, the combination features can achieve the overall best performance among 

all individual kinds of wavelet texture features; 
x The Gabor and DB16 features have better performance than DB2 and Bior2.2, even 

though the IG and AVR values of Gabor are far less than others; 
x The orthogonal wavelet features are slightly better than the bi-orthogonal ones; 
x The high order orthogonal wavelets are better than the low order orthogonal ones. 

4.5 Cell level detection  
We utilize the shape information in the cell level after the pixel level classification. We 
use automatic segmentation, morphology smooth, and area ratio judgment to locate the 
regions with high probability of cancerous cells. Among the 149 cells, only 1 cancer cell 
was detected as normal cell, and one normal cell has false positive alarms. Figure 3 
provides an example, which successfully detects 1 normal cell and two cancerous cells. 

(a)   (b)   (c) 
Figure 3 The classification result, the dark parts are classified as positives and the light ones 
negatives. (a) The original image with one normal cell in the middle and other two cancerous 
cells, (b) Pixel level classification, (c) Image level classification 
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5 Conclusions 
We demonstrated, experimentally, that well-selected MST features combining both 
multispectral and texture information can achieve better classification results (ROC 
curves) for cervical cancer detection from multispectral Pap smear images. We also 
compared four types of wavelet transforms for pixel classification, and found that the 
combined features show the best performance. Although computationally more expensive, 
Gabor transforms are easy to interpret and offer flexibility in controlling the orientation 
and scale information, and are amenable for developing scale and orientation invariant 
features. We are currently investigating new feature selection algorithm, and are trying to 
combine pixel-level texture features more effectively with high-level shape analysis. 
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