
Discovering Texture Regularity as a
Higher-Order Correspondence Problem

James Hays, Marius Leordeanu, Alexei A. Efros, and Yanxi Liu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
{jhhays,manudanu,efros,yanxi}@cs.cmu.edu

Abstract. Understanding texture regularity in real images is a challeng-
ing computer vision task. We propose a higher-order feature matching
algorithm to discover the lattices of near-regular textures in real im-
ages. The underlying lattice of a near-regular texture identifies all of the
texels as well as the global topology among the texels. A key contri-
bution of this paper is to formulate lattice-finding as a correspondence
problem. The algorithm finds a plausible lattice by iteratively proposing
texels and assigning neighbors between the texels. Our matching algo-
rithm seeks assignments that maximize both pair-wise visual similarity
and higher-order geometric consistency. We approximate the optimal as-
signment using a recently developed spectral method. We successfully
discover the lattices of a diverse set of unsegmented, real-world textures
with significant geometric warping and large appearance variation among
texels.

1 Introduction

Texture is all around us, taking up a large part of our visual world. However,
human perception is so well-tuned to detecting regularity (both structural as
well as statistical) that the casual observer often takes texture for granted, blind
to its actual complexity (see Figure 1a). But scientifically, texture analysis has
been a long-standing and surprisingly difficult problem. Interest in visual texture
predates computer vision, going back at least to J.J. Gibson [1], who pointed
out its importance for the perception of surface orientation (i.e. shape-from-
texture). Later, Bela Julesz developed a theory of human texture discrimination
based on matching Nth order texture statistics [2]. Both researchers speak of a
texture element (texel or texton)1, as the basic building block which defines a
particular texture. This notion of a texture element turned out to be extremely
1 Although now most researchers use texel and texton interchangeably, we believe that

there is a useful distinction to be made. Texels, by analogy with pixels, define a par-
titioning (or tiling) of the texture, with each texel having a finite, non-overlapping
spatial extent. On the other hand, Julesz’s textons serve the role of statistical fea-
tures, and (as operationalized by Malik et al. [3]) are computed at every pixel,
without concern for overlap. In this paper, we are primarily interested in texels.



2 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

useful in approaching a number of problems, including shape-from-texture [4–6],
texture segmentation [7, 3], texture recognition [8, 9], as well as texture editing
and resynthesis [10–13]. However, finding texels in real images has proved to be
an extremely difficult task. (In this paper, we are not concerned about highly
stochastic textures with no easily identifiable texels.) For textures with well
defined texture elements, most existing automatic texel detection algorithms
appear too brittle, severely constraining the applicability of algorithms such as
shape-from-texture to the very limited class of “easy” textures. For the same
reason, in computer graphics literature, automatic approaches have been largely
unsuccessful, typically replaced by the user identifying texels by hand [13].

Why is finding repeated texture elements such a difficult problem? The an-
swer is that texture is inherently a global process. Texture, by definition, exists
only over a large spatial extent. It is meaningless to talk about a single texel
in isolation, since it only becomes a texel when it is repeated. Only when con-
sideration is given to the persistent re-appearance of deformed, noisy versions
of the same texel in a texture, does the structure of the texture have a chance
to overcome its local noise and emerge as a global solution. In fact, texel find-
ing is an instance of the notoriously hard Gestalt grouping problem. Therefore,
local approaches alone are doomed to fail due to their inherent computational
brittleness.

1.1 Finding Repeated Elements

In the now classic paper, Leung and Malik [14] pose the problem of detecting
and grouping texture elements in the language of tracking. After being initialized
through corner features, potential texels are spatially “tracked” to nearby image
locations under the affine deformation model. Texels that have a high similarity
with their neighbors are deemed good and are stitched together. This algorithm
iterates until no more texture elements can be added, resulting in a connected
set of texels without any global topological structure. The algorithm is greedy,
with no mechanism to fix mistakes and there is no method to evaluate groupings
produced from different initializations.

Lobay and Forsyth [6, 12] address these concerns by building a global texel
model, based on clustering SIFT descriptors. The authors model texture regu-
larity as a “marked point process” that ignores the geometric arrangement of
texture elements and assumes that all texture elements are foreshortened, ro-
tated, and differently illuminated versions of an identical canonical texel. The
advantage of this model is that the appearance deformations of the different
instances of the same texel provide useful information about surface orientation
without having to reason about their geometric or topological relationship.

The above approaches place strong requirements on the appearance of each
individual texel (e.g. it must be distinctive enough to be matched), but make
no strict assumptions about the spatial relationships between the texels. Schaf-
falitzky et al. [15] and Turina et al. [16] take the opposite view by assuming a
very strong transformation model. In particular, they assume that the texture
is completely regular and planar, and that it has undergone a global projective



Lecture Notes in Computer Science 3

transformation. Under such strong assumptions, it is possible to locate texels
even if they are not very distinctive. However, such restrictive assumptions limit
the applicability of these methods.

1.2 The Case for Lattice Estimation

Previous work on discovering repeated texture elements can be viewed as two
extremes: one focusing on individual texels (or local neighborhoods) with no
regard to their global organization or regularity [14, 12]; the other placing very
strict requirements on the overall image structure (i.e. planar regular texture
under global perspective transformation) [15, 16]. The former can handle a wide
range of textures but at the cost of relying entirely on the appearance of individ-
ual texels. The latter uses the overall arrangement of the texels to its advantage,
but is only applicable to a limited subset of textures.

In this paper, we would like to consider the middle ground – an algorithm
that uses the underlying structure of the texture, but does not place undue re-
strictions on the allowable deformations. For this paper we will consider a class of
near-regular textures (NRT) [13] that are regular textures under locally smooth
geometric and appearance deformations. Although this somewhat restricts the
types of textures we can handle (e.g. randomly distributed polka dots are prob-
ably out), NRT can model a broad set of real-world textures (see Result Section
for examples). The most useful property of near-regular texture is that it can be
completely characterized by an underlying 2D lattice.

We can formally define a near-regular texture P as a deformed regular texture
Pr through a multi-modal, multi-dimensional mapping d: P = d(Pr). Wallpaper
group theory [17] states that all translationally symmetric textures Pr can be
generated by a pair of shortest (among all possible) vectors t1, t2. The orbits
of this pair of generators form a 2D quadrilateral lattice, which simultaneously
defines all 2D texels (partitions the space into smallest generating regions) and
a topological structure among all texels. A regular texture can be expressed by a
single pair of t1, t2, while an NRT is uniquely determined by its location-varying
lattice under actions t1(x, y), t2(x, y).

Two important observations on the lattice are worth noting: (1) the lattice
topology for all different types of wallpaper patterns remains the same: quadri-
lateral; (2) while NRT may suffer large geometry and appearance variations
locally or globally, its lattice topology remains invariant. Therefore, automati-
cally discovering the lattice of an NRT is a well-defined and conceptually feasible
task. Understanding and explicitly searching for lattice structures in real world
textures enables us to develop more powerful texture analysis algorithms that
are not totally dependent on specific image features [14, 12], and to approach a
much broader set of textures than could be covered in [15, 16].

1.3 Lattice Estimation as Correspondence

Our main contribution in this paper is the formulation of texel lattice discovery
as an instance of the general correspondence problem. Correspondence problems



4 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

Fig. 1. The stages of our algorithm, one iteration per row. (a) is the input image,
(l) is the final result. The leftmost column shows (potentially warped) input images
with the current, refined lattice overlaid. The second column is the correlation map,
calculated from valid texels, used to propose the potential texels in (c) and (g). (d)
and (h) show assignments made from these potential texels before they are refined into
the lattices of (e) and (i), respectively. (k) shows the lattice with the highest a-score
after 16 iterations, and (l) is that lattice mapped back to input image coordinates. The
input image (a) is a challenge posed by David Martin at the Lotus Hill workshop, 2005.
Best seen in color.

come up in computer vision whenever there are two disjoint sets of features
that require a one-to-one assignment (e.g. stereo correspondence, non-rigid shape
matching [18], etc). Here, however, we propose to assign a set of potential texels
to itself, with constraints to avoid self-assignments and other degeneracies. While
this formulation might seem counterintuitive, by phrasing lattice finding as a
correspondence problem we can leverage powerful matching algorithms that will
allow us to reason globally about regularity. Robustness is key because there is
no foolproof way to identify texels before forming a lattice – the two must be
discovered simultaneously.

But how can 2D lattice discovery (where each texel is connected to a spatial
neighborhood) be formulated in terms of pairwise correspondence? Our solution
is to perform two semi-independent correspondence assignments, resulting in
each texel being paired with two of its neighbors along two directions, which
turn out to be precisely the t1 and t2 directions discussed earlier. Combining all
these pairwise assignments into a single graph will produce a consistent texture
lattice, along with all its constituent texels. Thus, the overall correspondence
procedure will involve: 1) generating a set of potential texels in the form of



Lecture Notes in Computer Science 5

visual descriptors and their locations, and 2) using a matching algorithm to
discover the inherent regularity in the form of a lattice and to throw out the
potentially numerous false positives.

Correspondence problems in computer vision are commonly constructed as
a “bipartite matching.” One can use the Hungarian algorithm or integer linear
programming to find, in polynomial time, the global optimum assignment based
on any such bipartite, pairwise matching costs. But texture regularity is not
a pairwise phenomenon – it is inherently higher-order. Consider the following
scenario: a texel, in trying to decide who his neighbors are, can see that he looks
very much like many other potential texels. This is necessarily the case in a
repeating texture. This leaves a great deal of ambiguity about who his t1 and t2
neighbors should be. But the texel knows that whatever assignment he makes
should be consistent with what other texels are picking as their neighbors – i.e.
his t1 vector should be similar to everyone else’s. This compels us to adopt a
higher order assignment scheme in which the “goodness” of an assignment can
be conditioned not just on pairwise features and one-to-one assignment, but on
higher-order relationships between potential assignments. We can thus encourage
assignments that are geometrically consistent with each other.

Unfortunately finding a global optimum in a situation like this is NP-complete.
One can try to coerce bipartite matching to approximate the process by rolling
the higher-order considerations (e.g. consistency with the some t1 and t2) into the
pairwise costs. However, this is a tall order, effectively requiring us to estimate
the regularity of a texture a priori. Fortunately there are other efficient ways to
approximate the optimal assignments for higher order correspondence [19, 20].
We use the method presented in [20] because of its speed and simplicity.

2 Approach

Our algorithm proceeds in four stages: 1) Proposal of texels, in which new can-
didate texels will be proposed based on an interest point detector, correlation
with a random template, or a lattice from a previous iteration. 2) Lattice as-
signment, in which potential texels will be assigned t1 and t2 neighbors based
on their pairwise relationships to each other as well as higher-order relation-
ships between assignments. 3) Lattice refinement, in which the assignments are
interpreted so as to form a meaningful lattice and discard the outlier texels.
4) Thin-plate spline warping, in which the texture is regularized based on our
deformed lattice and a corresponding regular lattice. Our algorithm will iterate
through these four stages based on several random initializations and pick the
best overall lattice.

2.1 Initial Texel Proposal

Our task in initialization is to propose a set of potential texels from an input
texture that can be passed to the assignment procedure. Without initial knowl-
edge of the nature of the regularity in a texture our initial estimates of texels are



6 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

necessarily crude. Our approach is therefore to avoid making commitments until
the global assignment procedure can discover the true regularity and separate
the “true” texels from the “false.”

Many previous regular texture analysis approaches [14–16, 12] use some man-
ner of interest point detector or corner detector to propose initial texel locations.
All of these methods use a grouping or verification phase, analogous to our as-
signment phase, in order to confirm their proposed texels. Likewise, we propose
a set of potential texels with MSER[21], which we found to be the most effective
interest point detector for structured textures.

However, for about half of the textures in our test set the interest points
were so poorly correlated with the regularity that not even a partial lattice
could be formed through any subset of the interest points. If such a failure
occurs, our algorithm falls back to a texel proposal method based on normalized
cross correlation (NCC). We pick a patch at random location and radius from
our image (figure 1a) and correlate it at all offsets within 5 radii of its center
(Figure 1b). We then find peaks in this correlation score map using the Region
of Dominance method [22]. In a highly deformed near-regular texture it is likely
that NCC will not be effective at identifying all similar texels. However, we find
that it can do a reasonable job locally so long as textures vary smoothly.

2.2 Higher-Order Matching

The use of higher-order matching to discover a lattice from potential texels is the
core of our algorithm. We assign each potential texel a t1 neighbor and then a t2
neighbor. Figures 1d and 1h show the assignments from the potential texels 1c
and 1g, respectively, during the first and second iteration of our lattice finding.

In order to employ the machinery of higher-order assignment, we need to
answer two questions: 1) what is the affinity between each pair of texels. 2) what
is the affinity between each pair of assignments. The former are pairwise affini-
ties and the latter are higher-order affinities. Because our higher-order match-
ing problem is NP-complete, we must engineer our answers such that they are
amenable to approximation by the specific algorithm that we have chosen [20].

To calculate pairwise affinities we will consider all of the information that a
pair of texels can draw upon to decide if they are neighbors. The most obvious
and vital source of pairwise information is visual similarity– how similar do these
two texels appear? Other factors must be considered as well– how near are the
two texels? Would the angle of this assignment compromise the independence
of t1 and t2? To calculate the higher-order affinities, we will focus on geometric
consistency – how geometrically similar are these two potential pairs of assign-
ments? By rewarding the selection of t1, t2 vectors that agree with each other
we encourage the assignment algorithm to discover a globally consistent lattice.
The higher-order affinities also prevent geometrically inconsistent false positives
from being included in the lattice, even if they are visually indistinguishable
from the true texels.

Taken together, these affinities should prefer visually and geometrically con-
sistent lattices which are made up of true texels while the false texels are left



Lecture Notes in Computer Science 7

unassigned or assigned to each other. Before getting into further detail about the
calculation of these affinities we must first discuss the mechanics of our matching
algorithm as they will influence our precise metrics.

Estimating the Optimal Higher-Order Assignment. The higher-order
assignment algorithm we adopt from [20] is a spectral method which will infer
the correct assignments based on the dominant eigenvector of an affinity matrix
M . M is symmetric and strictly non-negative, containing affinities between all
possible assignments. Therefore, M is n2-by-n2, where n is the number of poten-
tial texels found in section 2.1, for a total of n4 elements. Each element M(a, b),
where a = (i, i′) and b = (j, j′), describes the affinity between the assignment
from texel i to i′ with the assignment from texel j to j′. Where a = b on the diag-
onal of the affinity matrix lie what could be considered the lower-order affinities.
Clearly, M will need to be extremely sparse.

The correspondence problem now reduces to finding the cluster C of assign-
ments (i, i′) that maximizes the intra-cluster score S =

∑
a,b∈C M(a, b) such

that the one to one mapping constraints are met. We can represent any cluster
C by an indicator vector x, such that x(a) = 1 if a ∈ C and zero otherwise. We
can rewrite the total intra-cluster score as S =

∑
a,b∈C M(a, b) = xT Mx and

thus the optimal assignment x∗ is the binary vector that maximizes the score,
given the mapping constraints: x∗ = argmax(xT Mx). Finding this optimal x∗

is NP-Hard so Leordeanu and Hebert[20] approximate the optimal assignment
by relaxing the integral constraints on x∗. Then by Raleigh’s ratio theorem the
x∗ that maximizes x∗ = argmax(xT Mx) is the principal eigenvector of M. The
principal eigenvector x∗ is binarized in order to satisfy the mapping constraints
by iteratively finding the maximum value of the eigenvector, setting it to 1, and
zeroing out all conflicting assignments. The magnitude of each value of the eigen-
vector before binarization roughly equates to the confidence of the corresponding
assignment.

Specifying the Affinities. The lower-order, pairwise affinities A are calcu-
lated as follows:

A(i, i′) = NCC(Patch(i), Patch(i′)) ∗ θ(i, i′, t1) ∗ λ(i, i′) (1)

NCC is normalized cross correlation, clamped to [0,1], where Patch(i) is the
image region centered at the location of potential texel i. θ(i, i′, t1) is the angular
distance between the vector from i to i′ and the t1 vector (or its opposite)
previously assigned at i (if i is in the process of assigning t1 then this term is
left out). The θ term is necessary to prevent t1 and t2 connecting in the same
direction. λ(i, i′) =

√
1/(Length(i, i′) + Cl) is a penalty for Euclidean distance

between two potential texels. The λ term is necessary to encourage a texel to
connect to its nearest true neighbor instead of a farther neighbor which would
otherwise be just as appealing based on the other metrics. Cl is a constant used to
prevent λ from going to infinity as a potential assignment becomes degenerately
short.

The higher-order affinity G is a scale-invariant measure of geometric distor-
tion between each pair of potential t vectors.



8 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

G(i, i′, j, j′) = max(1− Cd ∗Distance(i, i′, j, j′)/Length(i, i′, j, j′), 0) (2)

This term gives affinity to pairs of assignments that would produce similar t
vectors. Distance(i, i′, j, j′) is the Euclidean distance between the vectors from
i to i′ and j to j′. Length(i, i′, j, j′) is the average length of the same vectors.
Multiplying the lengths of these vectors by some constant has no effect on the G.
This is desirable– we wouldn’t expect resizing a texture to change the distortion
measured in the potential assignments. Cd controls how tolerant to distortion
this metric is.

Logically, we could place the lower-order affinities on the diagonal of M and
place the higher-order affinities on the off-diagonal of M . But by keeping these
affinities distinct in M , x∗ could be biased towards an assignment with very large
lower-order affinity but absolutely no higher-order support (or vice versa). Since
we are looking for x∗ = argmax(xT Mx), by placing the lower-order and higher-
order affinities separately in M the two sets of affinities are additive. We want a
more conservative affinity measure which requires both lower-order and higher-
order affinities to be reasonable. Therefore we multiply the lower-order affinities
onto the higher-order affinities and leave the diagonal of M empty. Assignments
without lower-order (appearance) agreement or without higher-order (geometric)
support will not be allowed.

Combining all of the previously defined terms, we build the affinity matrix
M as follows:

M((i, i′), (j, j′)) = A(i, i′) ∗A(j, j′) ∗G(i, i′, j, j′)
for all i, i′, j, j′such that i 6= i′ and j 6= j′ and i 6= j and i′ 6= j′ (3)

The restrictions on which (i, i′, j, j′) tuples are visited are based on the topol-
ogy of the lattice– no self assignments (i = i′ or j = j′) or many-to-one assign-
ments (i = j or i′ = j′) are given affinity. We avoid cycles (both i = j′ and
i′ = j) as well. It would still be computationally prohibitive to visit all the re-
maining (i, i′, j, j′) tuples, but we skip the configurations which would lead to
zero affinity. For a given (i, i′), the geometric distortion measure G will only be
non-zero for (j, j′) that are reasonably similar. In practice, this will be the case
for several hundred choices of (j, j′) out of the hundred thousand or so possible
assignments. We therefore build a kd-tree out of all the vectors implied by all
assignments and only calculate affinity between assignments whose vectors fall
inside a radius (implied by Cd) where they can have non-zero G score. Affinities
not explicitly calculated in M are 0. In practice, M is commonly 99.99% sparse.
Lastly, this affinity metric is symmetric (as required by [20]), so we only need to
visit the lower diagonal.

2.3 Lattice Refinement / Outlier Rejection

The matching algorithm produces a one-to-one assignment of texels to texels,
both for t1 and t2, but the assignments do not directly define a proper lattice. A



Lecture Notes in Computer Science 9

lattice has topological constraints that are of higher-order than a second-order
correspondence algorithm can guarantee. We enforce three distinct topological
constraints: 1) border texels don’t necessarily have two t1 or t2 neighbors, 2)
the lattice is made up of quadrilaterals, and 3) the lattice is connected and non-
overlapping. Because the higher-order assignment algorithm has chained the true
texels into a coherent lattice, these simple heuristics tend to discard most of the
false positive texels.

Non-assignments. Our first refinement of the lattice is performed based
on the “confidences” found during the assignment phase above. By keeping only
assignments whose eigenvector value is above a certain threshold, we can find
all border nodes or unmatched texels. We use a threshold of 10−2 to distin-
guish these “non-assignments” from the real assignments. Non-assignments have
low confidences because they cannot find a match that is geometrically consis-
tent with the dominant cluster of assignments. In figures 1d and 1h these non-
assignments are shown as blue “stubs.” An alternative approach is to use dummy
nodes as proposed in [18], but we find our method more effective in conjunction
with the higher-order approximation we use.

Quadrilaterals. Our second refinement requires that the lattice be com-
posed entirely of quadrilaterals. A texel is included in the lattice only if, by going
to its t1 neighbor and then that neighbor’s t2 neighbor, you arrive at the same
texel as taking t2 and then t1 links. We also require all four texels encountered
during such a test to be distinct in order to discard cycles and self-assignments.
All quadrilaterals that pass this test are shown with a beige line through their
diagonal in figures 1d and 1h.

Maximum Connected Component. If false positive texels appear in an
organized fashion either by coincidence or by poor thresholding in the texel pro-
posal phase, these false positives will self-connect into a secondary, independent
quadrilateral lattice. Two such texels can be seen in the upper right of figure 1d.
It is not rare to see large secondary lattices which are the dual of the primary
lattice. These secondary lattices are perfectly valid but redundant. We reduce
the final lattice to a single, connected lattice by finding the maximum connected
component of the valid texels.

2.4 Regularized Thin-plate Spline Warping

The result of the previous section is a connected, topologically valid lattice that
can be unambiguously corresponded to a “regular” lattice. Inspired by work in
shape matching [18], we use this correspondence to parameterize a regularized
thin-plate spline coordinate warp to invert whatever geometric distortions are
present in our texture. At each texel in the lattice, we specify a warp to the
corresponding texel in a regular lattice which is constructed from uniform t1 and
t2 vectors that are the mean of the t1 and t2 vectors observed in the deformed
lattice. We use a strong regularization parameter which globalizes the un-warping
and prevents a few spurious, incorrectly included or wrongly shaped texels from
distorting the image too much. We use the same affine regularization term as
in [18].



10 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

Fig. 2. from left to right: input, warp specified at each texel after the second iteration,
flattened texture after nine iterations, and the final lattice.

Fig. 3. From top to bottom: Iterations 1, 3, and 9 of our lattice finding procedure.
On the left is the final lattice overlaid onto the original image. On the right one can
observe the effects of successive thin-plate spline warps to regularize the image.

Unwarping the texture makes the true texels easier to recognize. For instance,
in figure 2 the unwarping flattens the seams in the lower half of the image where
the distortion would otherwise be too strong to detect the texels. Figures 1
and 3 show the effect of thin-plate spline warping through several iterations.
Figures 1e and 1i show the combined effects of lattice refinement and thin-plate
spline warping on the assignments returned from the matching algorithm (shown
in figure 1d and 1h). The warping effects may seem subtle because of the strong
regularization parameter but by later iterations the effect is pronounced. (See
figure 1k)

2.5 Iterative Refinement

One of the keys of our approach is the idea of incrementally building and refin-
ing a lattice by trusting the texels that have been kept as inliers through the
assignment and refinement steps. At the end of each iteration we allow texels
to “vote” on a new set of potential texels. We extract each texel from the final,
warped lattice and correlate it locally just as we did with our initial patch in sec-
tion 2.1. These local correlation maps for each texel are then summed up at the
appropriate offsets for the combined correlation map (see figures 1b, 1f, 1j). This



Lecture Notes in Computer Science 11

Fig. 4. From left to right: input, final lattice, warped texture, and extracted texels.

voting process prevents a few false texels from propagating to future iterations
since they are overridden by the majority of true texels.

2.6 Evaluation: the A-score

With an iterative, randomly initialized lattice-finding procedure we need a way
to reason about the relative quality of the many lattices we will discover. For
this purpose we adopt a modified version of the “a-score” from [13]:

A-score =
∑m

i=1 std(T1(i), T2(i), . . . , Tn(i))
m ∗

√
n

(4)

where n is the number of final texels, and m is the number of pixels in each
aligned texel Tn. This score is the average per-pixel standard deviation among the
final, aligned texels. Texel alignment is achieved with a perspective warp which
aligns the corner points of each texel with the mean sized texel. This alignment
is required because the regularized thin-plate spline does not necessarily bring
the texels into complete alignment, although it will tend to do so given enough
iterations. Our modification is the inclusion of

√
n in the divisor in order bias

the a-score toward more complete lattices.

3 Results

All of the results shown in this paper were generated with the same parameters
and constants (Cl = 30 and Cd = 3). Each texture was randomly initialized
and run for 20 iterations. This procedure was repeated 5 times with different
initializations and the best result was chosen based on the a-score. For bad
initializations, it takes less than a minute to propose texels, run them through
matching, and realize that there is no meaningful lattice. A full 20 iterations can
take half an hour for some textures as the number of texels increases.

For our experiments, we used textures from the CMU Near-regular Tex-
ture Database (http://graphics.cs.cmu.edu/data/texturedb/gallery). Some qual-
itative results of our algorithm are presented in Figures 4, 5, and 6. Quantita-
tively, the algorithm was evaluated on about 60 different textures. The full lat-
tices were discovered in about 60% of the cases, with about 20-30% producing



12 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

Fig. 5. Input and best lattice pairs. Best seen in color.



Lecture Notes in Computer Science 13

Fig. 6. Input and best lattice pairs. Best seen in Color.

partially-complete lattices (as in Figure 6 upper left), and the rest being miser-
able failures. Failure is typically due to the low-level visual features rather than
the matching algorithm.

4 Conclusions

We have presented a novel approach for discovering texture regularity. By for-
mulating lattice finding as a higher-order correspondence problem we are able
to obtain a globally consistent solution from the local texture measurements.
With our iterative approach of lattice discovery and post-warping we recover
the structure of extremely challenging textures. Our basic framework of higher-
order matching should be applicable to discovering regularity with any set of
features. While there does not exist any standard test sets for comparing the
performance of our method against the others, we demonstrate that our algo-
rithm is able to handle a wide range of different textures as compared to previous
approaches.



14 James Hays, Marius Leordeanu, Alexei A. Efros and Yanxi Liu

Acknowledgements. This research was funded in part by an NSF Graduate
Fellowship to James Hays and NSF Grants IIS-0099597 and CCF-0541230.

References

1. Gibson, J.J.: The Perception of the Visual World. Houghton Mifflin, Boston,
Massachusetts (1950)

2. Julesz, B.: Visual pattern discrimination. IRE Transactions on Information Theory
8 (1962) 84–92

3. Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: Cue
integration in image segmentation. In: ICCV. (1999) 918–925

4. Garding, J.: Surface orientation and curvature from differential texture distortion.
ICCV (1995) 733–739

5. Malik, J., Rosenholtz, R.: Computing local surface orientation and shape from
texture for curved surfaces. In: Int. J. Computer Vision. (1997) 149–168

6. Forsyth, D.A.: Shape from texture without boundaries. In: ECCV. (2002) 225–239
7. Puzicha, J., Hofmann, T., Buhmann, J.: Non-parametric similarity measures for

unsupervised texture segmentation and image retrieval. In: CVPR. (1997) 267–72
8. Leung, T., Malik, J.: Recognizing surfaces using three-dimensional textons. In:

ICCV. (1999)
9. Varma, M., Zisserman, A.: Texture classification: Are filter banks necessary? In:

CVPR. (2003) 691–698
10. Brooks, S., Dodgson, N.: Self-similarity based texture editing. In: SIGGRAPH

’02, New York, NY, USA, ACM Press (2002) 653–656
11. Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture

generation. ACM Trans. Graph. 22 (2003) 287–294
12. Lobay, A., Forsyth, D.A.: Recovering shape and irradiance maps from rich dense

texton fields. In: CVPR. (2004) 400–406
13. Liu, Y., Lin, W.C., Hays, J.: Near-regular texture analysis and manipulation. In:

ACM Transactions on Graphics (SIGGRAPH). (2004)
14. Leung, T.K., Malik, J.: Detecting, localizing and grouping repeated scene elements

from an image. In: ECCV, London, UK, Springer-Verlag (1996) 546–555
15. Schaffalitzky, F., Zisserman, A.: Geometric grouping of repeated elements within

images. In: Shape, Contour and Grouping in Computer Vision. (1999) 165–181
16. Turina, A., Tuytelaars, T., Gool, L.V.: Efficient grouping under perspective skew.

In: CVPR. (2001) pp. 247–254
17. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Com-

pany, New York (1987)
18. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using

shape contexts. PAMI 24 (2002) 509–522
19. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using

low distortion correspondence. In: CVPR. (2005)
20. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems

using pairwise constraints. In: ICCV. (2005)
21. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from

maximally stable extremal regions. In: British Machine Vision Conference. (2002)
22. Liu, Y., Collins, R., Tsin, Y.: A computational model for periodic pattern percep-

tion based on frieze and wallpaper groups. PAMI 26 (2004) 354–371


