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Abstract 
 

Tracking can be considered a two-class classification 

problem between the foreground object and its 

surrounding background. Feature selection to better 

discriminate object from background is thus a critical 

step to ensure tracking robustness. In this paper, a spatial 

divide and conquer approach is used to subdivide 

foreground and background into smaller regions, with 

different features being selected to distinguish between 

different pairs of object and background regions. 

Temporal cues are incorporated into the process using 

foreground motion prediction and motion segmentation. 

Appearance weight maps tailored to each spatial region 

are merged and combined with the motion information to 

form a joint weight image suitable for mean-shift 

tracking. Examples are presented to illustrate that divide 

and conquer feature selection combined with motion cues 

handles spatial background clutter and camouflage well. 

1. Introduction 

Persistent tracking of moving objects through changes 

in appearance is a challenging problem. To successfully 

handle appearance variation, a tracker’s object appearance 

model must be adapted over time. However, adaptation 

must be done carefully to avoid drifting off the object. 

Common appearance-based tracking approaches such as 

mean-shift [6] and Lucas-Kanade [2] do not explicitly 

model which pixels belong to the object and which belong 

to the background. As a result, it is easy for pixels in the 

background to be mistakenly incorporated into the object 

appearance model, thus contributing to tracker drift. 

Figure-ground separation is emerging as a key 

technique for drift-resistant tracking. By explicitly 

separating object pixels from background, a tracker can 

adapt to object and background appearance changes 

separately, and in a principled way. Common methods for 

figure-ground separation include motion segmentation 

[12] and active contours [8]. More recently, figure-ground 

separation for tracking has been addressed as a two-class 

classification problem, where object pixels must be 

discriminated from background pixels based on local 

image cues such as color or texture. 

With the realization that tracking can be formulated as 

discriminative figure-ground classification comes a 

growing realization that choice of features for separating 

object from background is also important. By using 

tracking features that clearly separate object from 

background classes, the tracker is much less likely to drift 

off the object onto similar background scene patches. In 

this paper we consider the problem of choosing features 

that discriminate between object and background. We 

particularly focus on cases with background clutter and 

camouflage, where it is difficult to achieve good figure-

ground separation using only a single feature. 

 

Related Work 

Our work is most closely related to Collins et.al. [5] 

and Avidan [1]. In [5], samples of pixels from the object 

and background are analyzed to perform on-line selection 

of discriminative features to use for tracking. The 

variance ratio is used to rank each feature by how well it 

separates empirical distributions of object and background 

feature values. Features that maximize average 

separability between the foreground object and the entire 

surrounding background are ranked most highly by this 

approach, thus is best suited to backgrounds that are 

relatively uniform in appearance. 

Avidan [1] maintains an ensemble of weak classifiers 

combined via Adaboost to perform strong classification of 

foreground from background pixels. Each weak classifier 

is a least-squares linear decision function (hyperplane) in 

the raw, multi-dimensional feature space. This approach 

is slower than histogram-based methods, but generalizes 

to high-dimensional feature spaces. Note that it is a 

feature weighting approach, as opposed to feature 

selection, which aims to choose a lower-dimensional 

subset of features. Like [5], this method also discards 

spatial information that could be used to reason about the 

layout of clutter and distractor objects. 

In this paper, we consider an explicit approach to deal 

with spatial layout of background clutter, distractors, and 

camouflage. We explore the idea that different features 

may be necessary to discriminate between the object and 

different portions of the scene background. For example, 

consider tracking a car from an aerial view. One feature 

may distinguish well between the car and the road in front 

and behind it, a second may be better at discriminating 

between the car and foliage at the side of the road, while 

yet a third feature may be needed to separate the car from 

a vehicle of nearly the same color passing it on the left. 

We generalize this idea into a divide-and-conquer strategy 

that spatially decomposes the background into “cells” 



while choosing a feature for each cell that best 

discriminates it from the foreground object. Like [1] [5], 

we perform a “soft” object-background classification by 

forming a weight image representing likelihood that each 

pixel belongs to the object versus the background (pixels 

more likely to be object have high weight, while pixels 

more likely to be background have low weight). 

Foreground motion prediction and motion segmentation 

are fused with the appearance weight image to form a 

joint color-motion weight image. Mean-shift is then 

performed on the joint weight image to find the local 

mode of object location. More sophisticated techniques 

based on statistical sampling could be used to robustly 

find the mode [11]. 

2. Measuring Feature Separability 

When seeking good tracking features, we would like 

simple features that reliably separate the object from the 

background. Similar to [5], we use raw features chosen 

from a set of linear combinations of RGB values. Each 

feature is normalized into the range of 0 to 255 and then 

quantized into histograms of 2b bins. Other cues could be 

used in the feature selection process, including edge 

orientations, shape contexts, texture features and flow. 

2.1. Extended Variance Ratio 

An evaluation criterion is needed to select the best 

features from the candidate set. Features that produce 

separable object and background class distributions 

should score most highly. For unimodal distributions, the 

variance ratio is a good measure of separability. Given a 

feature, let )(iHobj be the histogram on the object 

and )(iH bg be the histogram on the background. We 

normalize to form probability density functions of object 

and background, )(ip and )(iq . The overall combined 

density of the object and background is then 
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The original variance ratio is defined in terms of the 

raw object and background distributions as 
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where var(p) denotes the variance of a distribution p. The 

intuition behind the variance ratio is to select features that 

maximize the difference between object and background 

classes while minimizing the variation within each class. 

To evaluate separability of multimodal distributions, 

we adopt an extended variance ratio criterion [5]. A log 

likelihood transformation
1
 

                                                           
1 In practice, this function is modified to avoid dividing by zero or 

taking the log of zero.  This modification is omitted here, for clarity. 
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nonlinearly maps raw feature values into a new feature 

space such that values that appear more often on the 

object map to unimodal positive values, and values that 

appear more often on the background map to unimodal 

negative values. The variance ratio is then applied to this 

new log likelihood feature to evaluate separability of the 

original raw feature distributions. This can be thought of 

in terms of an extended variance ratio  
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where var(L;p) denotes the variance of log likelihood 

function L with respect to distribution p [9]. 

2.2. Comparing Separability Measures 

One question to ask is whether the extended variance 

ratio is the best measure of separability of two 

distributions, or whether alternative information theoretic 

measures like KL divergence might be more appropriate. 

In this section we compare the extended variance ratio 

to KL divergence, cross entropy and a measure similar to 

mutual information. The Kullback-Leibler divergence or 

relative entropy is a measure of the difference between 

two probability distributions; however it is not symmetric 

and does not satisfy the triangle inequality. The KL 

divergence between )(ip and )(iq is defined as 
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The cross entropy measures the overall difference 

between two probability distributions, which is defined as 

∑−= qpqpH log),(                                                     (6) 

It can be seen from the definitions of (6) and (7) that 
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where ∑−= pppH log)(                                             (8) 

To make the KL measure and the cross entropy be 

symmetric measures, we modified them as: 
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so that the modified KL divergence and cross entropy 

have the following relation: 
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The last measure we evaluate is similar in form to 

mutual information, but it quantifies the distance between 

overall distribution totp and the product of )(ip and )(iq : 
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To evaluate these measures of separability, we tested 

them on a series of generated distributions. Table 1 shows 

the performance of the four criteria in two sets of tests. In 

the first test, the means of two unimodal distributions 

(Gaussians) are brought closer and closer together. The 

distribution labeled Pobj1 is most separable from the 

background distribution. When the means of the 

distributions of the object and background get closer, they 

become less separable. We see that the quantity of the 

extended variance ratio measure decreases faster (from 

29.2 to 1.2) than the other three measures. 

In the second test, the background is a bimodal 

distribution Pbg, and three unimodal Gaussians with 

different means are compared. Based on the extended 

variance ratio measure, Pobj2 is judged the most separable 

from the bimodal background. Moreover, the difference 

between the separability scores of Pobj1 and Pobj2 is not very 

large, corresponding to visual intuition that both cases are 

equally separable from the background. However, based 

on the other three measures, Pobj2 is rated worst among the 

three features, which is not correct since distribution Pobj2 

is clearly more separable from Pbg than Pobj3 is.  

 

 

 

Obj1 Obj2 Obj3 Obj1 Obj2 Obj3 

EVR 29.2* 10.6 1.2 5.2 6.2* 2.2 

I 27.5* 11.8 4.11 28.2* 10.4 11.9 

KL 63.9* 30.9 15.9 65.9* 30.5 33.0 

H 56.4* 23.4 8.4 57.5* 22.0 24.5 

Table 1: For each criterion, ‘*’ represents the best feature choice 

(judged most separable by the measure) and the shaded one 

represents the worst feature choice (judged least separable). 

 

During the simulation, many other cases also showed 

that the extended variance ratio criterion performed best 

for measuring separability of both unimodal and 

multimodal distributions [13]. We believe the reason is 

that the other three measures only evaluate the difference 

between two distributions, while ignoring the variance 

property of each individual distribution. 

3. Divide and Conquer Approach 

Many simple classification algorithms such as LDA 

assume the underlying class distributions are unimodal. 

However, when extracting a background histogram from 

the pixel neighborhood surrounding an object, we often 

get a multimodal distribution due to scene clutter. A 

second problem to address is nearby “confusors” having 

similar appearance to the foreground object. Such 

confusors typically have limited spatial extent, yet are 

highly likely to cause tracking failure. We believe that 

spatial reasoning is important for solving the problems of 

clutter and confusors. However, the necessary spatial 

information is discarded by the background histogram 

representation.  

To solve this problem, we use a spatial divide and 

conquer approach, as illustrated in Figure 1. Like previous 

approaches, we select features based on the previous 

frame and use them to calculate the weight image of the 

current frame for tracking. However, first the object and 

the background in the previous frame are decomposed 

into smaller regions (cells). The idea is that the class 

distributions of these smaller spatial cells should be more 

easily separable. Guided by the extended variance ratio 

criterion, the best feature for each pairing of object cell 

and background cell is chosen. In other words, different 

features can be chosen for discriminating between 

different regions of the object and the background. Pérez 

et.al use a multi-region reference model for color based 

tracking [11]. In this paper we divide the background and 

foreground regions adaptively and recursively. 

Features from each object-background cell pairing 

should produce weight images that discriminate well 

between the corresponding spatial regions of foreground 

and background. All weight images are then merged 

together to generate a single weight image that achieves 

good separation of the entire foreground and surrounding 

background. This weight image is used for mean-shift 

tracking. 

 
Figure 1: In the previous frame the object has one unimodal cell 

and the background is divided into 8 spatial cells. For each of 

the 8 pairings of object to background cells, the best feature is 

selected and a corresponding weight image is generated on the 

current frame. The 8 weight images are then merged together 

into a single weight image for tracking.  

3.1. Divide and Conquer 

Image segmentation could be used to break the object 

and the background into regions with unimodal feature 

distributions, but this approach would be too slow for an 

on-line tracking process. In fact, we only need to estimate 

the principal unimodal distributions in feature space, 

rather than analyzing the exact shape or contour of each 

background region. We therefore hypothesize that a 

coarse spatial decomposition is sufficient to provide 

resistance to background clutter and confusors. 



Figure 2 illustrates the divide-and-conquer feature 

selection process. A grey car with a roughly unimodal 

distribution is tracked. There are many ways to spatially 

divide the background. In this example the background 

around the car is divided into 8 neighboring regions as 

shown in the center of Figure 2(a). Also shown are the 

object-background class distributions for the feature 

having highest extended variance ratio score for each cell. 

 

 
(a) 

 
(b) 

Figure 2: (a) The background around the car is divided into 8 

spatial cells (the car has a roughly unimodal distribution without 

dividing). For each pairing of background region and object, a 

feature that generates the most separable class distributions is 

chosen. These class distributions are shown for each cell, along 

with the corresponding Kurtosis values. (b) The weight images 

based on the best feature selected for each cell. 

 

In Figure 2(b), the corresponding weight images 

),( yxg i  for each cell are shown. These weight images 

are formed from the log likelihood values L (eq. 3) 

computed from the class distributions induced by the 

selected feature for each cell. If we were to threshold any 

weight image at zero, it would be equivalent to 

performing a binary classification of object from 

background at each pixel using the likelihood ratio test on 

the class conditional distributions. 

From the weight images, we can see that the 8 selected 

features can separate the object from one corresponding 

background cell quite well (object region has high weight 

and background region has low weight), but that each 

feature does not guarantee good separation between the 

object and other background cells. For example, the 

feature in the lower left image in Figure 2(b) 

discriminates the car from its lower left background well, 

but does a poor job at distinguishing the car from the 

right-side background. 

If the best feature for a cell in this initial dividing step 

results in unimodal class distributions, the feature is 

accepted. Otherwise we subdivide again until unimodal 

distributions are achieved. For example, the left-side 

background region in Figure 2 has a bimodal distribution 

even using the best feature, and is therefore further 

divided into four subregions as shown in Figure 3. We 

stop dividing when unimodal distributions are achieved or 

when the number of pixels in a region becomes too small. 

 

 
(a) 

 
(b) 

Figure 3: (a) The left-side background region is divided into four 

sub-quadrangles. (b) Object/background feature distributions 

and corresponding weight images, based on the best features 

found for each subregion.  

 

To decide if a distribution is suitably unimodal, we use 

the Kurtosis measure:  
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The kurtosis of the normal distribution is 3. Distributions 

that are sharper than the normal distribution have kurtosis 

value greater than 3; distributions that are flatter have 

kurtosis less than 3. We decide to further divide a region 

when the kurtosis value is smaller than 2. The EVR value 

can also be used to decide whether  to continue dividing. 

3.2. Merge 

After obtaining the weight images for each object-

background cell pair, we merge them together into a 

single weight image. Rather than just cut and paste 



regions from each weight image, we smoothly interpolate 

according to: 

∑ ⋅⋅= ),(),( yxVcyxW iii ϕ                                         (14) 

where iV is the area in pixels of the background region i, 

ic is the extended variance ratio score, and ),( yxiϕ is an 

“enhanced” weight image for the object/background 

pairing, as defined by: 
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The intuition behind enhanced weight images is that each 

weight image only discriminates well in the specific 

spatial cells that the weight image was derived from, thus 

should contribute relatively more to the output values of 

pixels in the same cell locations in the final merged 

weight image, and relatively less to pixels in other cells. 

Figure 4 shows the merged weight image for tracking, 

using a reweighting parameter of 6.0=α . The object is 

well distinguished from the entire local background 

surrounding it. We also show the result after smoothing 

with a Gaussian filter. It is known that mean-shift 

performs hill-climbing within this filtered space [4], thus 

the fact that there is a single strong mode at the location 

of the foreground object indicates that this is a good 

weight image for mean-shift tracking. 

 

  
Figure 4: (left) Final merged weight image for tracking. The car 

is well-distinguished from the surrounding background. (right) 

Gaussian filtering of the weight image shows a single strong 

mode, indicating that mean-shift will successfully find the object 

location in this frame.  

3.3. Different Spatial Dividing Methods 

Different subdivisions of the scene background will 

generate different weight images for tracking. Figure 5 

shows two alternative initial spatial divisions and their 

corresponding weight images. The top one considers only 

the foreground region versus the entire surrounding 

background, which is equivalent to the method of [5]. The 

bottom image subdivides the background into four 

regions corresponding to front, back, left and right, with 

respect to direction of object motion. We see that even 

this coarse division into four spatial regions yields a large 

improvement. Comparing with Figure 4 shows that 

increasing levels of subdivision yield even better weight 

images, although they are more costly in terms of 

computation time. 

 

 
Figure 5: Alternative initial subdivisions. Top row: using a 

single surrounding background region. Second row: dividing the 

background into 4 pieces. 

3.4. Motion Estimation 

Motion estimation provides a powerful cue for 

detection and segmentation of moving objects. We use 

motion estimation for two tasks. First, we perform frame 

differencing to determine moving pixels from stationary 

scene background. This coarse motion segmentation is 

fused with the weight map produced by color appearance 

information to help track the object in camouflage 

situations and to avoid drift onto stationary background 

structures. Second, we perform constant velocity 

prediction of object motion based on previous location 

history to predict future object trajectory. The predicted 

location of the object in the next frame is used to center 

the grid of spatial cells for weight image construction in 

that frame, and to form a “gating” region [3] within which 

to search for the object. The predicted future object 

trajectory also helps track through temporary occlusions. 

However, we consider videos where the camera can be 

moving, and both constant velocity trajectory prediction 

and frame differencing are invalid under camera motion. 

For this reason, we use estimates of frame-to-frame 

background motion to compensate for apparent camera 

motion when applying constant velocity motion 

prediction, and to perform stabilization when segmenting 

motion via frame differencing. 

Two-frame background motion estimation is performed 

by fitting a global parametric motion model (affine or 

projective) to sparse optic flow. Sparse flow is computed 

by matching Harris corners between frames using 

normalized cross correlation. A good set of potential 

matches is founding using “marriage-based” compatibility 

tests, as described in [10]. Given a set of potential corner 

correspondences across two frames, we use a Random 

Sample Consensus (RANSAC) procedure [7] to robustly 

estimate global affine flow from observed displacement 

vectors. The largest set of inliers returned from the 

RANSAC procedure is then used to fit either a 6 



parameter affine or 8 parameter planar projective 

transformation. 

The object motion prediction module assumes the 

object travels with constant velocity within three 

consecutive frames after first compensating for the 

background motion. It provides a rough location for 

initially subdividing the object and background. The 

tracked object can move with varying speed and 

directions in the real world. For example, assuming an 

affine model of background motion, the formula to 

predict the location Pt of the object in the current frame t, 

given its previously observed positions Pt-1 and Pt-2 in 

the last two frames, is 
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tT is the affine motion between frames t-2 to t-1, 

and 1−t

tT is the affine motion between frames t-1 and t. 

Sample results of object location prediction and motion 

detection are illustrated in Figure 6. Motion detection 

weights (Figure 6c) and the appearance weight image 

(Figure 6d) are fused to generate a better weight image for 

tracking (Figure 6e). Currently, a logical “and” operation 

is used for fusion such that a pixel in Figure 6e is valid 

only when the pixel value is larger than some threshold 

and motion exists at that pixel.  

 

 
Figure 6: (a) previous frame. (b) current frame. The predicted 

object location is showed as a dashed ellipse. The search region 

is the enlarged elliptical area around the predicted location. (c) 

motion mask computed by frame difference between the current 

frame and the warped previous frame. (d) appearance weight 

image by divide and conquer approach. (e) weight image fused 

with the motion information. (f) mean-shift tracking result on 

the joint color-motion weight image. 

3.5. Tracking Algorithm 

Due to the continuous nature of video, the distribution 

of the object and the background should remain almost 

the same between two successive frames. Thus it is 

reasonable to select features from the previous frame and 

apply them to the current frame to generate a weight 

image for tracking. The object is then localized in the 

weight image using mean shift, and the orientation of the 

object is determined by weighted ellipse fitting. We 

incorporate the divide and conquer feature selection 

approach into the following tracking algorithm: 

 

Initialization: 

1) Manually select foreground object in the first frame. 

2) Automatically divide the object/background into 

small regions and select the best feature for each object-

background pair. If the features distributions of object and 

background satisfy the Kurtosis threshold or the 

object/background region is too small, the feature is 

accepted and subdivision is stopped. Otherwise, continue 

to divide and conquer the feature selection. 

Tracking: 

For subsequent frames, do: 

1) Predict the target position using background motion 

estimation and constant velocity foreground motion 

prediction. 

2) Generate weight images from cell layout around the 

predicted location using the best selected features 

assigned to the different spatial regions in the previous 

frame. Merge the weight images together to generate an 

appearance weight image. 

3) Compute a motion detection image using motion 

compensated frame differencing between the warped 

previous frame and current frame. 

4) Use mean shift to find the nearest local mode in a 

combined weight image containing both appearance 

generated weights (from step 2) and motion detection 

weights (from step 3).  

5) Fit an ellipse centered on the object location 

determined by mean-shift to get the orientation and scale 

of the object for the next round of divide and conquer.  

6) Update the spatial cell layout and selected tracking 

features from the current frame using the divide and 

conquer approach. 

 

Note that step 4 uses both appearance-based and 

motion-based weights. This further improves tracking 

performance by ensuring that the tracker is not distracted 

by stationary regions in the background, regardless of 

how similar they may appear to the tracked object. The 

joint color-motion weight image also keeps the tracker 

away from distracting motion near the target.  



4. Experiments 

In this section we present three challenging tracking 

examples that illustrate the benefits of spatial divide and 

conquer with motion cues for tracking through clutter.  

The first aerial video shows a grey car chased by the 

police, from the VIVID Tracking Evaluation Website 

(http://www.vividevaluation.ri.cmu.edu/). During the 

chase, the car passes cars of similar color, is partially 

occluded by traffic signs, and passes through shadows. 

Camera motion is also prominent, including scale changes 

and rotation. Figure 7 shows sample frames from the 

sequence. The first row shows the tracked object in the 

original image. The second row shows weight images 

generated by the divide and conquer approach. Spatial 

decomposition as described above is used to minimize the 

appearance of clutter and distractions in the weight image. 

The third row illustrates motion detection results. Note 

that motion detection can add new clutter, as shown in the 

last column of Figure 7 where two cars move in parallel. 

However, using both the appearance weight image and 

motion detection results, the tracker succeeds. 

The second video is from the OTCBVS Benchmark 

Dataset Collection (http://www.cse.ohio-state.edu/otcbvs-

bench/). Figure 8 shows the tracking result with the 

weight images and motion results. The object being 

tracked is a pedestrian walking from sunshine into a 

moving cloud shadow. The pedestrian also becomes 

partly occluded and separated into pieces by a sculpture. 

Nonetheless, the pedestrian is successfully tracked until 

they leave the view. Note that the pedestrian gait and 

body shape is very clear in the weight images. 

The third experiment is an aerial video sequence of a 

motorcycle (Figure 9). The motorcycle is small and fast 

moving, and often passes vehicles with similar colors. 

Sometimes the object is running through or passing by 

shadows. Sometimes it is partial occluded by traffic signs 

or nearby vehicles. Again, we see that the weight images 

produced by the divide and conquer approach are quite 

good for distinguishing the motorcycle from its 

surrounding background, and that motion detection results 

alone would not succeed, due to motion clutter. 

5. Summary 

This paper presents a divide and conquer approach to 

consider the spatial layout of background clutter with 

respect to the foreground object. Guided by an extended 

variance ratio criterion for determining separability of 

distributions, features are selected that discriminate 

between spatial pairs of object and background cells. 

Weight images with good discriminative quality are 

generated for each cell, and merged to produce a single 

weight image for mean shift tracking. A motion 

prediction module allows for reduced object search 

regions and motion detection via compensation of 

background camera motion. The mean-shift procedure 

thus considers both appearance and motion based weight 

images to determine object location in a new frame. After 

finding the location of the object, weighted ellipse fitting 

is executed to find the object orientation. The experiments 

show good performance on video scenes containing 

spatial clutter, distractions and camouflage.  

Future work will more directly address the problem of 

drift during object appearance adaptation. Although 

spatial appearance and temporal motion information are 

combined in the present algorithm, we still need to evolve 

the object model carefully to avoid drift. Future work will 

focus on imposing shape-guided foreground/background 

segmentation into the tracking process, to avoid model 

drift during adaptive tracking. 
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Figure 7: A car passes similar cars, partially occlusions, moves through shadows and turns a corner.  

 

 
Figure 8: A pedestrian walks into a moving shadow and is partially occluded by a sculpture. 

 

 
Figure 9: A fast-moving motorcycle passes vehicles of similar color, partial occlusions, and moves through shadows.  


