
Moving Object Localization in Thermal Imagery
by Forward-backward MHI

Zhaozheng Yin and Robert Collins
Department of Computer Science and Engineering

The Pennsylvania State University, University Park, PA 16802
{zyin, rcollins}@cse.psu.edu

Abstract
Detecting moving objects automatically is a key compo-

nent of an automatic visual surveillance and tracking sys-
tem. In airborne thermal video, the moving objects may
be small, color information is not available, and even in-
tensity appearance may be camouflaged. Previous motion-
based moving object detection approaches often use back-
ground subtraction, inter-frame difference or three-frame
difference. In this paper, we describe a detection and local-
ization method based on forward-backward motion history
images (MHI). This method can accurately detect location
and shape of moving objects for initializing a tracker. Using
long and varied video sequences, we quantify the effective-
ness of this method.

1 Introduction

Detecting moving objects in image sequences is a ubiqui-
tous problem that plays an indispensable role in automatic
surveillance and tracking. Detecting and localizing the ob-
ject accurately is important for automatic tracking system
initialization and recovery from tracking failure. For tracker
initialization, it is necessary to first localize position and
shape of the object and analyze its features. Later, if the
tracker fails, the moving object detection module can local-
ize moving objects globally in the image, and the tracking
system can then associate the globally detected objects with
previously tracked objects to restart the tracker.

When prior knowledge of moving object appearance and
shape is not available, change detection or optical flow can
still provide powerful motion-based cues for detecting and
localizing objects, even when the objects move in a clut-
tered environment, or are partially occluded. There are three
main approaches to pixel level change detection: back-
ground subtraction, inter-frame difference and three-frame
difference. Background subtraction compares the current
frame (Figure 1(b)) with a background image (Figure 1(c))
to locate the moving foreground objects (Figure 1(d)). This
method can extract the shape of the object well provided

Figure 1: (d)-(l) are subimages of (b). (a) the 76th frame.
(b) the 88th frame. (c) reconstructed background. (d) back-
ground subtraction between (b) and (c). (e) frame differ-
ence between the stabilized 82nd and 88th frames. (f) frame
difference between the stabilized 76th and 88th frames.
(g) frame difference between the stabilized 100th and 88th
frames. (h) three-frame difference. (i) forward MHI. (j)
backward MHI. (k) detected mask by forward-backward
MHI. (l) detected shape by forward-backward MHI.

that the static background model is available and adaptive to
illumination change. Stauffer and Grimson [8] developed a
probabilistic method for background subtraction. The back-
ground is adaptively updated by modeling each pixel as a
Gaussian mixture model. However in airborne video cap-
tured by a moving camera, the stabilized background as
shown in Figure 1(c) is costly to reconstruct at every frame.

Interframe difference methods easily detect motion but
do a poor job of localizing the object. If temporal dis-
tance between two differencing frames is small, only part
of the object is detected (Figure 1(e)). If temporal distance
is large, two object locations are detected - one where the
object is, and one where it used to be (Figure 1(f)). Moti-



vated by this problem, the three-frame difference approach
uses future, current and previous frames to localize the ob-
ject in the current frame [6]. Irani and Anandan [5] provide
a unified approach to moving object detection both in 2D
and 3D scenes, in which the object is detected by three-
frame difference. Using future frames introduces a lag in
the tracking system, but this lag is acceptable if the object
is far away from the camera or moves slowly relative to the
high capture rate of the camera. Figure 1(g) is the differ-
ence between current and future frames. Figure 1(h) gives
the logical ‘AND’ result of Figure 1(f) and Figure 1(g). The
location of the object is well detected, but the shape of the
object is only coarsely detected.

2 Related work

In the frame difference method, the choice of temporal dis-
tance between frames is a tricky question. It depends on
the size and speed of the moving object. Furthermore, the
background subtraction, inter-frame difference and three-
frame difference only tell us where the motion is. Strehl and
Aggarwal [9] resort to gray level edges to segment the ob-
ject based on the detected motion. Paragios and Deriche [7]
present a moving object detection and tracking approach by
geodesic active contour and level sets. This boundary-based
approach uses the motion detection boundary by applying
the edge detector on the interframe difference.

In contrast to the above methods, the motion history im-
age (MHI) provides more motion properties, such as direc-
tion of motion. Bobick and Davis [1] use MHI as part of a
temporal template to represent and recognize human move-
ment. MHI is computed as a scalar-valued image where
intensity is a function of recency of motion. An extension
to the original MHI framework is to compute normal op-
tical flow (motion flow orthogonal to object boundaries)
from MHI by Bradski and Davis [2]. Wixson [10] pre-
sented another integration approach which integrates frame-
by-frame optical flow over time. The consistency of di-
rection is used as a filter. In the W4 system, Haritaoglu
et.al [4] use a change history map to update the background
model. Another related work is developed by Halevi and
Weinshall [3] to track multi-body non-rigid motion. Their
algorithm is based on a disturbance map, which is obtained
by linearly subtracting the temporal average of the previous
frames from the new frame.

In this paper we proposed a moving object localization
approach based on MHI. Similar to the work of Bobick and
Davis [1], the motion images generated by inter-frame dif-
ferencing are combined with a linear decay term. From pre-
vious frames to the current frame, we get the forward MHI
as shown in Figure 1(i). The trail gradient in the MHI indi-
cates the direction of object motion in the image. Similarly,
we construct a backward MHI from the future frames to the

current frame as shown in Figure 1(j). Again we assume the
lag introduced into the tracking system is acceptable. Com-
bining the two MHIs, we obtained the object mask (Figure
1(k)) and shape (Figure 1(l)). Comparing to the previous
approaches, this method does not require adaptive back-
ground reconstruction, it provides more motion information
than the three-frame difference method, and it can recover
the shape of the moving object better. Our approach is also
suited for moving cameras, because we do stabilization of
adjacent frames in time and propagate locally. This reduces
the correspondence errors of stabilization across larger tem-
poral distance. The details of our approach are discussed
in Section 3. Section 4 presents the implementation results,
which are evaluated on several thermal video sequences. Fi-
nally we make a brief conclusion in Section 5.

3 Object localization by MHI
Motion history images combine object movement informa-
tion over an image sub-sequence. The old object motion,
which was obtained from frame difference among images
far away from the current instant, fades away due to the
decay term. In general, MHI shows the cumulative object
motion with a gradient trail. Our MHI based approach has
three main modules:

1. Preprocessing module. The previous frame at time in-
stant τ −∆, I(τ−∆), is stabilized into the coordinate
of the frame at time τ , I(τ). Both of these two frames
are normalized before the differencing.

2. MHI generation module. The MHI at time τ , HF (τ),
is a function of the MHI at time τ −1, HF (τ −1), and
the motion image at time τ , DF (τ).

3. Object localization module. The forward MHI at the
current instant t, HF (t), is computed recursively from
previous time instant t − (L − 1) to t. HF (t) is com-
bined with the backward MHI at the current instant t,
HB(t), to determine the moving object mask in the
current image I(t). The backward MHI has the same
generation process except that τ is reduced recursively
from t + (L− 1) to t.

3.1 Preprocessing
In airborne video, the background is moving over time due
to the moving camera. Before using the frame difference
to get motion images, we need to stabilize the frames first.
If the camera is static, this step can be skipped. Two-
frame background motion estimation is achieved by fitting
a global parametric motion model (affine or projective) to
sparse optic flow. Sparse flow is computed by matching
Harris corners between frames using normalized cross cor-
relation. Given a set of potential corner correspondences



Figure 2: t = 1030, τ = 1032,∆ = 3 (a) frame difference
between the τ and τ + ∆ frames without normalization.
(b) HB(τ) without normalization (c) frame difference with
normalization. (d) HB(τ)with normalization (e) combining
HF (t) with HB(t) (f) detected object contours at current
instant t

across two frames, we use a Random Sample Consensus
(RANSAC) procedure to robustly estimate global affine
flow from observed displacement vectors. The largest set of
inliers returned from the RANSAC procedure is then used
to fit either a 6 parameter affine or 8 parameter planar pro-
jective transformation. Using P τ

τ−∆ to represent the affine
motion from frame τ −∆ to frame τ , we perform the warp-
ing as:

I
′
(τ −∆) = P τ

τ−∆ × I(τ −∆) (1)

To avoid large corner correspondence error between two
frames, we incrementally compute the transformation ma-
trix step by step as Eq (2). In practice we do not choose
a large ∆ since that will cause big cumulative error even
using Eq (2).

P τ
τ−∆ = P τ

τ−1 × P τ−1
τ−2 × · · · × P τ−∆+1

τ−∆ (2)

Another notorious problem in airborne video is rapid
change in pixel intensities when the camera sensor has au-
tomatic gain change control. Especially in thermal videos,
when very hot or cold objects appear, the gray value of each
pixel changes greatly as the camera rapidly adjusts its gain
to avoid saturation. The changing illumination makes the
intensity-based frame difference method inadequate for ob-
taining accurate motion. Yalcin et.al [11] have proposed an
intensity-clipped affine model of camera sensor gain. In this
paper, we use a simplified normalization method:

I
′
(τ) =

I(τ)− I(τ)
std(I(τ))

(3)

where I(τ) represents the mean value of the image,
std(I(τ)) stands for the standard deviation of the image.

After the normalization step, the pixel value can be neg-
ative. This will not affect the frame difference result in the
next module, and we do not need to scale the pixel value
into the range of 0 to 255. In the thermal video of Fig-
ure 2, there is a big gain change between the 1032nd frame

Figure 3: (a) forward MHI. (b) backward MHI. (c) combi-
nation of (a) and (b) (d) forward MEI. (e) backward MEI. (f)
combination of (d) and (e). (g) post-processed (c). (h) de-
tected object contours, the upper-right vehicle in the scene
is partial occluded by a tree

and the following images. The motion image generated by
frame difference will be polluted if there is no normaliza-
tion (Figure 2(a)). Thus the MHI at time τ will also be
degraded (Figure 2(b)). Figure 2(c-d) gives the motion im-
age and MHI with the normalization computed from Eq 3
for comparison. Figure 2(e-f) shows the final localization
results with the normalization.

3.2 Motion History Image Generation
A single motion image computed by inter-frame difference
shows where motion (change) exists, but noise may also be
above threshold. Furthermore it is hard to choose a suit-
able frame difference distance ∆. One method of integrat-
ing motion images over time is the Motion Energy Image
(MEI), computed as1:

E(t) =
t±(L−1)∑

t

D(τ) (4)

where ′−′ means forward MEI, ′+′ means backward MEI,
L is the length of the time period, D(τ) is the absolute
frame difference with difference distance ∆:

D(τ) = |I(τ)− I(τ ±∆)| (5)

I(τ) and I(τ ±∆) are stabilized and normalized images.
One drawback of MEI is that all the motion caused by

the noise will also be accumulated. The MEI is blurred due
to the summation of all the noisy motion within the time pe-
riod. Thus it is hard to distinguish the objects from the back-
ground. As shown in Figure 3, there is much more noise ex-

1Originally Bobick and Davis [1] uses the logical ‘AND’ of the binary
difference images to compute E(t)



isting in the MEI than in the MHI. Instead of only showing
all the existing motion during a period of time, MHI keeps
a record of how the historic motion evolves with the current
motion image. By incorporating a temporal decay term, the
forward MHI is computed as2:

HF (x, y, τ) ={
max(0, P τ

τ−1HF (x, y, τ − 1)− d) if D(x, y, τ) < T

255 if D(x, y, τ) ≥ T

(6)
where P τ

τ−1 is the warping matrix from frame τ−1 to frame
τ , d is the decay term and T is a threshold. The pixel value
calculated above is within [0, 255], so the decay term d is
also defined within [0, 255]. For example, we can define
d = 255/L. Without loss of generality, we can also scale
the pixel value into other ranges like [0, 1].

The forward MHI, HF (t), is a function of the previous
forward MHI, HF (t− 1) and current motion image DF (t).
This satisfies the Markovian assumption that no other old
motion images need to be stored. Compared to MEI, the
recent moving pixels in MHI are highlighted while the old
moving pixels in MHI are darker. As a benefit, the impulse
noise in the old motion image decays away while the per-
sistent motion generated by the moving object is preserved.
Similarly we can compute the backward motion history im-
age HB(τ). Figure 4 gives an example of the MHI gener-
ation process. The initial backward and forward MHIs are
set to zero:

HF (t− (L− 1)) = 0
HB(t + (L− 1)) = 0

(7)

3.3 Object localization

After we get the forward and backward MHI, HF (t) and
HB(t), we perform median filtering to smooth the MHIs
and remove the salt-pepper noise. Alternatively, a Gaussian
filter can be used. The forward-backward motion history
masks are combined by

Mask(t) = min(medfilt(HF (t)),medfilt(HB(t))) (8)

where medfilt stands for the median smoothing filter. For
objects moving in a constant direction, the ‘min’ operator
in Eq (8) serves to suppress the gradient trail behind the
object in the forward MHI, and the gradient trail ahead of
the object in the backward MHI, yielding strong response
only for pixels within the current object boundary.

Figure 5 provides an example in which some cars move
close together and in two directions while four people are
running together. The mask generated by Eq 8 is shown

2As shorthand notation, we ignore the x, y in the parameter list and
represent them as HF (τ) and HB(τ).

Figure 4: L=11 (a)-(c) forward MHIs at t-10, t-5, t respec-
tively. (d)-(f) backward MHIs at t+10, t+5, t respectively.
(g) combination of HF (t) and HB(t). (h) detected object
contours

Figure 5: (a) HF (t). (b) HB(t). (c) HF (t) after median
filter. (d) HB(t) after median filter. (e) combined mask (f)
detected object contours, the upper-left contour in the scene
is composed by four running people.

Figure 6: (a) HF (t). (b) HB(t). (c) combination without
morphological operation (d) detected object contours with
morphological operations



Figure 7: Evaluation process and hand labeled ground truth

in Figure 5(e). After thresholding the mask, the final ob-
ject contours are shown in Figure 5(f). Furthermore, some
morphological operations may be performed to improve the
accuracy of the object mask as shown in Figure 6. For ex-
ample, the close or dilate operations can fill any holes or
gaps within the same object; while the open or erosion op-
erations can remove thin bridges of pixels between nearby
objects as well as removing small objects caused by noise.

4 Experiment analysis

4.1 Evaluation metrics
Our experiment evaluation design is shown in Figure 7. The
ground truth object shape is labeled manually. Let H de-
note the hit area, i.e. the area belonging to the object and
correctly detected, M denote the miss area, i.e. the area be-
longing to the object but incorrectly missed, and F denote
the false alarm area, i.e. the area not belonging to the object
but incorrectly detected. The hit rate is defined as

HR =
H

H + M
(9)

The false alarm rate is

FAR =
F

H + F
(10)

Note that miss rate is redundant with hit rate:

MR =
M

H + M
= 1− HR (11)

so we will evaluate the detection performance based on the
hit rate and false alarm rate only. A perfect detection result
would have HR equal to one and FAR equal to zero.

4.2 Effect of L and ∆

To achieve a good detection performance, we need to
choose a suitable motion history length L. If the ob-
ject has uniform intensity, s is the average moving object
speed (pixels/second) during the period L, f is the frame
rate (frame/second), and l is the object length in the im-
age(pixels), then the smallest motion history length L is
constrained by:

s
L

f
≥ l (12)

Assuming that the speed and size of the moving object in
the scene can be estimated when we set up the tracking sys-
tem, we can calculate the minimum motion history length

Figure 8: The effect of different history length. The bottom
row shows three masks related to L = 1, 5, 9 respectively

as above. Otherwise we can choose a big L conservatively
to guarantee that the object shape can be detected well, al-
though big L will lengthen the lag of the tracking system.
Figure 8 shows an example in which the hit rate increases
with the enlarging L while the false alarm rate decreases.

Another factor that affects the frame difference is the
step size ∆. Normally we choose ∆ between one and four,
and avoid choosing larger values since that will cause more
interframe stabilization error and make the MHI noisy. If
the object is moving slowly and ∆ is small, then only a
sliver of the object can be detected at each frame, however
all the slivers will be accumulated into the final MHI with a
suitable motion history length.

4.3 Experiment result

Figure 9 shows the performance evaluation for four dif-
ferent thermal sequences. We randomly select 20 images
from each sequence and label ground truth object shapes by
hand. Note that only moving objects are labeled and that
the shadow is not considered to be part of the object. If all
the objects in the image are static or all the objects are to-
tally occluded, this image is replaced by another randomly
chosen image. The four sequences contain trucks and small
sedans driving along a road network. The image resolution
of objects in the same video sequence may be large or small
due to the moving and zooming camera. Different images
from the same sequence may contain single or multiple ob-
jects. Some objects may be partly occluded, and some im-
ages are blurred. Despite these challenges, among all the
sampled images, the hit rate is around or above 0.8 and the
false alarm rate is around or below 0.4. The detected ob-
ject shape tends to match the object boundary well. Some
exception cases include: (1) the object slows down when
going around a corner so that the motion is not obvious (the
1162nd frame of sequence 1, the 3037th and 4013th frames
of sequence 2), which degrades the performance. (2) part of
the object is just coming into the image, which can not be



detected well (the 7537th frame of sequence 3 and the 79th
frame of sequence 4). (3) the object has uniform appearance
that is similar to the background. For example, the trunk of
the truck in sequence 4 is dark and similar to the pavement;
it is not segmented from the background perfectly.

To demonstrate that this approach generalizes to other
kinds of scenes, we also tested it on five challenging non-
thermal sequences. 40 images are chosen randomly from
each sequence and Figure 10 provides some localization re-
sults for each sequence. The first column shows an airfield
video with flat background. The vehicles turn around or
pass by each other. The second column shows two vehi-
cles in a forest. The vehicles may pass through tree shadow
or become partially occluded. The third column shows an
intersection with static background, in which multiple ve-
hicles exist3. The fourth column displays two different
weather conditions (snow and fog) at the same intersection.
From the results, we can see that objects can be localized
well except when the objects move close to each other in
the intersection (the 1190th frame in column 3) or when
an object’s intensity is very similar to the background (the
1250th frame in column 3).

5 Conclusion

Motion history images accumulate change detection results
with a decay term over a short period of time. The MHI
contains more motion information than a single motion im-
age generated by frame difference. Instead of only showing
where the motion is, MHI answers the questions of “what
went where”and “how did it go there”. Each moving ob-
ject has a fading trail, with the trail showing the direction of
movement. By combining the forward MHI and backward
MHI together, we can get a contour shape for the moving
object at the current frame. The experiments show the ef-
fectiveness of the approach. In addition, the method is much
faster to run and to implement than multi-scale optical flow.
There are only several subtraction and comparison opera-
tions for each pixel at each iteration. However for optical
flow method, if each pixel has a k*k window, the computa-
tion cost is roughly increased by a factor of k2.

Future work will implement this localization approach
within a complete tracking system. The motion, shape
and appearance features of detected objects will be com-
bined to represent and track the object. Furthermore, based
on the detected object location and initial shape estima-
tion, more accurate local segmentation methods can be per-
formed around the object to get better layer representations
of the object and background.

3Downloaded from the Karlsruhe University at:
http://i21www.ira.uka.de/image sequences/
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Figure 9: Evaluation on the thermal videos



Figure 10: Test on different scenes


