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Abstract Face recognition has important applications in
forensics (criminal identification) and security (biometric
authentication). The problem of face recognition has been
extensively studied in the computer vision community, from
a variety of perspectives. A relatively new development is
the use of facial asymmetry in face recognition, and we
present here the results of a statistical investigation of this
biometric. We first show how facial asymmetry informa-
tion can be used to perform three different face recognition
tasks—human identification (in the presence of expression
variations), classification of faces by expression, and clas-
sification of individuals according to sex. Initially, we use
a simple classification method, and conduct a feature anal-
ysis which shows the particular facial regions that play the
dominant role in achieving these three entirely different clas-
sification goals. We then pursue human identification under
expression changes in greater depth, since this is the most
important task from a practical point of view. Two different
ways of improving the performance of the simple classifier
are then discussed: (i) feature combinations and (ii) the use
of resampling techniques (bagging and random subspaces).
With these modifications, we succeed in obtaining near per-
fect classification results on a database of 55 individuals, a
statistically significant improvement over the initial results
as seen by hypothesis tests of proportions.
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1 Introduction

Face recognition—a subclass of the broader problem of
pattern recognition—is of increasing importance in recent
years, due to its applicability in a wide variety of law en-
forcement and social arenas, such as matching surveillance
photographs to mug shots, authentication checks at airports
and ATMs, searching for missing children, and so forth.
Since most of these applications are extremely sensitive in
nature (for instance, catching criminals or terrorists), it is
imperative to have highly accurate algorithms. Unlike in
many applications where it is merely desirable to have a
low rate of incorrect identification, face recognition requires
it. The need for automatic algorithms is also evident, be-
cause it is difficult and time-consuming for a human to scan
large facial databases (e.g. of missing children), especially
in real time. As a result, automatic accurate face recognition
has received much attention in the computer vision litera-
ture and numerous face identification algorithms have been
developed.

All faces have a similar spatial layout and this makes face
recognition a challenging task. Perhaps the greatest chal-
lenge is that images of a single individual may differ dramat-
ically due to variations in orientation, color and illumination,
or simply because the person’s face looks different from day
to day as a result of changes in make-up, facial hair, glasses,
etc. On the other hand, researchers can take advantage of
the fact that faces are rich in information about individual
identity and mood; position relationships between parts of
the face, including the eyes, nose, mouth and chin, as well
as their shapes and sizes, are widely used as features for
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identification. One family of features that has only recently
come into use in face recognition problems is facial asym-
metry.

Facial asymmetry can arise in two ways—by external
factors such as expression changes, viewing orientation and
lighting direction, and by factors such as growth, injury and
age-related changes. The latter is more interesting, since it
is directly related to the individual face, whereas the former
can be controlled to a large extent and may also be removed
with the help of suitable normalization. Research has shown
that the more asymmetric a face, the less attractive it is
(Thornhill and Gangstad, 1999), but at the same time more
recognizable, particularly in males (O’Toole, 1998). Human
beings are so sensitive to naturally occurring facial asym-
metry in recognizing individuals that a significant decrease
in recognition performance has been observed when facial
asymmetry is removed from images (Troje and Buelthoff,
1998). In fact, facial asymmetry has also been found to dif-
fer considerably between identical twins; Burke and Healy
(1993), for example, reported significant differences in facial
asymmetry parameters of monozygotic twins. This shows
the potential of facial asymmetry as a useful biometric in
practice.

The use of asymmetry in automatic human identification
tasks started in computer vision with the work by Liu et
al., (2002), which first showed that certain quantified facial
asymmetry measures are indeed efficient in identifying peo-
ple. This was followed by more extensive studies (Liu et al.,
2003), and these early studies form the starting point for our
current work, which presents a more rigorous study of facial
asymmetry and its role in a variety of recognition problems.
We begin with the role of asymmetry measures in human
identification in the presence of extreme expression changes,
followed by expression classification and male/female clas-
sification. We then explore the human identification problem
in greater depth and propose the use of two different ap-
proaches for improving performance—combination of fea-
ture sets, and simple statistical resampling, which succeed in
attaining very accurate identification results. Note here that,
for the human identification task, we focus on the classifi-
cation problem in this paper, where the goal is to identify
a person who belongs to a particular database at hand. One
potential application lies in law enforcement, where police
or other agencies will be working with databases of known
offenders, and one goal is to match suspect faces with targets
from the database.

The paper is organized as follows. Section 2 provides a
description of the data and Section 3 introduces the asym-
metry features. The three different classification schemes
are included in Section 4, along with a feature set analysis.
Section 5 presents the classification results and Section 6
discusses the potential means of improving upon the human

identification performance. We conclude with a discussion
in Section 7.

2 Data

We use the same dataset as used by Liu et al. (2003), a part of
the “Cohn-Kanade AU-coded Facial Expression Database”
(Kanade et al., 1999). The Cohn-Kanade database features
extreme expression changes captured under balanced light-
ing conditions, minimizing the external sources of asymme-
try artifacts. As far as we know, this is the only database with
these characteristics and hence is suitable for our analysis.
The data are in the form of 165 video clips of 55 individuals
displaying 3 emotions: joy, anger and disgust. Starting with a
neutral expression, subjects gradually show an emotion, and
so each clip exhibits the transition from a neutral face to one
with the peaked form of one emotion. Every video clip is
split into frames, each of which is a gray—scale image with
pixels having numerical intensities ranging from 0 (black)
to 255 (white). A total of 495 frames is used, 3 frames from
each emotion for each subject: the most neutral (the first
frame), the most peak (the final frame) and an intermediate
expression (a middle frame). We use this smaller subset as
our initial test-bed and hope to extend to a larger dataset in
the near future.

The face images are first normalized. The goal of normal-
ization is to align faces in such a manner that all the images
are on a common plane, facilitating comparison. The normal-
ization is based on an affine transformation and is explained
briefly in Fig. 1. For more details on the exact procedure,
the reader is referred to Liu et al. (2003). All the normalized
images are of dimension 128 × 128 and they have a face

Fig. 1 Face image normalization—C1 and C2 denote the inner canthus
of the two eyes, C3 is the philtrum, a is the distance between C1 and
C2 and b is the distance between the midpoint of C1C2 and C3. The
normalization method determines the points C1, C2 and C3 in each
image for fixed distance values of a and b. [Courtesy Liu et al. (2003)]
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Fig. 2 Video sequences (8
normalized frames) of 2
subjects. The first subject (top
row) is expressing joy and the
second subject (bottom row),
anger

Fig. 3 Normalized expressions from 3 subjects. Each row represents
one subject. Column 1 shows neutral expressions while columns 2–4
show joy, anger and disgust respectively

midline so determined that each point on one side of the face
has a corresponding point on the other (in other words, this
is the “line of symmetry” in the face). Figure 2 shows sam-
ple video clips of two subjects expressing different emotions
while Fig. 3 shows one frame for each of the three emotions
and neutral expression for three subjects.

3 Facial asymmetry measurements

Following along the lines of Liu et al. (2003), we use two
different representations of facial asymmetry in this paper.
Using the face midline that was determined by the image
normalization process, we define a coordinate system with
the midline as the Y-axis and X-axis as the line perpendicu-
lar to it. If I denotes a normalized face and I ′ its vertiically
reflected image along the midline, the two asymmetry mea-
sures are:

� Density difference: (D-face) Let I (x, y) denote the inten-
sity value of the image I at the coordinate location (x, y).
Then

D(x, y) = I (x, y) − I ′(x, y),

the intensity difference between the corresponding pixels
from the two sides of the face, is the D-face value at that
location. The higher the absolute value of D(x, y), the
more asymmetrical that point on the face is.

� Edge orientation symmetry: (S-face) Edges refer to sig-
nificant and abrupt changes in the intensities of an image.
An “edge” image Ie is obtained by detecting the edges in

Fig. 4 The left column shows the normalized faces, the middle column
shows the D-faces and the right column shows the S-faces. The three
rows, from top to bottom, display neutral, joy and disgust expressions,
respectively

I , using a Laplacian-based method that is based on “zero-
crossing” of the second derivative of the image (the point
where it changes from positive to negative or vice versa
is declared an edge). For more details, see the discussion
in Lim, 1990. The advantage of this method over standard
gradient-based ones (which only consider points whose
gradients are above a fixed threshold) is that there is no
check on the magnitude of the gradient and as a result,
a larger number of points get declared as edge points.
If I ′

e denotes the vertically reflected image of Ie and φ

the angle representing the difference in the orientations
of the edges (that are detected automatically from the re-
flected images) at the two corresponding points on the
face, the S-face value at the coordinate location (x, y)
is

S(x, y) = cos
(
φIe(x,y),I ′

e(x,y)
)
.

Since cosine is an even function, this measure is invari-
ant to the relative orientation of the edges with respect
to each other. The higher the value of S(x, y), the more
symmetrical that particular point on the face is.

Figure 4 shows the D-face and S-face for three different
expressions of one person in our database. Both of these
are of the same dimension as the normalized faces, that is,
128 × 128. However, the two sides of a D-face are exactly
opposite of each other (same magnitude but different signs),
whereas an S-face is the same on both sides (same magnitude
and sign). Thus, half of each of these face contains all the
relevant information, and it suffices to consider the half-faces
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alone. We construct three sets of features from each half-face,
as follows:

� The values of each D and S-face are averaged over the
128 rows for each column in the half-face—this yields the
X-axis features, known as Dhx and Shx respectively. Each
element of this feature vector corresponds to a horizontal
line in the face going from the side of the face to the
middle.

� The values of each D and S-face are averaged over the
64 columns for each row in the half-face—this yields the
Y-axis features, known as Dhy and Shy respectively. Each
element of this feature vector corresponds to a vertical line
on the face, from the top of the forehead to the bottom of
the chin.

� Principal Component Analysis (PCA) is performed on
the features of the half faces. Based on the eigenval-
ues, we keep the top 60 principal components for the
D-face and the top 100 for the S-face since they ex-
plain 99% of the variation in their respective datasets.
These feature sets are referred to as D and S respec-
tively. Note that, PCA is used here as a dimensional-
ity reduction technique only to determine the most dis-
criminating combination of features from the feature
sets as in standard statistical applications (Anderson,
1984).

Since each half D and S-face originally had 128 × 64 =
8192 features (same as the dimension of a half-face of a
normalized image), the new feature sets are able to reduce the
dimension of the problem, and at the same time summarize
much of the essential information contained in the original
8192 pixel values.

4 Classification schemes

A commonly used human identification algorithm in com-
puter vision is Fisher Faces (Belhumeur et al., 1997) which
we will refer to as FF subsequently. This method uses a
combination of Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) to compute recognition
features in a lower-dimensional subspace than the original
feature space. Note that FF are not based on any kind of
facial asymmetry information. For our problem, the top 25
Fisher Face features are computed from the normalized face
images, and used as a benchmark for assessing the results
based on our asymmetry measures. We chose 25 components
since this proved to be optimal with respect to the trade-off
between the number of components used and classification
performance (that is, adding more components did not im-
prove classification results significantly), as determined by
cross-validation.

Table 1 Different feature sets and their dimensions

Features Dhx Dhy Shx Shy D S FF

Number 64 128 64 128 60 100 25

For easy reference, we summarize the different feature
sets used for this work, and the number of features contained
in each in Table 1.

We are interested in three different identification tasks,
namely,

1. Human identification in the presence of expression vari-
ations.

2. Classification of males/females.
3. Classification of the different expressions.

For human identification, we consider five experimental
setups which offer different ways of representing training
and test sets with widely varying expressions:

(i) Train on all frames from two emotions from all subjects
and test on all frames from the third, that is, (a) train on
anger and disgust and test on joy, (b) train on joy and
disgust and test on anger, and (c) train on joy and anger
and test on disgust.

(ii) Train on peak frames from the three emotions from all
subjects and test on neutral ones, and vice versa.

These experimental setups help us assess the classification
performance of our features on face images showing ex-
pressions that were not previously encountered. In real-life
applications, a system will almost surely have to identify
people with expressions it has not seen before, hence it is
important to test the performance of the asymmetry fea-
tures under such conditions. Here, all subjects are repre-
sented in the training and the testing samples. The goal is
to correctly identify the subjects from their data in the test
sample.

Identifying whether a person is a male or a female is
important as that could potentially create smaller search
domains leading to more efficient human identification. In
other words, one could develop a male-specific classifier and
female-specific classifier with the results from a sex classifi-
cation routine which could then be used to identify a person
of known sex—a task that we do not investigate in this paper
but wish to pursue in the future. Our database has 15 males
and 40 females. For sex classification, training is done on
all 9 frames for a randomly selected subset of 8 males and 20
females and testing on all frames of the remaining 7 males
and 20 females. Here, the goal is to classify each subject in
the testing set as a man or a woman. The random selection of
subjects for the training set is carried out 20 times (in order
to remove selection bias), and final misclassification errors
are obtained by averaging over the 20 iterations.
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A person’s expression is helpful in identifying his or her
mood and mental state, and is often an individualized char-
acteristic. People express emotions differently, which echoes
human behavior and often helps in identification of a particu-
lar individual. Besides, facial expression recognition plays an
important role in human computer interaction. For expres-
sion classification, training is done on the peak frames from
the 3 emotions for a randomly selected subset of 30 people
and testing on the peak frames from the 3 emotions of the
remaining 25 people. Similar repetitions as in the sex classi-
fication case are performed for selecting the training sets and
final errors computed in the same fashion. The middle frames
are discarded for this purpose since some middle frames are
closer to neutral expressions while others are closer to peak
expressions, and this could potentially introduce bias in the
classification results. Here, the goal is to classify the images
in the test set according to the emotion being expressed.

The classifier that we use for all these identification tasks
is Linear Discriminant Analysis (LDA; Anderson, 1984),
along with a feature selection method known as Augmented
Variance Ratio (AVR, Liu et al., 2002). Pattern recognition
problems generally have a very large number of features—
hundreds or even thousands are not unusual. The reason for
this is that features are often generated automatically, without
any knowledge of which ones are most likely to be meaning-
ful or relevant. In our data, for instance, features have been
generated from each pixel in a normalized face image. One
task is then to discover which features are useful for classi-
fication. Moreover, massive datasets (images, microarrays,
etc.) will often contain dependent features; the amount of in-
dependent information that is pertinent to the identification
task is much less than that implied by the large number of
features. Such features are completely redundant and they
not only increase the complexity of the problem, but can
also cause performance to deteriorate. For our face images,
features correspond to different face parts which are spa-
tially correlated and hence contain very small quantities of
independent discriminating information. Ideally, those fea-
tures which contribute to inter-class differences should have
large variation between subjects and small variation within
the same subject. AVR is a simple feature selection method
and easy to compute. It compares within class and between
class variances; at the same time it penalizes features whose
class means are too close to one another. For a feature F
with values SF in a data set with C total classes, AVR is
calculated as

AVR(SF ) = Var(SF )
1
C

∑C
k=1

Vark (SF )
min j �=k (|meank (SF )−mean j (SF )|)

,

where meani (SF ) is the mean of the subset of values from
feature F belonging to class i and provided |meank(SF ) −
mean j (SF )| �= 0, ∀ j, k. When dealing with human identi-
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Fig. 5 Boxplots for the 3 emotions for 2 people—Dhx . 1 and 2 respec-
tively denote the two people

fication, the individual subjects will form the classes, for
expression classification the 3 expressions are the classes
and finally, male and female form the 2 classes for the sex
classification task.

Features are sorted in decreasing order of their AVR val-
ues and the one with the maximum value is first chosen.
New features are then added according to a forward search
algorithm if they improve the classification rate. A feature
that worsens the classification or does not change it, given
the ones that are already selected, is not included.

4.1 Feature analysis

In the feature analysis, we consider only the X-axis and Y-
axis feature sets, and not the principal components. This is
due to the fact that the latter are combinations of features and
do not lend themselves to a natural physical interpretation.

We start with exploratory analysis in order to determine
whether the asymmetry features based on the D and S-faces
might be capable of providing efficient tools for the three
identification goals stated above. Figures 5 and 6 show the
boxplots of the feature values of all three emotions for two
individuals in the database for datasets Dhx and Shy respec-
tively. These are constructed by averaging the values of each
feature in a feature set over all the frames for each emotion
separately. This pooling of all the features over frames is
done only for the purpose of exploratory analysis and not
for the subsequent classification routines. The plots indicate
that there may exist some differences in the magnitude of
asymmetry across people for the three expressions which we
wish to exploit in identification tasks. The plots for the Dhy

and Shx are very similar and hence have not been included
due to space considerations.

Figure 7 shows boxplots of the mean feature values for all
the four feature sets, for men and women separately (mean
over all frames from the people of the same sex). As can
be seen in the figure, there exists some difference between
the males and the females for all the four feature sets, males
possessing an overall higher degree of facial asymmetry than
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Fig. 6 Boxplots for the three emotions for two subjects—asymmetry
measure Shy . 1 and 2 denote the two individuals
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Fig. 7 Boxplots for the four asymmetry feature sets—Dhx , Shx , Dhy

and Shy . M and F denote males and females, respectively
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Fig. 8 Boxplots for the two asymmetry feature sets—Dhy and Shy . J,
A and D denote joy, anger and disgust, respectively

females (and, correspondingly low symmetry). This finding
is consistent with results reported in Liu and Palmer (2003)
on differences in the asymmetry measures between the sexes
for three-dimensional human face images.

Figure 8 shows expression-wise boxplots of the mean fea-
ture values for the feature sets Dhy and Shy (mean over all
the frames showing the same emotion for all the people).
Although the differences in facial asymmetry across the ex-
pressions do not seem to be as sharp as for the other two
cases, it still seems worthwhile to investigate the role of
asymmetry in expression classification.

Inspection of the boxplots in Figs. 7 and 8 reveals the
presence of outliers in some of the feature sets (S-faces and
Dhx for sex). Almost all outliers are in the extreme right

Fig. 9 Sample images of people having artificial asymmetry artifacts
in the forehead region

tail, representing larger than usual values of the respective
features. Exploring the situation more carefully, we discover
that the outlying S-face features correspond to the cheek
region and such high symmetry occurs for most of the indi-
viduals in the dataset. In other words, almost all people have
high symmetry around the cheeks, and indeed the symmetry
in the cheeks is much higher than that in the other parts of
the face. For Dhx , on the other hand, the outlying features
were found to correspond to the forehead region which of-
ten possessed artificial asymmetry artifacts, some potential
sources being edges arising from the cropping process and
falling hair (see Fig. 9 for some sample images). Although
edges appear in the images of many people (38 out of the
55), significant falling hair was found on only 6 people (sub-
jects 10,15,16,23,28,33). Moreover, the D-face outliers were
much smaller in magnitude than the S-face ones.

In the next step of the feature analysis we compute the
AVR values of each of the feature sets for the three clas-
sification problems. The AVR values enable us to identify
the particular parts of the face that help in the recognition
process. Recall that the higher the AVR value of a feature
(shown by the peak in the AVR plots), the more discriminat-
ing power it possesses and the more crucial it is for identi-
fication. Figure 10(a) shows AVR values of the four asym-
metry feature sets for human identification. Features around
the nose bridge and the forehead region play the most promi-
nent role in human identification under expression variations.
The most distinguishing feature from each set is indicated in
Fig. 10(b).

The facial features that differ markedly in the amount
of asymmetry between males and females are around the
mouth, chin and above the eyes. The AVR plots for discrim-
inating the two sexes are in Fig. 11(a); the features with
the highest AVR values are marked in Fig. 11(b). Finally,
Fig. 12(a) shows the AVR values of the features for expres-
sion classification, those with the highest AVR values being
indicated in Fig. 12(b). A quick comparison with Fig. 10(b)
reveals that unlike the case of human identification, which
is greatly influenced by the bridge of the nose, the region
around the mouth is discriminating across expressions. This
indicates that asymmetry features corresponding to differ-
ent facial parts contribute to these two apparently conflicting
classification goals, which can henceforth be achieved with
the help of the same set of features. This initial data analysis
thus shows quite convincingly that facial asymmetry-based
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Fig. 10 (a) AVR values for the features from the four asymmetry feature sets for human identification. (b) The white line is drawn across the
feature with the highest AVR value in each set, that is, the feature with the greatest discriminatory power

features have a potential for telling humans, expressions and
the sexes apart.

5 Results

Motivated by the results of the exploratory analysis, we pro-
ceed to perform the three classification tasks using LDA as
the classifier and AVR-based forward search as the feature
selection criterion.

5.1 Human identification

The human classification results are shown in Table 2. Be-
side D, S and Dhy , none of the asymmetry feature sets pro-
duce satisfactory results. In particular, the X-axis features
appear to be quite ineffective which demonstrates the fact
that averaging over the rows of the face probably lost crucial

asymmetry information by way of smoothing, whereas aver-
aging over columns did not prove to be as harmful especially
for D-face. The Fisher faces classifier, on the other hand,
yields fair results which clearly shows room for improving
upon our results, an issue that we investigate in the next sec-
tion. The goal of any recognition technique is to achieve as
near-perfect results as possible, and the next section presents
ways of doing this by using features with greater discrim-
inative power than either the asymmetry features or Fisher
Faces alone. Among the five experiments, the neutral and
peak frames are easiest to classify, yielding the lowest error
rates. Of the emotions, the joy frames are hardest to classify.
A possible explanation for this finding is that, when test-
ing on joy, the training is done on the frames for anger and
disgust, which have similar facial expressions (e.g. down-
turned mouth) and are different from joy (up-turned mouth).
This is consistent with expectations since despite expression-
invariance, the classification performance should deteriorate

Table 2 Misclassification error
rates for human classification,
using the baseline method of
LDA with AVR, computed as
M
T × 100, where M and T
respectively are the number of
cases misclassified and the total
number of cases in each test set

Feature set/Test set Joy (%) Anger (%) Disgust (%) Neutral (%) Peak (%)

Dhy 29.09 18.18 26.67 12.73 17.58
Shy 42.42 36.97 43.03 25.45 29.70
Dhx 58.18 48.48 57.58 42.42 49.70
Shx 65.45 60.00 61.82 48.48 53.94
D 18.18 12.72 10.30 3.03 3.03
S 21.82 24.24 18.79 4.85 10.91

FF 12.12 1.82 4.24 3.64 0.61
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Fig. 11 (a) AVR values for the different features for distinguishing men from women. (b) The lines are drawn at the facial features with the highest
AVR values, that is, the features with the greatest ability to distinguish men from women
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Fig. 12 (a) AVR values for the different features for expression identification. (b) The lines are drawn at the facial features with the highest AVR
values, that is, the features with the greatest ability to discriminate among the three expressions
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Table 3 Misclassification error rates for sex classification (classwise
and average)

Feature Std.
set Male (%) Female (%) Average (%) error (%)

Dhy 35.74 20.56 24.70 6.76
Shy 33.93 10.23 16.69 10.56
Dhx 46.80 34.60 37.93 5.43
Shx 43.36 22.57 28.24 9.26
D 30.87 17.79 21.36 5.82
S 28.04 9.76 14.75 8.14

FF 23.48 6.53 11.15 7.55

as the tested expression deviates more and more from the
trained expression, and the margin of this deterioration helps
detect the robustness of the features under consideration.

5.2 Classification of sexes

Table 3 shows the sex classification results—classwise for
males and females separately (columns 2–3), the average
over the two classes (column 4) and the associated stan-
dard deviation over the two classes (column 5). Recall that
the dataset is not balanced, containing 40 females and 15
males; the averages and standard deviations are computed
in a weighted manner using the number of observations in
each class as the corresponding weights (40 for class “fe-
male” and 15 for class “male”). The results show that, unlike
human identification, S-face features are effective for distin-
guishing the sexes, although FF continues to outperform all
other features. After FF, the lowest error rates are yielded by
Shy and S. Moreover, we also see that a female person has
a lower chance of being misclassified as a male on an aver-
age, than that of a male being misclassified as a female. This
may simply be an artifact of the composition of the sample,
which would make the training more efficient for females
than for males (since the classifier gets to see more examples
of women). This is further corroborated by the fact that our
exploratory analysis showed that male faces are more asym-
metric and hence should be more recognizable and easier
to classify than females. Moreover, Liu and Palmer (2003)
observed that males are easier to classify than females on
a dataset that was dominated by males. To explore this is-
sue further, we generated balanced datasets in the following
manner. We randomly selected a sample of 15 females out of
the total 40, and performed classification of these along with
the original sample of 15 males. The training was done with 8
males and 8 females and testing on the remaining 7 males and
7 females. In order to remove selection bias, the generation
of 15 females was repeated 20 times and the final misclas-
sification errors were obtained by averaging over these 20
iterations (Table 4). These results indicate that males have
lower error rates than females as expected. Furthermore, the

Table 4 Misclassification error rates for sex classification using a
“balanced” dataset with 15 males and 15 females (classwise and aver-
age)

Feature Std.
set Male (%) Female (%) Average (%) error (%)

Dhy 13.56 15.51 14.53 2.46
Shy 12.36 14.79 13.58 3.89
Dhx 30.56 32.90 31.73 5.87
Shx 24.65 25.57 25.11 6.61
D 17.41 19.53 18.47 3.78
S 9.57 10.11 9.84 2.65

FF 4.68 7.89 6.28 3.65

overall sex classification results improved significantly as a
result of removing the bias created by the unbalanced sex
ratio in our dataset. The standard error figures over the 20
repetitions measure the reliability of these error rates, and
show that they do not fluctuate much with varying training
samples.

5.3 Expression classification

Table 5 shows the expression classification results using the
asymmetry-based features. We show the misclassification
error rates emotion-wise (columns 2–4), the average error
rate across all the three classes (column 5) and the associ-
ated standard deviations over the three classes (column 6).
Unlike sex classification, here the standard deviation is com-
puted in an unweighted manner as all the three expressions
had the same number of observations. A comparison with the
previous two problems shows that, unlike human identifica-
tion and like sex classification, the S-face features are more
efficient than the D-face features for distinguishing among
the three emotions. Most of the other results, although signif-
icantly better than random guessing, are not that impressive,
and FF again outperforms the rest. One thing worth noting
here is that, for all feature sets except Dhy , the class “joy” has
a lower error rate than the classes “anger” and “disgust”. This
may again be attributed to the fact that anger and disgust are
expressed in a similar fashion (down-turned mouth, frown)
and hence are more likely to be confused with each other
than either is with joy, which has a contrasting expression
style (up-turned mouth).

6 Improving human identification performance

The initial classification results outlined in the previous sec-
tion are not very satisfactory in general, given the goal of
attaining perfect to near perfect classification. There even
seems to be room for improvement for the FF features, and
in this section we explore means of improving upon them.
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Table 5 Misclassification error rates for expression classification
(classwise and average)

Feature Joy Anger Disgust Average Std.
set (%) (%) (%) (%) error (%)

Dhy 44.60 37.00 37.20 39.60 10.83
Shy 14.00 20.80 21.20 18.67 7.25
Dhx 37.20 57.60 48.20 47.67 13.01
Shx 39.20 51.80 41.40 44.13 11.62
D 25.80 42.80 41.60 36.73 13.32
S 15.60 17.80 20.00 17.80 7.93

FF 6.80 19.40 17.60 14.60 9.89

We focus on the human identification problem for now since
this is the most important goal in practice, but the methods
we describe can also be applied to any other classification
problem. We consider two different approaches:

� Combining two or more feature sets together.
� Using statistical resampling techniques, namely bagging

(Breiman, 1996) and RSM (Ho, 1998).

6.1 Combining feature sets

Table 6 shows misclassification error rates from combining
some of the asymmetry feature sets together. The combi-
nation was performed simply by concatenating the features
in the individual feature sets one after another in the order
shown in the table. We indeed observe that adding more
features improves the classification, as additional features
supply more and different information, thus helping in iden-
tification. In fact, these results eventually get better than those
obtained using FF alone. In some cases, even just combining
two feature sets gives results that are at par with those from
using FF (D+S, for instance). For several combinations, per-
fect classification is achieved for testing on the neutral and
peak frames; if FFs are included along with the other feature
sets, perfect classification is achieved for all test sets except

for joy. These results vividly demonstrate how the error rates
gradually drop when more features are combined, as can also
be seen in Fig. 13. It is clear that asymmetry features can
improve upon other classifiers by supplying complementary
information that possesses greater discriminative power. In
addition, simply combining asymmetry features results in a
marked increase in performance in recognition tasks.

6.2 Resampling methods

Statistical resampling methods have been shown to be an
effective and straightforward way of improving the perfor-
mance of classifiers. Our goal in using resampling methods,
however, goes beyond this. Aside from improving the clas-
sification results, we are also interested in the computational
gain that can perhaps be achieved by obtaining high rates
of correct classification while using a smaller number of
features. To this end, we consider two different resampling
methods—bagging and RSM—which are applied to the in-
dividual feature sets, and to some combinations.

6.2.1 Bagging

Bagging was introduced as a method for increasing the ac-
curacy of unstable predictors, that is, predictors for which
the results are significantly affected by small perturbations
in the training set (Breiman, 1996). On the other hand, it is
less effective if the underlying predictor is sufficiently sta-
ble, and can even do worse in such a scenario. According
to Skurichina and Duin (1998, 2001), linear classifiers built
on large training sets are stable. Hence, when the training
sets are large, bagging will not improve results. Bagging is
useless for very small training samples as well, since small
training sets often represent the actual distribution poorly
and the resultant classifiers are likely to be equally poor.
However, when the training sample size is “critical” (the
number of training samples is comparable to the number of
features), linear classifiers can be quite unstable. So bag-

Table 6 Misclassification error rates from combinations of the asymmetry feature sets. (The FF results have
been included for comparison purposes)

Feature set/Test set Joy (%) Anger (%) Disgust (%) Neutral (%) Peak (%)

Dhy + Shy 19.39 12.12 22.42 6.67 9.70
D + S 10.30 4.24 4.24 0.61 1.21
D + S + Shy 8.48 1.82 4.24 0.61 1.21
D + S + Dhx + Shx 6.67 1.21 3.64 0.61 0.00
Dhy + Shy + Dhx + Shx 17.58 10.91 18.18 5.45 7.27
D+S + Dhy + Shy + Dhx 6.67 1.21 3.64 0.61 0.00
D + S + Dhy + Dhx + Shx 7.88 1.21 3.64 0.00 0.00
D + S + Dhy + Shy + Dhx + Shx 6.67 1.21 3.03 0.00 0.00
FF 12.12 1.82 4.24 3.64 0.61
FF + D + S + Dhy + Shy + Dhx + Shx 2.42 0.00 0.00% 0.00 0.00
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Fig. 13 Misclassification error
rates for the different orders of
combination of the asymmetry
feature sets alone (Dhy , Shy ,
Dhx ,S hx , D,S). The labels on
the x-axis denote the number of
feature sets in the respective
combinations that produced the
lowest error rates. For example,
the lowest error rate for “joy”,
using only a single feature set, is
18.18%, attained with the D
features; the lowest error rate for
“joy” using two features sets is
10.3% (D+S); the lowest error
rate for “joy” using three feature
sets is 8.48% (D + S + Shy),
and so on

ging linear classifiers such as LDA might be beneficial for
high-dimensional data in general.

The methodology of bagging consists of generating repli-
cations with replacement from the given training set and de-
veloping a classifier based on each of the samples by treating
them as separate training sets. The final results are obtained
by applying simple majority voting to the classification re-
sults from all samples. The number of replications is subjec-
tive and as Breiman points out, a greater number of classes
usually calls for more resamples. We tried different num-
bers of replications from 10 to 100, the usual convention for
statistical applications being 50. Since our problem is high
dimensional, it seemed reasonable to believe that we will
require a larger number of replications, and yet we decided
to study this systematically. We report here only detailed
results for Dhy due to space constraints but analogous phe-
nomena are observed for all the other feature sets as well.
These appear in Table 7 and a graphical version in Fig. 14.
In general, different numbers of replications were found to
be optimal (yielding the lowest error rates) for the different
testing subsets even for the same feature set, ranging from
60–100. We did not observe significant improvement in the

bagging results for replication sizes bigger than 100, while
at the same time they increased the consumption of compu-
tational resources considerably (hence those results are not
reported here). The standard errors associated with the error
rates are also low and do not exhibit any noticeable pattern.
The entire resampling procedure is repeated 20 times and
final errors obtained by averaging over these 20 iterations.

The final bagging errors for all the feature sets and some
of their combinations are summarized in Table 8, which
shows an appreciable improvement in the classification per-
formance. We did not apply bagging on test sets for which
the baseline results were perfect (0% error rate), since no
further improvement is possible.

6.2.2 Random Subspace Method (RSM)

The Random Subspace Method (RSM), introduced by Ho
(1998) samples from the feature space. If there are originally
p features, one randomly selects p∗ < p and a classifier
is built on the p∗-dimensional space (subspace of the origi-
nal p-dimensional space) using all the training samples. This
process is repeated and a majority voting technique yields the

Table 7 Bagging
misclassification rates and
corresponding standard
deviations over 20 repetitions
(%) for Dhy . The figures in bold
represent the optimal results
among all the replication sizes

B Test on joy Test on anger Test on disgust Test on neutral Test on peak
Original 29.09% 18.18% 26.67% 12.73% 17.58%

10 20.33 ± 0.8 14.30 ± 0.6 22.12 ± 0.6 6.39 ± 0.2 11.64 ± 0.3
20 17.64 ± 0.5 10.73 ± 0.3 20.36 ± 0.4 4.39 ± 0.2 8.76 ± 0.2
30 17.06 ± 0.3 10.15 ± 0.3 20.09 ± 0.3 3.91 ± 0.1 8.58 ± 0.2
40 16.97 ± 0.3 9.15 ± 0.2 20.64 ± 0.3 3.15 ± 0.1 8.48 ± 0.2
50 16.61 ± 0.3 10.78 ± 0.1 20.61 ± 0.5 3.39 ± 0.1 7.88 ± 0.1
60 16.76 ± 0.3 8.88 ± 0.1 19.61 ± 0.2 3.15 ± 0.1 7.94 ± 0.1
70 16.45 ± 0.1 10.75 ± 0.2 20.85 ± 0.5 3.36 ± 0.1 7.61 ± 0.6
100 16.30 ± 0.6 10.76 ± 0.1 20.03 ± 0.2 2.91 ± 0.2 7.97 ± 0.2
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Table 8 Misclassification error rates and standard deviations (%) from applying bagging to the asymmetry feature sets. The standard errors have
been rounded to the nearest one decimal place

Features/Test set Joy Anger Disgust Neutral Peak

Dhy 16.30 ± 0.6 8.88 ± 0.1 19.61 ± 0.2 2.91 ± 0.2 7.61 ± 0.6
Shy 23.45 ± 1.1 24.18 ± 1.0 24.64 ± 0.4 10.91 ± 0.2 14.42 ± 0.7
Dhx 52.06 ± 1.8 41.18 ± 1.8 49.39 ± 1.8 31.91 ± 1.8 33.03 ± 1.8
Shx 55.15 ± 1.3 44.94 ± 1.3 49.01 ± 1.4 32.85 ± 1.1 39.64 ± 0.9
D 11.21 ± 0.7 5.15 ± 0.7 5.58 ± 0.3 0.79 ± 0.1 1.58 ± 0.2
S 13.33 ± 0.3 11.73 ± 1.0 10.27 ± 0.4 2.30 ± 0.1 4.58 ± 0.3
FF + D 3.18 ± 0.5 0.64 ± 0.0 0.61 ± 0.1 – –
Dhy + Shy + Dhx + Shx 8.36 ± 0.5 3.00 ± 0.3 8.51 ± 0.3 1.21 ± 0.1 0.54 ± 0.1
D + S + Dhy + Shy + Dhx + Shx 5.06 ± 1.1 1.12 ± 0.2 0.76 ± 0.1 – –
FF + D + S + Dhy + Shy + Dhx + Shx 0.24 ± 0.2 – – – –

FF (no bagging) 12.12% 1.82% 4.24% 3.64% 0.61%
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Fig. 14 The bagging
misclassification errors for the
five testing subsets as compared
to the original one for the Dhy

dataset. The dotted line
represents the original error in
each case

final classifier. The subspace dimensionality is thus smaller
than that of the original feature space, but the number of train-
ing objects remains the same. RSM is known to perform well
when there is some redundancy present in the feature space,
otherwise, it is not guaranteed to give better than baseline
results (Skurichina and Duin, 2001). This is because redun-
dancy in the feature space is likely to deteriorate performance
and RSM helps remove this redundancy by way of sampling
repeatedly. Thus RSM performs poorly when all features are
informative and there is no significant redundancy.

Table 9 shows the error rates obtained as a result of ap-
plying RSM to the asymmetry features. In each case, p∗ is
50% of p, the total number of features available (a common

convention). As in bagging, we repeat the entire procedure
20 times and the final errors are obtained by averaging over
these 20 repetitions. Dhy , Shy , Dhx , Shx (and their combina-
tions) have considerable redundancy and we find that RSM
improves over the baseline LDA results, as expected. By way
of contrast, RSM often deteriorates in performance when
some feature extraction has been performed, a serious re-
striction on the applicability of this resampling method. The
D and S principal component feature sets are obtained by a
dimension-reduction technique and are orthogonal to each
other; they have no redundancy and it is therefore not ex-
pected that RSM would lead to better results in those cases.
Indeed, we found that there is either a deterioration or only a
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Table 9 Misclassification error
rates and standard errors (%)
from applying RSM to the
asymmetry feature sets using
only 50% of the features in each
feature set. The standard errors
have been rounded to the nearest
one decimal place

Joy Anger Disgust Neutral Peak

Dhy 19.94 ± 0.7 11.67 ± 0.7 23.09 ± 0.4 4.79 ± 0.3 11.58 ± 0.2
Shy 29.57 ± 1.0 28.54 ± 1.0 31.51 ± 0.9 15.51 ± 0.2 22.12 ± 0.9
Dhx 54.64 ± 1.2 46.97 ± 1.1 52.58 ± 1.6 35.61 ± 0.8 46.30 ± 1.3
Shx 63.18 ± 0.2 54.45 ± 0.3 55.42 ± 0.5 38.58 ± 0.2 39.64 ± 0.1
Dhy + Shy + Dhx + Shx 10.56 ± 1.3 5.15 ± 0.2 10.42 ± 0.8 1.21 ± 0.1 1.85 ± 0.1

FF (no bagging) 12.12% 1.82% 4.24% 3.64% 0.61%

marginal improvement (which might be due to chance) over
the original results for D and S (and also in the combinations
with them), hence we do not report these results here.

6.2.3 Comparison of resampling results

Both the resampling methods produce good results with
fewer feature sets, the prime motivation for applying them
in the first place. For example, applying bagging and RSM
to the combination of the four asymmetry feature sets, Dhy ,
Shy , Dhx , Shx , we are able to achieve considerably lower
error rates than the original FF for testing on three out of
the five subsets (joy, neutral, peak); these improvements are
highly statistically significant, with p-values close to zero.
Furthermore, when combining asymmetry features with FF,
we find that adding just the D-face principal components
produces very impressive results that are not (statistically)
significantly different from combining with all the six asym-
metry features. This is a definite improvement considering
that the feature sets are high-dimensional; the smaller the
number of features one needs to use the better. Moreover,
the standard errors of the misclassification rates for both the
resampling methods (computed over the 20 repetitions in
each case) are quite low, and this establishes the reliability
of these estimates.

We also note that RSM does not achieve improvement
over the original results as uniformly as bagging. Only for
the Shy feature set and the combination of the four asymmetry
face feature sets, do we observe statistically significant im-
provements for all the five testing subsets. Such significant
improvements for the other datasets are limited (p-values
close to 1). Moreover, we could not apply RSM to all of
our feature sets. The relative lack of flexibility of RSM,
compared to bagging, brings its efficacy in this particular
application into question.

7 Discussion

The baseline method of LDA yielded results for this 55-
class problem that were not entirely satisfactory, given our
high standard of perfect, or near perfect, classification, al-
though the initial exploratory analysis indicated that asym-

metry measures have the potential for recognizing people
under expression variations, as well as for expression and
sex classification tasks. The asymmetry features are simple
to compute, a fact that enhances their practical utility. On the
other hand, computation of these features requires high reso-
lution facial images with extrinsic sources of variation (pose
and lighting) carefully controlled, which may limit their use
in real-time surveillance applications.

We have also shown that classification performance of
these asymmetry measures can be improved by using two
very simple techniques—combinations of feature sets and
statistical resampling. Both these methods have proved suc-
cessful in producing good results that are as good as or
better than the Fisher Face features. The resampling meth-
ods not only improve upon the baseline LDA results, but
do so with a small number of feature sets. Both these as-
pects make the resampling methods quite attractive to users
from the standpoint of accuracy as well as efficiency. These
are extremely important issues given the sensitive nature
of most face recognition applications, where misclassifica-
tion can have a drastic impact and it is imperative to have
very accurate algorithms. Furthermore, the ease of their im-
plementation also makes real-time application a possibility.
The algorithms are quick to execute, and require very lit-
tle in terms of additional resources or time, thus increas-
ing their scope of application. Moreover, such good results
also bring out the true potential of the asymmetry fea-
tures in expression-invariant human recognition. Inspired
by these results, our immediate future direction is to ap-
ply these improvement methods to both expression and sex
classification.

It is also worth recalling here another well-known resam-
pling technique known as boosting (Freund and Schapire,
1997), which has been used successfully in a variety of pat-
tern recognition problems (Viola and Jones, 2001). Accord-
ing to Skurichina and Duin (2000), boosting does depend on
the instability of the classifier and is not beneficial for linear
classifiers such as LDA. Hence, we did not attempt to use it
for our experiments, since we wished to use the same base
classifier for all experiments in order to have a fair compar-
ison. One classifier for which boosting can be beneficial is
the Nearest Mean Classifier, which we plan to investigate in
the future.
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Note that we use the same subset of the Cohn-Kanade
database that was used by Liu et al. (2003) as our initial test-
bed, since our analyses were intended to provide a firmer
basis and evaluation for this earlier work, and hence use
their results for fair comparison. This data subset had 55 in-
dividuals and it would definitely be beneficial to apply our
methods to a larger database with more people; we wish
to pursue this more fully in the future. This would further
strengthen the robustness of our approach although even for
the smaller dataset, all our classification results (human, sex
and expression) were observed to be significantly better than
those obtained from mere random guessing in a statistical
sense. We were also able to achieve better results than Fisher
Faces when using feature combination and resampling tech-
niques.

At this point, a reader might wonder whether our re-
sults will also be valid for spontaneously-produced expres-
sions. The people in this study produced the emotions on
demand—that is, when asked they started with a neutral
expression which gradually evolved into a joyous or angry
or disgusted expression. However, this does not happen in
practice; surveillance cameras usually capture a face with
a spontaneous expression. Indeed, according to Hager and
Ekman (1985), posed facial expressions are more asymmet-
ric than spontaneous ones, and so our results might be pro-
viding a biased estimate of the extent to which facial asym-
metry can truly aid in face recognition. It would thus be
useful to investigate how classification results change when
using genuine expressions.

At the end, we wish to mention briefly the scope of gen-
eralizing our results. We are interested in the asymmetry
caused by the actual facial structure, which depends on
growth-related factors and hence it may be interesting to
study whether it is more difficult to identify younger people
or older people based on their facial asymmetry. Similarly, it
may be useful to determine whether people of certain ethnic
origins are easier to identify based on facial asymmetry than
others. Although we expect our techniques to yield fairly
good results on databases with images of people with di-
versified demographics, we intend to explore this issue in
greater depth by using a larger database.

Another direction of research that we intend to pursue in
the future is exploring the efficacy of the asymmetry features
in verification. So far we have been concerned with training
and testing the face images of the same group of individuals
but an interesting scenario will be to test if our algorithms
are able to detect a test face for which corresponding training
samples are not available. This will have an important appli-
cation in identifying the people that are on the do-not-fly list
at airports as a measure of security check. This is expected to
boost the utility of these measures in practice considerably.
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