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Abstract. We introduce a novel framework for automatic detection of
repeated patterns in real images. The novelty of our work is to formulate
the extraction of an underlying deformed lattice as a spatial, multi-target
tracking problem using a new and efficient Mean-Shift Belief Propagation
(MSBP) method. Compared to existing work, our approach has multiple
advantages, including: 1) incorporating higher order constraints early-on
to propose highly plausible lattice points; 2) growing a lattice in multiple
directions simultaneously instead of one at a time sequentially; and 3)
achieving more efficient and more accurate performance than state-of-
the-art algorithms. These advantages are demonstrated by quantitative
experimental results on a diverse set of real world photos.

1 Introduction

Repeated patterns, presented as imagery or otherwise, provide fundamental cues
for both human and machine perception [1,2]. At one extreme, mathematicians
have generalized these concepts into perfectly periodic patterns generated by a
single fundamental region (lattice unit) under a finite number of crystallographic
groups [3,4]. In the computer vision and computer graphics communities, on the
other hand, these patterns are usually regarded as textures with a random nature,
composed of deformed versions of one or more basic texture elements [5,6,7,8].

Ample evidence can be found that repeated textures are not merely random
collections of texture elements (Figures 4 and 5). Instead, these textures often ex-
hibit geometric, topological and statistical regularities [7], especially those texture
patterns that originate from human designs or from nature and biology. Using
wallpaper texture patterns [9] as an example, all texture elements are related to
each other by a pair of linearly independent vectors t1, t2, or composition of them,
that are the shortest basis vectors [3] forming the boundary of the respective lat-
tice units. We fully acknowledge the importance of a robust lattice detection tool
for automatic discovery and quantification of texture regularity in real images.

Instead of treating texture elements as isolated individuals, the underlying
topological lattice structure of a near-regular texture (NRT) was first introduced
by Liu et al for texture analysis and manipulation [10,11,7]. Subsequently, Hays
et al [12] developed the first deformed lattice detection algorithm for real images
without pre-segmentation; and Lin and Liu [13,14] developed the first deformed
lattice tracking algorithm for dynamic NRTs.
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The idea behind [12] is simply to look for the t1, t2 neighbors of a randomly se-
lected interest point in the image. If a sufficient number of such points look like
their respective t1, t2 neighbors (lower order similarity) and also share their t1, t2
neighbors’ directions/orientations (higher order correspondences) with other in-
terest points in the image, those points and their neighboring relations are con-
firmed to be part of the final lattice. With the found correspondence, the slightly
deformed lattice can be straightened out and a new round of lattice discovery be-
gins, so the extracted lattice grows bigger and bigger. Formulating the lattice de-
tection problem as a higher order correspondence problem adds computational
robustness against geometric distortions and photometric artifacts in real images.
However, although Hays et al [12] produces impressive results, there are several
serious drawbacks preventing its wider applicability. First, local correlation-based
peak finding is used as a last resort for finding points of interest, which is both time
consuming and sensitive to noise, occlusion and transform discontinuity in the im-
age (Figures 4 and 5). Second, the method is based on finding the eigenvalues of
a n2 × n2 sparse matrix (n is the number of potential texture elements), which
is cumbersome computationally. Third, the algorithm only examines one of the
t1 and t2 vectors at a time, and is thus less robust against misleading repetitions
and prone to wasting time on interest points that do not lead to legitimate t1, t2
neighbors. Our proposed method overcomes these weaknesses.

Our work is partially inspired by Lin and Liu [13,14], who treat lattice detec-
tion as a spatial tracking problem. Different from [13,14], we do not require an
initial texton to be given (by the user) nor do we use affine template matching
for the spiral, outward growth of the deformed lattice. Instead, we propose to
formulate the detection of the underlying deformed lattice in an unsegmented
image as a spatial, multi-target tracking problem, using a recently published,
fast, Mean-shift Belief Propagation (MSBP) method [15]. The MSBP algorithm
only examines the values of the belief surface within its local kernel window,
thus there is no need to generate the entire belief surface, yielding great com-
putational savings over non-parametric belief propagation and discrete belief
propagation [15]. Inferencing on a Markov Random Field (MRF) for this type of
texture (NRTs) is a natural and effective choice given the topological degree-4
graph structure of the underlying lattices of deformed wallpaper patterns [12,14].
In addition, there is a perfect conceptual match between the iterative nature of
seeking the underlying lattice of a repeated pattern in an image and performing
mean-shift on the implicit belief surface (marginal density) generated by the
belief propagation algorithm on a graphical model.

Compared with [12], our proposed approach offers significant improvements
in accuracy, robustness and efficiency for automatic lattice detection by: 1. in-
corporating higher order constraints early-on to propose highly plausible lattice
points; 2. growing the lattice along multiple directions simultaneously instead of
one at a time; 3. achieving a deterministic algorithm linearly dependent on the
size of the lattice structure, instead of quadratic or higher order on the number
of texels found, as in [12]. Quantified experimental results on an extensive set of
diverse real images demonstrate these advantages (Figures 4 and 5).
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2 Lattice Fitting Via Mean-Shift Belief Propagation

The main idea underlying lattice finding using belief propagation is that iden-
tifying the location of texture elements in a repeated pattern is made easier
and more robust if multiple elements are searched for jointly, rather than one
at a time. This is so because the location of each element is constrained by its
neighboring elements, such that finding some of them provides the knowledge
constraining where the others may be. In an extreme case, if you know where
each of the four neighbors of a texture element is, you have a good idea about
where the central texture element should be, even if it is occluded or otherwise
hard to find. The key to leveraging this insight is to encode the topological struc-
ture of texture elements explicitly so that it can be used effectively to perform
inference over the joint space of spatial constraints.

AMarkovRandomField (MRF) specifies a factorization of the joint distribution
of a set X of random variables. An MRF can be represented as an undirected graph
G = (N,E), where each node in N represents a random variable in set X and each
edge in E represents a statistical dependency between random variables in X. In
the present context, the value of a random variable is the location of the center of a
texture element, and the spatial dependency between variables represents how one
element’s position constrains the positions of other elements in the pattern.

Another piece of information to be represented for each texture element is the
appearance similarity of the texture elements at given image locations. Since the
lattice indicates a repeated pattern, the appearance of each of the texture ele-
ments can be described by a single reference appearance model. Determining the
location of an element thus requires combining these two sources of information:
the compatibility of the texture elements at various image locations with what
we think a texture element should look like, and the compatibility of an element
location with the spatial constraints provided by other elements.

Determining the location of one particular element given estimated positions
of all other elements is infeasible if it requires brute force evaluation of the
marginal distribution of that single random variable’s value, since that will lead
to O(n × nk−1) computation time where k is the number of nodes in the graph
and n is the size of the hidden variable space (for simplicity we can think of
it as 2D location in the current example). Thus determining where each of the
elements is in the pattern requires O(knk) computation time.

Fortunately, the joint probability over the pattern state x and image measure-
ment z in an MRF can be factored as

p(x1, ..., xN , z1, ..., zN) =
∏

(i,j)

ψ(xi, xj)
∏

s

φ(xs, zs) (1)

where ψ and φ are functions specifying pairwise compatibility (spatial constraints
between elements) and joint compatibility (appearance similarity of elements at
given image locations), respectively. The belief propagation algorithm takes ad-
vantage of this factorization to perform inference on the graph efficiently. Cost
of computation for estimating the state of all texture elements is reduced from
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O(knk) to O(kn2). However, if the hidden variable state space is large, BP can
still be very expensive. BP also is not feasible for hidden variable spaces with con-
tinuous values.

We have developed an efficient and effective inference method called Mean
Shift Belief Propagation (MSBP) [15] that works iteratively with local samples
and weights. Since mean-shift is equivalent to finding a local mode within a
Parzen window estimate of a density function, we can use mean-shift as a non-
parametric mode-seeking mechanism operating on weighted samples generated
within the belief propagation framework. Geometrically, the MSBP process can
be visualized as performing mean-shift on the implicit belief surface (marginal
density) generated by the belief propagation algorithm. Since MSBP only exam-
ines the values of the belief surface within its local kernel window, there is no
need to generate the entire belief surface, yielding computational savings over
non-parametric belief propagation and discrete belief propagation.

3 Our Approach

Our approach for deformed lattice detection is composed of three phases (Fig-
ure 1). Phase I has two steps: interest point generation and lattice-unit proposal.
Phase II is lattice inference via spatial tracking using MSBP, followed by veri-
fication of the found lattice. Phase III is regularized thin-plate spline warping,
where the deformed lattice is rectified into a regular lattice. Phase III is a transi-
tion phase, from which a new round of lattice inference starts again (Figure 1).

Fig. 1. Flowchart of our algorithm. There are three phases: initialization, spatial track-
ing and incremental warping (transition phase).

3.1 Phase I: Initialization

Interest point extraction. Our approach starts by extracting a set of inter-
est points in the image. Any interest point detector can be used in this stage.
The goal is to extract enough feature points to expose the repeated image sub-
structures reliably without an overwhelming number of false positives for the
subsequent lattice finder. For this initial implementation, we use KLT corner
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Fig. 2. Our proposed algorithm proceeds from (a) to (e): (a) is input, (b) is the output
of phase I, (c) and (d) are results from phase II and III, and (e) is the final result (refer
also to Figure 1).

features [16]. Since KLT generates a sorted list based on corner strength, the
top N features are passed to the next phase as candidate interest points. We set
N = 300 for all images in our experiments.

Lattice-unit proposal. Our lattice-unit proposal step differs significantly from
[12] in two ways. First, each lattice-unit found is composed of the current point
under consideration and its two nearest matched neighbors, forming an L-shaped
(t1, t2)-vector pair (Figure 3), as opposed to the previous practice of considering
t1 and t2 sequentially [12]. Second, the final lattice-unit proposal is generated
by a consensus vote of all potential t1, t2-vector pairs. This is equivalent to
bringing higher-order constraints into the proposal stage so that unnecessary
computation of infeasible lattice points is avoided early on, rather than waiting
to prune hopeless lattice points at a later stage [12].

A “candidate neighbor” list Li
c is kept for each interest point pi, denoting

good potential matches within its neighborhood. The goodness is measured by
normalized cross correlation (NCC) between the candidate match and the ref-
erence intensity template centered at interest point pi. Let the list of candidate
neighbors of point pi be Li

c={pk|k = 1, · · · , n, k �= i} and suppose points pa and
pb are chosen from this list. Then we have t1 = pa − pi and t2 = pb − pi as a
potential (t1, t2) candidate pair for the ith point pi. We collect all the possible
(t1, t2)-vector pairs from the lists, Li

c, i = 1, · · · , N to form Ltv, a list of all can-
didate (t1, t2)-vector pairs. If there is regularity in the image, a set of spatially
and appearance-wise consistent (t1, t2)-vector pairs should exist.
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Fig. 3. The results of t1, t2-vector proposal : The green L-shape is the t1, t2-vector
proposal, and the red ones are its supporting members (inlier votes). The images are
cropped to emphasize the area of interest.

We measure the spatial consistency of two (t1, t2)-vector pairs, (ti1, t
i
2) and

(tj1, t
j
2), using the normalized error term defined below:

E(ti1, t
i
2, t

j
1, t

j
2) = max(

∥∥∥ti1 − tj1

∥∥∥
2
/

∥∥ti1
∥∥

2 ,
∥∥∥ti2 − tj2

∥∥∥
2
/

∥∥ti2
∥∥

2) (2)

where ‖‖2 is L2 vector norm.
We regard a (t1, t2)-vector pair as an inlier if E is smaller than ε. This ε is a

tunable knob that can be used to gauge the algorithm’s tolerance to geometric
irregularity in the found lattice (larger values allow more irregularity). We set
ε = 0.2 throughout our experiments. The candidate (t1, t2)-vector pair with the
largest number of inliers is selected as the best t1, t2 proposal.

3.2 Phase II: Lattice Expansion - Spatial Tracking with MSBP

We treat discovery of the underlying lattice of unknown texture elements in an
image as a multitarget tracking problem. Without knowing the target to start
with, Phase I of our algorithm proposes a lattice unit as a potential target. Now
we can state our multi-target tracking problem as: given a single lattice unit
u and a proposed estimate of the (t1, t2)-vectors, a lattice of elements can be
extracted by translating u spatially via t1, t2 in multiple directions to predict
its potential locations and then “tracking” those new locations by combining
the predictions with image data to produce refined location estimates. Since the
lattice may be geometrically distorted in the image, it is dangerous to try to
predict the whole lattice of elements at once. Instead, an initial seed lattice is
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predicted and refined, and then gradually grown outwards into a larger and larger
lattice, while the image is progressively unwarped to “straighten out” geometric
deformations discovered in the gradually growing lattice structure.

Given its efficiency, we have used the MSBP algorithm [15] as our inference
engine for refining predicted texture element locations (Section 2). An initial
lattice of size 3 by 3 is built from the (t1, t2) proposal generated in Phase I, and an
initial texture element template T0 centered at the origin of the proposed (t1, t2)-
vectors with size min(‖t1‖2 , ‖t2‖2) by min(‖t1‖2 , ‖t2‖2) is used to generate an
image likelihood map via NCC. This image likelihood map is then taken as a
prior density function on the image location of texture elements, and the joint
compatibility function (observation model) in the lattice MRF is given by

φ(x[i,j], z[i,j]) = exp(−α(1 − z[i,j])), z[i,j] = NCC(T0, I(x[i,j])) (3)

where x[i,j] is the 2D location of node [i, j] at the ith row and jth column in the
lattice, I(x[i,j]) is an image patch centered at the location of node [i, j] and T0
is the initial texture element’s appearance template. Equation (3) is of a form
typical for data compatibility functions that measure likelihood by appearance
similarity. Parameter α is a fixed constant that can be set empirically.

The second kind of function for the MRF is the pairwise compatibility func-
tion that specifies the spatial constraints between neighboring pairs of texture
elements. In the context of lattice tracking, the pairwise compatibility function
governs the geometric characteristics of (t1, t2)-vector pairs in the lattice. We
define our pairwise compatibility function as

ψ(x[i,j],x[i,j±1])

= exp(−β × E(
−−−−−−−−→
x(it)

[i,j]x
(it)
[i,j±1],

−−−−−−−−→
x(it)

[i,j]x
(0)
[i+1,j],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i,j±1],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i+1,j])

2)
(4)

ψ(x[i,j],x[i±1,j])

= exp(−β × E(
−−−−−−−−→
x(it)

[i,j]x
(it)
[i±1,j],

−−−−−−−−→
x(it)

[i,j]x
(0)
[i,j+1],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i±1,j],

−−−−−−−−→
x(0)

[i,j]x
(0)
[i,j+1])

2)
(5)

where E is given by equation (2) and measures the consistency of a hypothetical
pair of lattice element vectors (t(it)1 , t

(it)
2 ) at iteration it with the original proposed

vectors (t(0)1 , t
(0)
2 ). Equation (4) with subscripts [−] and [+] is used for left-right

and right-left message passing respectively. Equation (5) with subscripts [−]
and [+] is used for up-down and down-up message passing respectively. The β
parameter is a fixed parameter that can be set empirically. Because the error
term is normalized, a fixed β parameter can be used for all images regardless of
spatial scale of the lattice elements. We used α = β = 5 in all our experiments.
Using the compatibility equations defined above, MSBP [15] is performed. The
use of MSBP is critical for speeding up the inference process in real applications,
as otherwise the inference process is very slow.

Once the optimization via MSBP converges for this intermediate stage of lat-
tice growth, verification of the converged texture element positions is performed.
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This is necessary because propagation of incorrect information to other nodes in
the graph may corrupt the optimization process. Verification gives us a safety
measure, telling us if we can trust the correspondences between the deformed
image lattice and a hypothetical regular lattice, which will be used in Phase III.
The general idea behind verification is that we would like to require a converged
location to correspond to a significant local maximum or “peak” in the likelihood
image. Rather than a hard-coded threshold, we use the region of dominance idea
introduced by Liu. et al [10] to determine if an estimated texture element posi-
tion can be trusted. If the current estimated location is a dominant peak within
its neighboring region (that is, if it is a local maximum with a significantly high
likelihood score, but is not located close to another local maximum with an even
higher score) we select it as a peak location.

Possible mis-alignment at a certain iteration of our algorithm is acceptable be-
cause it can be fixed as the iterative fitting procedure repeats. After one iteration
of Phase II and Phase III, the lattice structure is expanded from 3 by 3 to 5 by 5,
and the growing process continues until each side of the lattice hits a boundary of
the image or no more textons are found. A flow diagram of the overall algorithm
and the results of subsequent iterations are shown in Figures 1 and 2 respectively.

3.3 Phase III: Regularized Thin-Plate Spline Warping

Once a partial lattice is found in an image, it is natural and useful to relate
this possibly deformed lattice to its regular origin: the wallpaper structures. It is
natural since the detected degree-4 lattice has the same topological structure as
the regular wallpaper patterns [3]. It is useful since straightening out (rectifying)
the deformed lattice and its neighborhood helps the iterative algorithm to expand
its search for larger and larger lattice structures in the image reliably (Figure
2). We achieve this un-warping step using regularized thin-plate spline (TPS)
warping, similar to what is done in both [12,17]. The practical benefits of this
phase include: 1) it allows us to deal with deformation discontinuity in the scene;
2) the initial texton proposal can be re-used throughout the procedure, hence
preventing the template drift problem; and 3) it enables us to keep the same
initial regularized lattice model at all times.

Warping of the found lattice is performed sequentially with template matching
on the rectified image, and the results fed back into Phase II for spatial tracking.
This process repeats until the growing lattice reaches the edge of the image or
there is no more lattice to track (Fig. 2). Although good results can be achieved
without warping on patterns where the local distortion is changing gradually, the
unwarping process produces improved results when there is an abrupt discontinu-
ity in the distorted pattern, for example, at a fold or crease in the surface.

The main advantage comes from the coupling of BP with MRF and regularized
TPS warping. As BP converges, the inference engine provides the deformation cor-
respondences explicitly to the regularized TPS procedure. As the regularized TPS
warping rectifies the image, it provides better observation and compatibility con-
straints in the MRF, resulting in enhanced correspondences on deformed patterns.
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4 Experimental Results

We have tested our proposed algorithm on 32 real world images (Figures 4 and 5).
Our approach is successful in finding lattice structures in real images, even when

Input Lin & Liu [13,14] Hays et al [12] Ours

Fig. 4. Sample lattice detection Results: The input images (leftmost), the results of
[13,14] (second left), the results of [12] (second right), and our results (rightmost).
Note that the comparison with [13,14] is not a fair comparison since they are de-
signed to start interactively. For a complete set of images tested, see our website
http://vision.cse.psu.edu/MSBPLattice.htm
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Input Lin & Liu [13,14] Hays et al [12] Ours

Fig. 5. Sample lattice detection Results: The input images (leftmost), the results of
[13,14] (second left), the results of [12] (second right), and our results (rightmost).
Note that the comparison with [13,14] is not a fair comparison since they are de-
signed to start interactively. For a complete set of images tested, see our website
http://vision.cse.psu.edu/MSBPLattice.htm

the scene contains textons with irregular appearances, such as chain link fences
where each texture element is dominated by the scattered background. Quanti-
tative evaluations of lattice detection rate and running time on this dataset are



484 M. Park, R.T. Collins, and Y, Liu

as follows: detection rate of Lin and Liu [13,14] is 20 ± 21%, of Hays et al1 is
47 ± 38%, and of our algorithm is 81 ± 19%. The detection rate is computed by
the ratio of the number of detected textons over the number of ground truth
textons. The ground truth is manually obtained by two human coders. The av-
erage ratio of run times of the Hays’ algorithm versus ours is 10.66 ± 9.6. Since
[13,14] is a semi-automatic detector, we report the average running time ratio of
[12] and ours only. In addition, [12] failed earlier on 5 images which are excluded
when computing average time ratio. Running time ratio is defined by the ratio
of the time used by [12] over the time used by our algorithm to detect the lattice
on each of the 32 test images.

5 Conclusions

We formulate the detection of an underlying deformed lattice from real images
as a spatial, multi-target tracking problem using a recently published, efficient
MSBP method [15]. The main contributions of our work are: 1) incorporating
higher order constraints early-on to propose highly plausible potential interest
points as lattice vertices; 2) coupling an MRF optimization procedure with reg-
ularized thin-plate spline warping, where MRF with MSBP and regularized TPS
warping correct and support each other to yield reliable results in challenging sit-
uations; and 3) providing a new lattice detection algorithm with a deterministic
time complexity linear in the number of textons in the scene. The quantitative
results show that our algorithm is more accurate and significantly faster than
other state-of-the-art lattice detection algorithms on diverse real world images.
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