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Abstract

Recent work on computer vision analysis of crowds tends
to focus on robustly tracking individuals through the crowd
or on analyzing the overall pattern of flow. Our work seeks
a deeper analysis of social behavior by identifying the small
group structure of crowds, forming the basis for mid-level
activity analysis at the granularity of human social groups.
Building upon state-of-the-art algorithms for pedestrian de-
tection and multi-object tracking, and inspired by social
science models of human collective behavior, we automat-
ically detect small groups of individuals who are traveling
together. These groups are discovered using a bottom-up
hierarchical clustering approach that compares sets of in-
dividuals based on a generalized, symmetric Hausdorff dis-
tance defined with respect to pairwise proximity and veloc-
ity. We validate our results quantitatively and qualitatively
on videos of real-world pedestrian scenes. Where human-
coded ground truth is available, we find substantial statisti-
cal agreement between our results and the human-perceived
small group structure of the crowd.

1. Introduction
There is an increasing interest in human behavior analy-

sis from surveillance trajectory data, ranging from activity
recognition based on the motion pattern of a single individ-
ual or the interactions among a few (e.g. [16]), to analysis
of the flow of a large crowd, for example to discover path-
ways or monitor for abnormal events (e.g. [33]). Less well-
studied is the collective behavior of small groups of peo-
ple in a crowd. In this paper we build upon state-of-the-art
pedestrian detection and tracking techniques to discover the
small group structure of a crowd. Discovering small groups
of people who are together provides a basis for further mid-
level analysis of events involving social interactions of and
between groups. It also has important practical applica-
tions in developing realistic crowd models/simulations for
evacuation planning and real-time situation awareness dur-
ing emergency response to public disturbances.

Figure 1. Small groups are prevalent in pedestrian scenes. Our al-
gorithm detects groups of people traveling together via hierarchi-
cal clustering on trajectories automatically extracted from video of
crowds under various conditions.

Our main contribution is development of a hierarchical
clustering algorithm that, informed by sociological mod-
els of collective behavior, automatically discovers the small
groups in a crowd (see Figure 1). A pairwise distance that
combines proximity and velocity cues is extended to form a
robust distance between groups (clusters) of people using a
generalized, symmetric Hausdorff measure for inter-group
closeness. Agglomeration of clusters is further constrained
by intra-group tightness, a measure inspired by sociology
research into group behavior, which enables us to automat-
ically determine the number of groups in the scene.

We validate our approach on several video sequences
taken in public pedestrian areas. Two indoor sequences are
used to quantitatively compare results of our algorithm with
consensus ground truth labeled by multiple human coders.
We find that there is substantial statistical agreement be-
tween our algorithm’s results and the human-perceived
small group structure of the crowd. We further qualitatively
evaluate our method on three outdoor sequences with differ-
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ent camera elevation angles, resolution on target, and crowd
densities, to demonstrate our method’s tracking and group
clustering capabilities across a range of conditions.

2. Background and Related Work
This section explains why the composition of a crowd is

important for modeling social behavior and reviews related
computer vision work on crowd scene analysis.

2.1. Collective Behavior and Small Groups

Collective behavior is the generic term for the often ex-
traordinary and dramatic actions of groups and of individu-
als in groups [6]. Models of collective behavior tend to be
bimodal. At one extreme are models that consider the en-
tire crowd as one entity. Scholars have assumed that crowds
transform individuals, so that the resulting collective begins
to exhibit a homogeneous “group mind” that is highly emo-
tional and irrational [6]. At the other extreme are models
treating everyone as individuals. Under this view, a crowd is
made up of independent members acting to maximize their
own utility. For example, crowd behavior has been simu-
lated by considering people as particles making local deci-
sions based on the principle of least effort [32].

As with most dichotomies, the truth is likely to lie some-
where in the middle. One hypothesis is that crowds are
composed primarily of small groups, defined as a “collec-
tion of individuals who have relations to one another that
make them interdependent to some significant degree” ([8],
p.46). Despite being intuitively reasonable, there has been
surprisingly little work to validate this hypothesis. Johnson
[18] argues that most crowds consist of small groups rather
than isolated individuals.An unpublished study by McPhail
found that 89% of people attending an event came with at
least one other person.

From a “sociology meets computer vision” standpoint,
Yan and Forsyth [35] apply vision techniques to automate
analysis of the use of public spaces, in the spirit of sociolo-
gist William Whyte. Likewise, our work automates ground-
breaking research by Clark McPhail, another pioneer in the
use of video to analyze collective behavior.

2.2. Related Work on Vision-based Crowd Analysis

This paper is about discovery of small groups of individ-
uals traveling together in a crowd from sets of trajectories.
Much has been written in the surveillance literature about
detecting and tracking moving objects to automatically ex-
tract trajectories, and we refer the reader to recent surveys
in that area [17, 25, 37]. Here, we cover only relevant re-
cent work that focuses on analysis of crowd scenes and the
identification of group behavior.

There have been several papers concerned with detect-
ing a crowd and estimating its size. Often, the crowd is

treated as either a multiscale [3] or dynamic [9] texture,
and extracted features are used to classify how many peo-
ple are present [22]. Some approaches derive area-based
count estimates by using prior calibration to relate the lo-
cation and size of an image region to the number of peo-
ple the region could contain [20, 21]. Other research in
vision addresses high-level crowd flow analysis in a sta-
tistical sense. This work includes identifying locations of
roads/paths and learning patterns of normal scene activity
from large datasets of individual trajectories [31], corner
feature trajectories [10, 5] or optical flow [1, 2]. Although
these techniques are sufficient to generate predictive macro
models of crowd motion, they do not address the problem
of identifying and tracking groups of individuals. Indeed,
measuring global crowd flow does not even require segmen-
tation of the scene into individuals.

Behavior recognition involving interpreting sequences of
actions of one person or interactions of two or three are
commonly built upon Hidden Markov Models [28] or Dy-
namic Bayes Networks [13]. These approaches are typi-
cally limited to a small, known number of individuals, due
to the combinatorics involved in the coupled interpretation
of multiple time series. There is recent evidence that more
efficient recognition of group activities is possible by using
a model of the group activity process to guide interpretation
of the actions of individual members [30, 38].

More relevant to our work is recognition of collective be-
havior involving an arbitrary number of actors. Vision work
addressing detection of collective behavior includes identi-
fying small groups of people shopping together [14], locat-
ing queues waiting at vending machines [27], and recogniz-
ing crowd formation and dispersal behaviors through statis-
tical clustering of pairwise relational predicates [15]. Only
recently has collective locomotion behavior been studied.
In [12], pedestrians with similar velocity are grouped to-
gether to aid motion prediction for tracking. This is a prag-
matic definition of group, not a social one, since people who
are far apart are clustered together when they have a com-
mon velocity. A well-motivated model of social pedestrian
groups based on analytic measurement of each individual’s
personal space is explored in [19]. Social networks are dis-
covered with the aid of face recognition in a Pan-Tilt-Zoom
camera network in [36].

3. Identifying Small Groups
There is no shortage of explanations for crowd behav-

ior, but there is a shortage of explanations supported by
empirical research [23]. The few sociological studies that
have analyzed video data of people in public spaces (e.g.,
[34, 24]) have required hundreds of person-hours to hand
code just minutes of film, greatly limiting the amount and
type of video that can be quantitatively analyzed. The use
of automated computer vision methods therefore could rep-
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resent a substantial methodological improvement. Through
user studies, we have observed that not only clicking the
location of people is tedious, identifying who is traveling
with whom is also difficult for human coders as the crowd
density increases, simply because it is hard to keep track of
each person in the scene.

In this paper we use vision-based detection, tracking and
grouping algorithms to automatically identify small groups
of pedestrians. Given a set of trajectories, our approach hy-
pothesizes small groups traveling together using the notion
of group “entitativity” [7], defined in terms of criteria from
Gestalt psychology: common fate (same or interrelated out-
comes), similarity (in appearance or behaviors), proximity,
and pregnance (patterning). We chop the video into small
temporal segments and identify all possible groups within
a sliding time window by hierarchical clustering on robust
measures computed from noisy trajectories. Since it is not
always straightforward to observers whether an aggregation
of individuals is a group as opposed to a mere collection of
people [26], we design a clustering algorithm amenable to
incorporating expert knowledge from sociologists.

Our automatic grouping algorithm is inspired by
McPhail and Wohlstein [24], which is the only objective
measure that we know of that has been put forth in the so-
cial science literature to determine which people are trav-
eling together through the scene. In [24], two people are
considered members of a group if they are within 7 feet of
each other and not separated by another individual, have the
same speed to within .5 feet per second, and are traveling in
the same direction to within 3 degrees. A group-expand
procedure is also defined to test whether a new individual
should be added to an existing group.

3.1. Measurements

The trajectory of a person in the scene consists of a set of
tuples (s, v, t), where s is the position vector of the tracked
person’s centroid and v is the velocity vector at frame t. Let
Γ be the temporal overlap of the trajectories between person
i and j within a temporal window T . We extend McPhail
and Wohlstein’s frame-based test to an aggregated pairwise
distance measure between people’s trajectories over time:

wij =

∑
t wt

ij

ρij |Γ|
for i 6= j and t ∈ Γ (1)

wt
ij = αN (‖st

i − st
j‖) + (1− α)N (‖vt

i − vt
j‖) (2)

ρij =
∑

t

δt(i, j) (3)

where N (·) is a normalization operator that linearly scales
data to [0, 1], and δt(i, j) is set to 1 if ‖st

i−st
j‖ < τs&‖vt

i−
vt

j‖ < τv and 0 otherwise. We use a weighting parameter
α to combine spatial proximity and velocity cues for the
pairwise distance wt

ij computed at each time frame t. For

each pair of tracked individuals, we compute the average
pairwise distance wij over all the time frames within T and
scale it with the number of times ρij that the spatial distance
and velocity difference between person i and j are below the
thresholds τs and τv . This strategy favors grouping people
walking close to each other with similar velocities for a long
period of time. The aggregated measure yields robustness
to tracking errors – although automatically extracted trajec-
tories can be noisy, by considering temporal consistency we
are still able to get stable groups over time.

Instead of considering the speed and direction differ-
ences separately, as in McPhail and Wohlstein, we compute
the norm of the velocity difference vector because it is more
robust against noise in the estimated trajectories. Moreover,
two people engaged in a conversation will have small speed
if they are standing still, but can possibly have large ran-
dom oscillations in orientation. The vector difference com-
parison is still stable in this case, and satisfies our expecta-
tion that people with coordinated behaviors are likely to be
grouped together (Figure 4).

The pairwise distance metric is extended to measure the
inter-group closeness between two groups of people by a
generalized, symmetric Hausdorff distance. Hausdorff dis-
tance is a popular distance metric for two finite sets, and has
been used for shape matching and trajectory analysis [33].
Here we use a modified version to measure the locomotion
similarity between two sets of people. More formally, the
symmetric Hausdorff distance between group A and B is
H(A,B) = h(A,B)+h(B,A)

2 , where

h(A,B) =

∑|A|
i=1

∑d|B|/2e
j=1 dij

|A| × d|B|/2e
(4)

and dij is the jth smallest distance among all the distances
between the person i in A and anyone in group B, computed
by Eqn.(1) . The intuition behind this is that the directed
distance from A to B is small when every member in A is
close to at least half of the members in B, a rule used in
McPhail and Wohlstein’s group-expand procedure.

3.2. Clustering

Mimicking the group-expand procedure of [24] where
human coders iteratively check if an individual should be
added to an existing group, we identify the groups based
on a bottom-up hierarchical clustering approach that starts
with individuals as separate clusters and gradually builds
bigger groups by merging two clusters with the strongest
inter-group closeness (i.e., the smallest Hausdorff distance).
Alternatively, one could take a top-down approach, starting
with the entire crowd as a whole group and iteratively split-
ting into subgroups based on the same distance measure.
We choose the bottom-up approach because it is more effi-
cient in crowds composed of small groups. Consider the
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Figure 2. Identifying small groups via agglomerative hierarchical
clustering. Top (left): Four groups (white, red, magenta, and yel-
low) were identified in a crowd. (right): Pairwise counting value
of ρij . Brighter color indicates two individuals exhibit collective
locomotion for a longer time. Bottom: The result of agglomera-
tive hierarchical clustering.

extreme case where all people in the scene are traveling
alone – the bottom-up approach will terminate right away
since there is no group to be built, whereas the top-down
approach needs to work all the way down the hierarchy.

Compared with other clustering methods (e.g., K-means
or spectral clustering), our approach does not require a pre-
defined number of clusters. To automatically discover the
number of groups, we construct a connectivity graph among
people and measure the graph density as intra-group tight-
ness. For any group of size k ≥ 1, the vertices of the con-
nectivity graph Gk correspond to the members in the group.
There is an edge between vertex ni and nj iff person i and
j are temporarily together for a sufficient amount of time,
i.e., ρij > τt (Eqn.(3)). The density of this graph helps us
define intra-group tightness as follows. Let ek be the total
number of edges in Gk and êk+1 be the minimal number of
edges desired in Gk+1 after including person pi in Gk. Fol-
lowing the rule that a person i can be added to an existing
group of size k iff she is connected with half of the existing
group members [24], i.e., the degree of ni ≥ dk

2 e, we then
have êk+1 = ek + dk

2 e. By definition, e1 = ê1 = 0. For
k ≥ 1, given the basis condition that ê2 = 1 and ê3 = 2, we
derive

êk =
{

(k
2 )2 if k is even

k−1
2 (1 + k−1

2 ) if k is odd
(5)

Two groups Gp and Gq satisfy the intra-group tightness cri-
terion if

ep+q ≥ êp+q + (ep − êp + eq − êq). (6)

Figure 2 illustrates how the tightness measure promotes the
compactness of identified groups. Person 9 is excluded

from the group g = (6, 7, 8) because there is only one edge
connecting 9 and 8, and including 9 in g does not satisfy
the inequality specified in Eqn.(6). During each iteration
of the merging process, we check the intra-group tightness
of the next cluster to be merged. The clustering algorithm
terminates when no clusters are qualified to be merged.

To summarize, within each temporal slice, starting from
clusters with a single member, we gradually group people
exhibiting collective locomotion by agglomerative hierar-
chical clustering. Each merging step is governed by both
inter-group closeness, which is measured by a generalized,
symmetric Hausdorff distance, and intra-group tightness.
The latter provides a more principled way to determine
when to stop clustering than manually setting a threshold.

4. Detecting and Tracking Individuals
The focus of this paper is our novel approach for clus-

tering trajectories to hypothesize small groups of pedestri-
ans using a social science model of human collective be-
havior. However, generating a reliable set of trajectories
for people in crowded public spaces is itself a non-trivial
task due to frequent occlusions and the presence of nearby
confusers. Therefore, for completeness, we describe in this
section our current approach for pedestrian detection and
tracking, which is capable of producing reasonable trajec-
tories in crowded scenes containing closely spaced people.

Individual pedestrians are detected by using Reversible
Jump Markov Chain Monte Carlo (RJMCMC) to find a set
of overlapping rectangles that best explain or “cover” the
foreground pixels in a binary segmentation generated by
adaptive background subtraction. This method, which is
similar to that of [39], is capable of extracting overlapping
individuals in crowds up to moderate density. Like all de-
tectors, it produces both false postives and false negatives,
and the subsequent tracking and grouping routines need to
be robust to such errors.

Tracking individuals in the crowd is formulated as a
multi-target tracking problem [4]. We use the Hungarian
algorithm to perform multi-target data association between
current trajectory hypotheses and detections in a new frame.
The Hungarian algorithm finds an optimal bipartite match-
ing between trajectories and detections given a table of
pairwise affinities between likely match candidates based
on proximity and similarity of appearance. As the set of
current trajectories evolves, new ones are created from un-
matched detections and old ones are removed if they have
seen no supporting detections for a number of frames.

5. Experimental Evaluation
We validate our proposed group detection method on a

collection of videos of real-world pedestrian scenes with
different environments (indoor and outdoor), viewpoints,
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pixels-on-target, and crowd densities ranging from a few
individuals to over 100. Each video was recorded using a
Sony DCR VX2000 digital video camcorder. After down-
loading the raw DV file from tape, each video was converted
to a sequence of PNG files using the open source program
ffmpeg to produce deinterlaced 24-bit color images of size
720x480 pixels at a frame rate of 29.97 frames per second.

5.1. Quantitative Evaluation

Evaluation and comparison of work in this area is made
difficult by the lack of benchmark datasets with known
ground-truth pedestrian groupings. We have collected two
datasets of pedestrians in a student union building and es-
tablished “human consensus” ground-truth by combining
decisions made by multiple human coders. Recordings
were taken from an elevated viewpoint to simulate typical
surveillance video.

The first experiment, SU1, was a pilot study performed
on a four-minute video sequence. To obtain the ground-
truth, nine coders watched a version of the video where
numeric labels were overlaid on the 248 individuals who
pass through the scene. Coders were instructed to iden-
tify small groups, and were told they could rewind and
replay the video as often as needed. Group labels deter-
mined by each coder were translated into a numeric score
for each pedestrian in the video (1 for single pedestrians, 2
for pairs, 3 for triplets, and so on). A “consensus ground-
truth” composite score was computed by combining the la-
bels from all nine coders. Across coders, there was ade-
quate, but not perfect agreement, which points out that there
is some baseline ambiguity in deciding whether individuals
form a group. For the 248 individuals in the video, all nine
coders agreed about the coding of 161 individuals (65%),
6-8 coders agreed on the coding of an additional 57 indi-
viduals (23%), a bare majority of five coders agreed on the
coding of 22 individuals (9%), and there was no consensus
about 8 individuals (3%).

Coders indicated that it was difficult to make judgments
about groupings within the relatively narrow field of view.
Based on their feedback, a second hour-long test sequence,
SU2, was recorded from a new viewpoint with a much
larger range of depth, which causes more partial occlusion
and a wide variation in image heights of people as they
walk from near field to far field. Due to the length of the
video, six coders were told to click on the heads of people
in keyframes taken every 10 seconds, and to partition them
into groups (they were allowed to play the video forwards
and backwards around each keyframe). Of the 5908 pedes-
trians who were labeled, all six coders agreed on the coding
of 4035 of them (69%), five coders agreed on an additional
1038 (18%), a bare majority of four coders agreed on the
coding of 510 individuals (9%) and there was no consen-
sus about 226 people (4%), a similar rate of human coder

agreement as in the shorter sequence.

Figure 3. Trichotomous measure of small groups obtained from
human coders compared with the computer predictions on the SU1
sequence.

SU1 sequence. We automatically detected and tracked
pedestrians in the 4-minute SU1 sequence and applied hi-
erarchical grouping to the generated trajectories to hypoth-
esize small groups. Sample results are shown in Figure 4.
To quantitatively evaluate our grouping method, we first
code ground-truth and computer predicted group size for
each pedestrian into one of two categories: alone or in a
group. We achieve 89% match rate under this dichotomous
coding scheme. We also evaluated the results using a tri-
chotomous coding scheme for each pedestrian: alone, in a
group of two, or in a group of three or more (see Figure 3)
with an 85% agreement rate. To test the statistical signifi-
cance of the agreement between the computer estimates and
the ground-truth, we conducted the Cohen’s Kappa test on
the trichotomous and dichotomous measures. Similar to the
Chi-squared test, it measures agreement but also controls
for the underlying base rates of the variables so that trivially
predicting the group size that is dominant in the ground-
truth will not yield a good score. Table 1 shows that there
was substantial agreement between the composite and the
computer predictions, with Cohen’s κ > 0.6.

SU1 SU2
match rate κ match rate κ

dichotomous 89% .75 88% .74
trichotomous 85% .69 77% .62

Table 1. Statistical tests show substantial agreement (κ > 0.6)
between human and computer group predictions for both the tri-
chotomous and dichotomous cases on the indoor sequences.

SU2 sequence. Similar experiments were conducted on the
first 15 minutes of the one hour SU2 sequence. Our results
are again in good concordance with the human consensus
ground-truth in the labeled keyframes (Table 1). Besides the
Cohen’s Kappa test, we also computed the Adjusted Rand
Index (ARI) [29], which is a standard statistical measure of
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Figure 4. Sample group detection results in the SU1 sequence. Links between people denote hypothesized small groups. Notice that the
group marked with the rectangle has been consistently identified throughout a change of status from stationary to moving.

the similarity in group membership between two data clus-
terings/partitionings, adjusted for chance in the same way
that Kappa test is. The ARI score is .65, which is again
within the range of substantial agreement as measured on
the Kappa scale. It shows that our method agrees well with
ground truth on the composition of the groups. Some sam-
ple detected small groups are shown in Figure 5.

Clearly the grouping error is coupled with the underly-
ing detection and tracking routines. Evaluation of the our
person detector alone shows an accuracy of 89% for detect-
ing people in the ground truth keyframes. Effects of track-
ing error on grouping are harder to quantify. Our observa-
tion is that some tracking errors such as swapping identities
between people traveling together do not affect the deter-
mination that they are a group, since their trajectories still
overlap for a significant period of time. We rely on an em-
pirical investigation of the correlation between tracking and
grouping as follows. For each set of trajectories of people in
the frame, we set an upper bound on the maximal trajectory
length by artificially shortening the long trajectories. Fig-
ure 6(left) shows that both the dichotomous and trichoto-
mous match rates initially increase with the upper bound of
the maximal trajectory length, then start to converge. For a
range of trajectory length, the grouping performance stays
stable.

Figure 5. Sample small groups detected in the SU2 sequence.

5.2. Qualitative Evaluation

We have demonstrated that our end-to-end group detec-
tion results agree well with human consensus, which is a
strong indication that either all pieces of our system are per-
forming well, or else they are failing in ways that don’t af-
fect the final results. We also demonstrate our method on
three outdoor crowd sequences.

The first two outdoor videos, STADIUM1 and STA-
DIUM2, were captured during a sporting event. STA-
DIUM1 is a five-minute clip taken of people walking on a
closed street prior to the start of the game and STADIUM2
is a 30-minute clip taken of people leaving the stadium
gate after the game. The camera was mounted on the sta-
dium, thus the viewpoint is highly elevated and the image
size of each person is relatively small. Figure 7(bottom)
shows sample small groups found using our method. Eval-
uation in this case is even harder. Human observers can-
not make judgements easily under such high crowd den-
sity. We design an empirical performance measure based on
the observation that the small group structure of the crowd
should stay stable over time. We evaluate the consistency
of our grouping algorithm by chopping the video into seg-
ments and running the detection/tracking/grouping pipeline
on each segment. Two sets of experiments were conducted
with different segment lengths. Figure 6 shows that the
small group structure estimated by our algorithm remains
consistent within each experiment and across experiments.
Notice the group structure is very different from the SU1
sequence, as shown in Figure 3, due to the social factor that
people tend to go to sporting events in groups. Such differ-
ence in the composition of the crowd is worthy of further
investigation for event recognition.

The last outdoor video, the ARTFEST sequence, is a
two-minute video captured at an outdoor art festival. The
lower camera elevation angle, higher zoom, and “brows-
ing” behavior of the crowd leads to frequent severe occlu-
sion and more complicated trajectories. In this sequence,
we performed frame-by-frame detection using a head-and-
shoulders detector based on an SVM classifier trained on
Histogram of Gradients (HoG) feature descriptors, inspired
by the work of [11]. Figure 7(top) shows examples of
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Figure 6. Performance analysis of the grouping algorithm. Left:
The grouping performance is stable across a range of maximum
trajectory lengths. Middle: stability test on the STADIUM1 se-
quence. The video was chopped into 10 segments, each of 1000
frames. Right: the video was chopped into 5 segments, each of
2000 frames. The estimated trichotomous coding of grouping re-
sults, indicating the small group structure of the crowd, remains
consistent across segments within each plot and across both plots,
indicating the grouping algorithm is consistent.

detected small groups at different time frames where the
crowd density varies and the trajectory pattern differs (e.g.,
strolling down the road vs pausing in front of a vendor).

6. Conclusion

We have demonstrated that automated pedestrian detec-
tion and tracking can extract trajectories from video and
that hierarchical clustering can detect small groups of peo-
ple traveling together. To our knowledge, we are the first
to show experimentally that results of agglomerative clus-
tering are in substantial statistical agreement with subjec-
tive human perception of who is with whom in a crowd.
As a field like computer vision matures, the importance of
the research is measured in part by the influence it has on
other fields. Our results demonstrate that automated track-
ing is capable of providing quantitative characterization of
real crowds faster and with similar accuracy as human ob-
servation, providing a new methodology for the empirical
study of social behavior. It is interesting to note that trajec-
tory information alone is enough to yield substantial agree-
ment with the perception of human coders who are able to
address the grouping task by observing more subtle visual
cues such as arm gestures and gaze direction.
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