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Abstract

A Bayesian marked point process (MPP) model is devel-
oped to detect and count people in crowded scenes. The
model couples a spatial stochastic process governing num-
ber and placement of individuals with a conditional mark
process for selecting body shape. We automatically learn
the mark (shape) process from training video by estimat-
ing a mixture of Bernoulli shape prototypes along with an
extrinsic shape distribution describing the orientation and
scaling of these shapes for any given image location. The
reversible jump Markov Chain Monte Carlo framework is
used to efficiently search for the maximum a posteriori con-
figuration of shapes, leading to an estimate of the count,
location and pose of each person in the scene. Quantita-
tive results of crowd counting are presented for two publicly
available datasets with known ground truth.

1. Introduction

Detecting and counting people in video of a crowded
scene is a challenging problem, since the spatial overlap
between people makes it difficult to delineate individuals
as connected component blobs within a background sub-
traction image. In this work we define a Marked Point Pro-
cess (MPP) that couples a spatial stochastic process govern-
ing number and placement of individuals with a conditional
mark process for selecting body size, shape and orientation.
We use Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) to compare hypothesized configurations of varying
numbers of people to find a maximum a posteriori (MAP)
estimate of the count and location of overlapping individu-
als in the scene (Figure 1). Such information has the poten-
tial to increase situational awareness for crowd control and
public safely by providing real-time estimates of the num-
ber of people entering or exiting a venue.

Figure 1. We use a marked point process to determine the number
and configuration of multiple people in a scene. In addition to de-
termining the location, scale and orientation of each individual, the
MPP also selects an appropriate body shape from a set of learned
Bernoulli shape prototypes, as displayed at the bottom.

1.1. Related Work

There have been several papers concerned with people
counting in a crowd. In some, the crowd is treated as a
static texture, and extracted features are used to classify
how many people are present [15]. Other approaches de-
rive area-based estimates by using prior calibration to relate
the location and size of an image region to the number of
people the region could contain given the specific perspec-
tive camera viewpoint [10, 12, 16]. In Rabaud and Belongie
[18], motion vectors are clustered to estimate the number of
moving objects. Many other works exist for people detec-
tion and tracking in less crowded situations [4, 8].

Several authors in the statistics literature have consid-
ered the problem of using MPPs to detect and count ob-
jects in images [1, 5, 7, 9, 14, 17, 20, 21]. These of-
ten include pedagogical, toy “object recognition” examples
where simple shapes such as disks or polygons are recog-
nized from noisy synthetic images. However, real-world
examples have also been reported, include segmenting cells
in confocal microscopy images [20, 21], and various appli-
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cations in aerial image analysis, such as detecting elliptical
shapes representing trees in a plantation [17], tracing out
road networks [5] and detecting buildings from Digital El-
evation Models [14]. These preceding examples all have a
two-dimensional aspect to them, such that object overlap is
either uncommon or disallowed completely. A recent ex-
ception by van Lieshout develops a sequential MPP for use
in tracking depth-ordered overlapping shapes [23].

In the vision literature, the closest work to our own is
by Zhao and Nevatia [24], who define a stochastic process
to model overlapping spatial configurations of pedestrians
while using RJMCMC to estimate a configuration that best
explains a given foreground mask. However, there are ma-
jor differences between the two approaches. Their pedes-
trian shape model is a hand-made set of parameterized body
shapes composed of ellipses, whereas we estimate a mixture
model of Bernoulli shape images from observed foreground
data in a training sequence, thus providing a flexible mech-
anism for learning arbitrary object shapes. Their likelihood
function is based on a binary “label image” that is compared
to the observed foreground data, whereas our label image is
composed of spatially varying Bernoulli mean parameters,
providing a soft segmentation that captures the uncertainty
and variability in observed object boundaries. In addition,
we automatically estimate the extrinsic parameters that re-
late object size and orientation to location in the image.

1.2. Contributions
We introduce a conditional mark process to model

known correlations between bounding box size/orientation
and image location. The mark process parameters are
decomposed into extrinsic appearance (geometry) and in-
trinsic appearance (shape and posture), learned separately.
We adopt a Bayesian formulation for learning weighted
Bernoulli shape masks using the EM algorithm, which gives
us the flexibility to model a variety of shapes within the
rectangular MPP framework. In addition to presenting il-
lustrative examples on different scenes, we quantitatively
evaluate pedestrian counting performance on two publicly
available datasets where ground truth is known.

2. Marked Point Processes for Object Counting
For ease of explanation we describe a particular problem,

but the approach is general. Consider counting pedestrians
in a frame of video given a foreground mask image pro-
duced by background subtraction. The goal is to determine
the number and configuration of binary pedestrian shapes
that best explains the foreground mask data. One can think
of this process as trying to place a set of cutout shapes over
the foreground mask to “cover” the foreground pixels while
trying to avoid covering the background pixels. For this sec-
tion we assume rectangular shapes, leading to the problem

of finding a rectangular cover. In Section 3.2 we show how
to generalize this approach so that the rectangle becomes the
bounding box for an arbitrary shape selected from a pool of
learned candidate shapes.

A spatial point process is a stochastic process that is
suitable for modeling prior knowledge on the spatial dis-
tribution of an unknown number of objects. A realization
of the process consists of a random countable set of points
{s1, . . . , sn} in a bounded region S ∈ Rd. Like previous
authors [3, 9, 20], we approach the covering problem within
the framework of Marked Point Processes (MPP). An MPP
couples a spatial point process Z with a second process de-
fined over a “mark” space M of shapes such that a random
mark mp ∈ M is associated with each point p ∈ Z. For
example, a 2D point process of rectangular marks has el-
ements of the form si = (pi, (wi, hi, θi)) specifying the
location, width, height and orientation of a specific rectan-
gle in the image. In this paper, we propose a novel marked
point process that weaves the prior knowledge of the spatial
pattern, extrinsic size and transformation of objects, with in-
trinsic geometric shape information modeled by a mixture
of Bernoulli distributions. Thus, the realization of the MPP
in this paper consists of an image location p defined on a
bounded subset of R2, together with a mark m defining a
geometric shape to place at point p. Section 2.1 describes
the marked point process model and Section 3 explains the
learning procedure for estimating extrinsic bounding box
geometry and intrinsic shape models.

2.1. The Model
We take a Bayesian approach to model the objects in the

scene as a set of configurations from an MPP that incorpo-
rates prior knowledge such as expected sizes of people in
the image or knowledge about image regions where peo-
ple will not appear. We denote the prior term for an ob-
ject as π(si), and assume independence among the objects.
Priors in MPPs are typically factored so that the mark pro-
cess is independent from the spatial point process, that is
π(si) = π(pi)π(mi). However, this common approach ig-
nores obvious and strong correlations between the size and
orientation of projected objects and their 2D image loca-
tions in views taken by a static camera. Hence, we introduce
a conditional mark process for rectangles representing the
shape and orientation of a 2D bounding box, conditioned on
spatial location, leading to a factored prior of the form:

π(si) = π(pi)π(wi, hi, θi|pi) (1)

The prior for the point process π(pi) is chosen as a homo-
geneous Poisson point process. This means that the total
number of objects follows a Poisson distribution, and given
the number of objects, the locations are i.i.d. and each uni-
formly distributed in the bounded region. Figure 2 shows a
simulation from the prior model. One can also learn through



Prior point process Proposal point process

Figure 2. One hundred random samples drawn from the marked
point process associated with the prior (left), and with the MCMC
birth proposal (right). Samples from the proposal distribution on
the right cluster around objects because we use a data-driven, in-
homogeneous Poisson intensity function computed from the ob-
served foreground mask.

passive observation of training video a density estimate of
where people are likely to be seen [2, 22], and more impor-
tantly, where not to look for them (e.g. walls; sky). When
available, we represent this information as an inhomoge-
neous Poisson point process that is defined by its density
with respect to the reference Poisson point process.

The conditional mark process. We represent the prior
for π(wi, hi, θi|pi) as independent Gaussian distributions
on the width, height and orientation of a pedestrian bound-
ing box centered at a given image location pi. The spatially-
varying mean and variance parameters for each random
mark are stored in lookup tables indexed by the image lo-
cation. Section 3.1 describes how these distributions are
automatically estimated offline.

Likelihood. Recall the data we are dealing with in the
object counting problem is a foreground mask, assuming the
foreground is formed by pedestrians in the scene. Formally,
let yi be the binary value of pixel i in the observed fore-
ground mask data, with 1 = foreground, 0 = background.
To compute the goodness of fit of a proposed configura-
tion of shapes to the data, a common way is to first map
the configuration into a label image [1] where pixels are la-
beled foreground if any of the shapes cover it, and back-
ground otherwise, so that each pixel in the label image
has a one-to-one counterpart in the observed foreground
mask. Let xi be the values in the label image. Since both
xi and yi are binary variables, Bernoulli distributions are
used to characterize p(yi|xi). In previous work [24], all
the foreground pixels share the same Bernoulli distribution
p(yi|xi = 1) ∼ Bern(yi|µf ), while the background pixels
share another p(yi|xi = 0) ∼ Bern(yi|µb).

Different from the previous work, instead of two
Bernoulli distributions depending on the binary labeling of
the pixel, we propose a novel way to create a soft label
image by generating shape configurations represented by a
mixture of Bernoulli distributions (3.2). The resulting xi in

the label image is therefore no longer a binary variable, but
a continuous variable ranging from [0, 1], the mean param-
eter of the Bernoulli distribution p(yi|xi).

Assuming conditional independence among the pixels,
the joint likelihood function can be written as

logL(Y |X) = log
N∏

i=1

p(yi|xi)

=
∑

(xi log yi + (1− xi) log(1− yi)) (2)

This likelihood function is biased towards MAP solu-
tions with multiple overlapping rectangles that claim al-
most the same set of foreground pixels. Although such
over-counting does not increase the likelihood score; nei-
ther does it decrease it, since there is no penalty for overlap.
Many authors address this problem by including a “hard-
core” penalty that disallows any overlap by adding an in-
finite penalty when overlap occurs [9, 20, 21]. This is too
strict for the present application of people counting, who
may overlap in the view. Another principled approach is
to add pairwise interaction terms into the likelihood func-
tion to penalize the area of overlap between each pair of
shapes [1]. We take this latter approach, and implement
a simple scheme where the number of overlapping pixels
is multiplied by a non-negative factor ρ to form a penalty
term subtracted from the log likelihood function. We set
ρ = 0.1. That is sufficient to discourage completely over-
lapping shapes while still allowing small to moderate over-
lap to occur when it increases the log likelihood value.

The likelihood function and the prior combine to form a
posterior that measures how well the observed foreground
mask can be described as a noisy instantiation of an MPP
consisting of zero or more overlapping bounding boxes at
varying orientations and scales, along with a soft Bernoulli
weight assigning pixels within the bounding box a proba-
bility of being foreground or background. Pedestrian de-
tection and counting then becomes the problem of finding
the MAP estimation over a configuration space. In section
4 we address the search for the number of shapes and their
parameters using RJMCMC.

3. Learning the Conditional Mark Process
Simple geometric shapes such as rectangles or ellipses

are only a coarse approximation to the shape of objects we
want to count. In this section, we learn the parameters of
a mark process that well-approximates the appearance of
foreground shapes. Our notion of shape appearance is de-
composed into two parameter sets: an extrinsic shape map-
ping and a set of intrinsic shape classes. The extrinsic shape
mapping determines the translation, rotation and scaling of
a centered shape model into image pixel coordinates. The
intrinsic shape classes specify a library of different refer-
ence shape prototypes that can be selected for matching.



Complete characterization of a foreground mask thus in-
volves selecting the appropriate intrinsic shape prototypes
and then translating, rotating and scaling them into the im-
age to cover the foreground pixels as well as possible.

3.1. Estimating Extrinsic Shape Mappings
The image size and orientation of a standing person will

vary as a function of image location. We use lookup ta-
bles of Gaussian distributions at each pixel to represent
the distribution of width, height, and orientation of pedes-
trian bounding boxes at different locations in the image.
We automatically estimate the means and variances of the
Gaussian distributions from a small sample of the sequence
where the crowd density is low. Inferring camera calibra-
tion parameters from watching people in the scene has also
been considered in previous work [11, 13, 19].
Orientation Estimation: Since we know pedestrians will
be oriented vertically, it suffices to determine the vertical
vanishing point of the scene, which completely determines
the 2D image orientation of a vertical object at any pixel.
Conversely, we can estimate the vertical vanishing point
from the measured major axis of elliptical blobs extracted
from foreground masks of walking people. Often automat-
ically generated foreground masks are noisy, requiring ro-
bust estimation techniques.

Figure 3 illustrates computation of the vertical vanishing
point for a sample sequence. Foreground masks are com-
puted for each frame via background subtraction. Blobs are
found by connected components, followed by ellipse fitting
to compute their center of mass and second moments. We
repeat the process of extracting major axis orientation of
blobs for all frames in a short sequence of video. In this
example, over 7000 axes are observed. Some of these rep-
resent vertical orientation of individuals who are found as
a single blob; however, many others are outliers represent-
ing the orientation of multi-person blobs, fragmented blobs,
or blobs whose second moments are corrupted away from
vertical by arms and legs extending out from the person.

To find the vertical vanishing point, we assume that the
inlier axes will converge to a vanishing point. We further
assume that the outlier axes have no consistent bias: they
will not intersect in significant numbers at any other point
in the image. We use RANSAC to find the intersection point
voted for by the most axes.

In the example shown, out of 7013 axes, the largest in-
lier set contains 232 axes. Computing the best intersection
point from this inlier set involves finding the eigenvector
associated with the smallest eigenvalue of a 3x3 scatter ma-
trix formed from the observed inlier axes. We see that the
computed vanishing point correctly captures the change in
image orientation of people at different parts of this scene.
The orientation of a blob centered at any pixel in the image
can now be computed, and stored in a lookup table repre-

senting the mean of a Gaussian distribution on orientation.
Height and Width Estimation: A reasonable first-order
model of many scenes can assume that people are walking
or standing on a planar ground surface. The planarity as-
sumption regularizes the computation of size, by constrain-
ing the relative depth of people in the scene as a function of
image location.

Explanation of fitting height and width distributions
based on the size of observed foreground blobs is simplified
by considering views where the vertical vanishing point is
along the y axis of the image coordinate system, which can
be achieved with an in-plane image rotation. If the vanish-
ing point is far from the image, i.e. for small tilt angles, such
as from an elevated camera looking down a hallway, size in
the image is dominated by depth from the camera, and is
linearly proportional to row number in the image. We learn
the linear relationship of height and width as a function of
image row using iteratively reweighted least squares fitting.

3.2. Learning Intrinsic Shape Classes
Rather than treating all pixels in a rotated and scaled

bounding box as foreground, we consider a “soft” segmen-
tation of shape by representing the probability of each pixel
being foreground. Specifically, instead of associating the
entire bounding box with a single Bernoulli mean param-
eter representing probability of foreground, we use a mix-
ture of Bernoulli distributions to model the learned shape
prototypes that are rectangular patches of spatially varying
µ(xi) values, one per pixel, learned from a training dataset
of observed foreground masks. The µ values are high in ar-
eas of the shape patch that often contain foreground pixels,
and low in places that often contain background, as visu-
alized in the grayscale shape images in Figures 1 and 6.
The mixture model allows more varied and realistic shape
prototypes and thus can result in more accurate foreground
fitting. We also propose a weighted version of the mixture
model to allow for “soft” weighting of pixels whose status
is more uncertain due to shape variation.

To learn the shape prototypes from a training video se-
quence, we first select a random subset of frames labeled
with ground truth bounding boxes, then run background
subtraction to get fg/bg masks, which are overlaid with the
bounding boxes to extract a set of binary shape patterns,
each scaled to a standard size. The training samples are
a set of binary variables. Denote X = {xi, . . . ,xN} as
the collection of N training shape patterns, where xi =
(xi1, . . . , xiD)T (D being the size of the shape pattern). We
model X by a mixture of Bernoulli distributions. Formally,
the mixture model is defined as

p(x|µ,π) =
K∑

k=1

πkp(x|µk) (3)

where K is the number of mixture components, µ =



Figure 3. The vertical vanishing point is determined automatically by watching people walk through the scene, thus determining the image
orientation of upright people at any location in the image. (a) Image frame. (b) Major axis orientation of each connected component blob
in the foreground mask. (c) Axis orientations of blobs extracted from a training sequence. (d) Intersecting inliers found by RANSAC. (e)
Lines connecting blob centroids to the computed vertical vanishing point. (f) Mean orientation and scale at each pixel displayed as overlaid
rectangles. See text for more details.

{µ1, . . . ,µK} are the Bernoulli mean parameters, each be-
ing a vector µ = (µ1, . . . , µD)T , π = {π1, . . . ,πK}
are the component mixing weights, and p(x|µ) =∏D

d=1 µxd
d (1−µd)(1−xd) is the single Bernoulli distribution.

We extend the above classic mixture model to a weighted
Bernoulli mixture, motivated by the observation that certain
pixels vary more across different shapes than other pixels.
For example, the boundary pixels of the body shape usually
present much bigger variance than the background pixels or
the pixels surrounding the center of mass. It is therefore
advantageous to make the model spend more effort explain-
ing the higher-variance parts of the shape so that we can
get a better shape class model with more distinctive com-
ponents. For this purpose, we introduce pixel-wise weights
v = (v1, . . . , vD)T that are estimated by the variance at
each pixel across all the training patterns. Hence, p(x|µ)
can be re-written as

p(x|µ) =
D∏

d=1

µxdvd
d (1− µd)(1−xd)vd (4)

The complete derivation of the above equation is provided
on our project web page1, but the intuition is simple: we
can treat the weight as a replication factor; the higher the
weights, the more important the pixels and the more times
they get duplicated in the sample set. The weighted mix-
ture model gives a very flexible way to incorporate other
kinds of prior knowledge about the samples. For example,
we can introduce another set of weights on the patterns so
reliable patterns get higher weights. Yet another difficulty
with mixture models is determining the number of com-
ponents. We automatically determine the number of com-
ponents K by imposing a Dirichlet prior over the mixing
weights p(π|α) ∝

∏K
k=1 παk−1

k . By setting αk % 0, we
have a broad prior that squashes some of the mixing weights

1http://vision.cse.psu.edu/projects/mpp/mpp.html

to zero, i.e., the Bayesian model automatically trades off
between fitting the data and the complexity of the model.
In our experiments, we set αk to be a small positive num-
ber. Thresholding on αk automatically determines the num-
ber of intrinsic shapes learned, leading to possibly different
numbers of learned intrinsic shapes for different sequences,
such as shown in Figures 1 and 6.

The model parameters are estimated by the EM al-
gorithm. We first hypothesize a set of latent variables
z = (zi1, . . . , ziK)T , a set of indicator variables that rep-
resent the component membership of each sample. So the
set of latent variables over the entire collection is Z =
{zi, . . . , zN}. Now we can form the complete-data log like-
lihood function as

logL(X,Z|µ,π) =
N∑

n=1

K∑

k=1

znk

{
log πk + (5)

D∑

d=1

vdxnd log µkd + vd(1− xnd) log(1− µkd)
}

The expected value of the log of the posterior is

EZ[log p(µ,π|X,Z)] = Q(θ, θold) + log p(π|α) = (6)
N∑

n=1

K∑

k=1

γ(znk)
{

log πk +
D∑

d=1

vdxnd log µkd +

vd(1− xnd) log(1− µkd)
}

+
K∑

k=1

(αk − 1) log πk

Because the posterior probability is proportional to the
likelihood function times the prior, it can be proven that the
prior will have no effect in the E-step, which computes the
responsibilities γ(znk) = E(znk). These responsibilities
represent the probability that the nth sample belongs to the
kth component.



E-step: compute responsibilities

γ(znk) =
πkp(xn | µk)

∑K
j=1 πjp(xn | µj)

(7)

M-step: update the parameters by maximizing Eqn. 6

µkd =
∑

n γ(znk)vdxnd∑
n γ(znk)vd

=
∑

n γ(znk)xnd∑
n γ(znk)

(8)

πk =
∑

n γ(znk) + αk − 1∑
n

∑
k γ(znk) +

∑
k αk −K

(9)

=
∑

n γ(znk) + αk − 1
N +

∑
k αk −K

(10)

Although it might appear that the pixel-wise weights vd

have canceled out in the update for µkd , recall that the
responsibilities γ(znk) are defined in terms of functions
p(xn|µk) (Eqn. 4) that still have the vd weights in them.
The vd weights therefore do have an effect.

The appeal of the weighted Bernoulli shape mixture
model is that the parameter estimation is very efficient and
the model itself is flexible enough to be generalized to en-
code different shapes (as demonstrated in Figures 1 and 6).
Note that different numbers of intrinsic shapes are auto-
matically learned through our Bayesian framework with a
Dirichlet prior over the mixing weights.

4. Inference
To perform Bayesian inference of the best configuration

of person shapes in the image, we define a prior term for
the marked point process to combine with the likelihood.
Finding the mode of the resulting posterior then provides a
MAP estimate over the configuration space.

Recent development of Markov Chain Monte Carlo
methods advances the simulation and inference of spatial
point processes, which enables us to work on relatively
large spatial point patterns [7, 20, 24]. We use reversible
jump MCMC to explore configuration sets of different di-
mensionality (numbers of objects). RJMCMC is an iterative
sampling procedure that involves proposing local updates to
a current configuration or a reversible jump between config-
urations of differing dimensions, and then deciding stochas-
tically whether or not to go to the new configuration based
on the value of the Metropolis-Hastings acceptance ratio

a(x, x′) = min(1,
p(x′)
p(x)

q(x′, x)
q(x, x′)

)

where x and x′ are the current and proposed configurations,
p(·) is the MPP posterior distribution evaluated for a given
configuration, and q(a, b) is the probability of proposing a
transition from a to b.

We use a simple RJMCMC sampler composed of birth,
death and update proposals [6]. Each of the proposals is
described briefly below:

Birth proposal: A point and mark are proposed and
added to the current configuration. We sample the point
location according to the foreground mask, which makes it
a data-driven proposal. The width, height and orientation of
the rectangular mark are sampled from the conditional mark
process, represented as Gaussian distributions indexed by
the spatial points. An intrinsic Bernoulli shape is chosen
uniformly at random (u.a.r) from the set of learned shape
prototypes. The reverse move of birth is death.

Death proposal: The death proposal chooses one rect-
angle at random and removes it from the configuration. If
there are no shapes in the configuration, this proposal does
nothing. The reverse move is birth.

Update proposal: One rectangle from the configuration
is chosen at random and either its location or mark parame-
ters are modified. Modification of location is done as a ran-
dom walk of the shape center. Modification of the mark is
done in two parts: either the mark width, height and orien-
tation dimensions are updated by sampling from the condi-
tional mark process associated with the current location, or
the intrinsic Bernoulli shape is updated u.a.r from the shape
prototype set. The update proposal is its own reverse move.

For all the experiments, we always start with an empty
configuration as the initial state. The RJMCMC procedure
is iterated between 500 and 3000 times, with the larger num-
ber of iterations being needed when there are more people
in the scene. The move probability for birth, death and up-
date proposals are set to be 0.4, 0.2 and 0.4, respectively.

5. Experimental Results
We tested our model on various crowd sequences with

different viewing angles, indoor and outdoor scenes, and
varying crowd density. We first report the results from quan-
titative evaluation of the detection algorithm on two human-
labeled benchmark sequences: the EU CAVIAR dataset 2 (
Figure 6) and the VS-PETS soccer sequence3 (Figure 5).
We tested on a subset of six CAVIAR sequences (5970
frames in total and each frame is of size 288 × 384) where
people are walking in a shopping mall. The soccer sequence
was captured in an outdoor football field. There are 2500
frames in total and the image size is 576 × 720. Players
are occluded more often as they run back and forth than the
people walking in the hallway.

The RJMCMC procedure iterates 1000 times for the
CAVIAR sequence and 3000 times for the soccer sequence.
Two key factors of the computing time are the number of
iterations and the cost of the likelihood function evaluation
in each iteration. The former is affected by the number of
people in the scene. More crowded scenes need more it-
erations. The latter is dominated by the size of each per-

2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
3http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html



son (number of pixels), since we update one person in the
configuration set at each iteration. The sampling procedure
takes 1.6 seconds to process 500 iterations on a 720×480
frame, 9 people per frame on average, using unoptimized
matlab code.

To compare our counting results to the ground truth
bounding boxes, we run detections at every 10th frame. Fol-
lowing the evaluation criteria used in [24], the detected
object regions are matched to the ground truth box using
a greedy algorithm based on the percentage of overlap be-
tween a detected foreground region and the ground truth
bounding boxes. A correct detection is claimed if the over-
lap ratio is over 50%. Unmatched detections are considered
as false positives. The evaluation results are shown in Table
1. Detailed results for individual CAVIAR sequences are
shown in Figure 4.

Figure 4. Counting results on six CAVIAR sequences, with 1258
ground truth detections. The average detection rate and false pos-
itive rate are 84.3% and 6.2% respectively. Note that people that
appear along the image boundary are not counted in this evaluation
because the human coders often missed people in those areas.

Dataset Total # People Detection Rate False Positive Rate
CAVIAR 1258 .84 .06
SOCCER 3728 .92 .02

Table 1. Quantitative evaluation of the counting algorithm.

More results for the above sequences showing Bernoulli
shapes overlaid are shown in Figures 5 and 6. Videos of
the complete set of detection results can be accessed from
our project web page. Our detection algorithm works well
under reasonable occlusion. The major limitation of the al-
gorithm is its sensitivity to errors in the fg/bg segmentation.
In addition, our intrinsic shape learning procedure can only
capture shapes that frequently appear in the training set. For
example, we cannot detect falling people in the soccer se-
quence correctly. As a general rule for the success of any
learning method, we expect the training data to be represen-
tative of the testing data.

6. Conclusion
We propose a marked point process model to detect

and count people in crowds. Our model captures the cor-
relations between the mark process (i.e., bounding box
size/orientation) and the spatial point process by automat-
ically estimating an extrinsic shape mapping. We also

augment the model with intrinsic shape information mod-
eled by a weighted mixture of Bernoulli distributions. The
learned shape prototypes are more realistic than simple ge-
ometric shapes, which leads to more accurate foreground
fitting. Experimental results show that our method can de-
tect varying numbers of pedestrians under different crowd
density and reasonable occlusion. In the future, we plan to
extend the current model to a spatial-temporal process that
can exploit the temporal information in the video. We also
plan to apply our shape model to a larger variety of object
categories.
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