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Skewed Rotation Symmetry Group Detection
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Abstract—We present a novel and effective algorithm for affinely skewed rotation symmetry group detection from real-world images.
We define a complete skewed rotation symmetry detection problem as discovering five independent properties of a skewed rotation
symmetry group: (1) the center of rotation; (2) the affine deformation; (3) the type of the symmetry group; (4) the cardinality of the
symmetry group; and (5) the supporting region of the symmetry group in the image. We propose a frieze-expansion (FE) method that
transforms rotation symmetry group detection into a simple, one dimensional translation symmetry detection problem. We define and
construct a pair of rotational symmetry saliency maps, complemented by a local feature method. Frequency analysis, using Discrete
Fourier Transform (DFT), is applied to the Frieze-expansion patterns (FEPs) to uncover the types (cyclic, dihedral and O(2)), the
cardinalities and the corresponding supporting regions, concentric or otherwise, of multiple rotation symmetry groups in an image. The
phase information of the FEP is used to rectify affinely skewed rotation symmetry groups. Our result advances the state of the art in
symmetry detection by offering a unique combination of region-based, feature-based and frequency-based approaches. Experimental
results on 170 synthetic and natural images demonstrate superior performance of our rotation symmetry detection algorithm over
existing methods.

Index Terms—Skewed rotation symmetry, Symmetry group, Frieze expansion, Discrete Fourier Transform, Saliency map.
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1 INTRODUCTION

S YMMETRY is omnipresent in nature and the man-
made world. Symmetric structures stand out from

a complex background and attract human attention in
natural scenes [1] [2] [3] [4]. Symmetry detection thus
plays an important role in human and animal perception
of the real world [5] [6]. Likewise symmetry can and
should play an important role for object recognition
and classification in computer vision [7] [8]. An efficient
and robust symmetry detection algorithm for real world
images can benefit many computer vision and graphics
applications [9] [10] [11] [12]. A symmetric object can be
characterized effectively by its symmetry groups [13],
yielding a lower dimensional representation space for
object recognition [14], matching [15], segmentation [16]
and tracking [17].

Rotation symmetry is one of the four mathematically
well-defined 2D primitive symmetry types [13]. Many
objects such as flowers, hats, lamp shades, dinner plates,
bicycle and car wheels demonstrate distinct rotation
symmetry patterns (Figures 2, 5, 7, 8, 9, 12, 13, 14,
15, 17, 19). There are three types of Euclidean rotation
symmetry groups for 2D objects, namely the cyclic (Cn),
the dihedral (Dn) and the symmetry group of a disk O(2)
(Figure 1). Any detected 2D rotation symmetry group
can be classified as one of these three symmetry groups.
Figure 1 demonstrates examples of all three distinct
types of rotation symmetry groups about a fixed point in
2D Euclidean space before and after an affine skewing.
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Even though the appearance of real world rotation
symmetry is commonplace, computational methods for
automatic rotation symmetry detection are scarce in
the literature. In this paper, we focus on a complete
characterization of the affinely-skewed rotation symmetry
group of an object in an image as the detection of the
following (Figure 1):

1) center of the rotation symmetry,
2) affine deformation (Orientation & Aspect ratio),
3) type of the symmetry group

(Cyclic/Dihedral/O(2)),
4) cardinality of the symmetry group (number of

folds), and
5) supporting regions for the symmetry group (annu-

lus).

Given a real image, our algorithm detects these five
properties of a skewed rotation symmetry group in two
steps, Stage 1 for rotation center and affine rectification
detection (properties #1 and #2) and Stage 2 for sym-
metry group type, order and supporting region analysis
(properties #3, #4 and #5) (Figure 2).

The main contribution of our work includes: (1) The
first complete skewed rotation symmetry group charac-
terization: Our algorithm detects and discriminates all
three types of rotation symmetry groups and all five
properties of a rotation symmetry group (Figure 1) up
to an affine transformation. (2) A novel Frieze-expansion
(FE) method, which converts 2D rotation symmetry de-
tection into a 1D translation symmetry detection prob-
lem and facilitates the affine rectification of the input
image using phase information. (3) A pair of novel point-
wise rotation symmetry strength (RSS) and symmetry
shape density (SSD) saliency maps that can be used to
recursively detect potential centers of rotation symmetry,
incorporated with a local feature detection method. (4)
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Fig. 1. There are only three different types of rotation sym-
metry groups of finite shapes in 2D Euclidean space. Left
column: affine-skewed symmetry. Right column: affine-rectified
(Euclidean) symmetry. Cn: n-fold cyclic group (rotation symme-
try only). Dn: n-fold dihedral group (rotation + reflection sym-
metry) that contains a cyclic subgroup (Cn). O(2): Continuous
rotation with infinite number of reflection symmetries about the
axes through the center of the circle. The red arrows indicate the
annulus region supporting the rotation symmetry

A quantitative evaluation scheme containing both a set
of diverse test images under various viewing conditions
and labeled ground truth. (5) A comprehensive set of
quantitative comparisons against state of the art rotation
symmetry detection algorithms, which sets a benchmark
for future rotation symmetry algorithms.

2 RELATED WORK

Automatic symmetry detection has been a topic of inter-
est for as long as computer vision has been in existence,
though the primary interest had been on the detection of
reflection symmetries [7], [18]–[22]. We focus our assess-
ment on rotation symmetry detection algorithms from
real images. There are mainly two different approaches:
local feature-based methods that detect symmetries from
a set of selected key points, and global region-based
methods that detect symmetries using all pixels of an
image.

Local feature-based algorithms have the advantage of
being more efficient for rotation symmetry detection.
Reisfeld et. al. [4] propose a specific rotation symmetry

saliency map computed from a pair of perpendicular
point-wise reflection symmetries, thus favoring objects
in the dihedral symmetry group D4 only. Zabrodsky
et.al. [18] introduce a concept of continuous symmetry
of a shape by computing the minimum mean squared
distance between the contour points of an object in
an image and its symmetrical shape. In 2005, Prasad
and Davis [23] proposed a novel Gradient Vector Flow
(GVF) method, using a confidence map to detect the
candidate rotation symmetry centers from real images.
This work, though only tested on images of flowers, is a
significant step forward in rotation symmetry detection
where the algorithm is applied directly to un-segmented,
real world images with multiple symmetries. However,
[23] requires the number of the fold (number of repe-
tition in angular direction) to be given. It takes several
minutes to several hours to process a single image due
to its super-linear algorithm complexity in the number
of corresponding locations and the number of pixels.
Also in 2005, Liu et. al. [24] proposed a dihedral and
frieze group detection algorithm for photos of papercut
patterns using edge features (code is publicly available
at http://vision.cse.psu.edu/papercut.htm). Their algo-
rithm searches through the whole 2D polar parame-
ter space of reflection axes and uses the structure of
the found reflection axes to detect dihedral and frieze
groups. In 2006, Loy and Eklundh [25] proposed a
pairwise local feature matching algorithm using SIFT
key points at corresponding locations. This method is
considered to be one of the best (and fastest) symme-
try detection algorithms based on a recent quantitative
evaluation of discrete symmetry detection algorithms [7].
Their algorithm detects rotation symmetry centers and
number of folds from real images, but does not address
all five symmetry group properties. A quantitative com-
parison of our proposed method with [25] is provided
in Tables 1-3.

Global region-based methods, on the other hand, pro-
vide a more complete characterization of all potential
symmetries in the image. Derrode and Ghorbel [26]
introduce the Fourier-Mellin transform for rotation sym-
metry detection but the algorithm requires that an input
image has a single rotation center and a clean back-
ground. Keller and Shkolnisky [27] introduce a global
geometric structure method that is the closest to our
proposed method, using pseudo-polar Fourier transform
to find repetition over angular direction for rotation
symmetry detection. However, the algorithm is limited
to detecting a single non-skewed rotation symmetry at
a time in each image. Our earlier work on rotation
symmetry detection [28] using Frieze-expansion (FE) and
frequency analysis is a region-based method, calculating
a Rotation Symmetry Strength (RSS) map for all pixels
in an image. It is limited to finding non-affinely skewed
rotation symmetries only.

In addition to the Euclidean symmetry detection al-
gorithms, there is a large body of work on skewed-
reflection symmetry detection [19]–[22]. Kanade intro-
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Fig. 2. Flowchart of our proposed algorithm: It consists of two main stages; (1) center detection and (2) symmetry group analysis
(See Fig 4 for more details). RSS: Rotation Symmetry Strength (Section 3.2.1), SSD: Symmetry Shape Density (Section 3.2.3),
LF=Local Features, FEP=Frieze Expansion Pattern, DFT=Discrete Fourier Transform.

duced the term skewed symmetry [19] denoting globally
affine or perspective skewed reflection symmetry. Van
Gool et al. [22] deal with skewed point symmetry (2-
fold rotation) by detecting the reflection symmetries of
pairs of pixels from a potential rotation center. The
rotation symmetry detection algorithms developed by
Yip et al. [29], Lei and Wong [30] and Shen et al. [31]
share the same goal of finding the dihedral rotation
symmetry groups only (Figure 1), and they require an
object being placed on a clean background. There is
relatively little literature on effective skewed rotation
symmetry detection directly from real images. Cornelius
and Loy propose an affine-transformed version [32] 1 of
Loy and Eklundh’s rotation symmetry detection algo-
rithm [25] that performs an exhaustive search through
all discretized orientation and tilt angles (850 iterations).
Carlsson [33] provides a general mathematical charac-
terization of rotational symmetry in perspective space.
Though the formulation is general, the method requires
a sufficient number of parallel lines on the object for
vanishing point detection, posing difficulties in applying
the theory to general real objects (see Figures 12-17).

To the best of our knowledge, none of the existing
rotation symmetry detection algorithms [22]–[28], [30]–

1. Up to the publication of this paper, we are unable to obtain the
original code or executable of [32] for a fair comparison study.

[33] have attempted to characterize the five properties
(the center, deformation, type, cardinality and support-
ing region of the detected rotation symmetry group) of
affinely skewed rotation symmetry groups from unseg-
mented real images simultaneously and automatically,
as we propose to do in this work.

3 OUR APPROACH

The existence of a rotational symmetry in an image
is usually supported by an annulus containing a re-
peated pattern along its angular direction (Figure 1).
A key observation in our work is that the angularly
repeated pattern (rotation symmetry) can be detected
and analyzed more efficiently in a polar space as a
linearly repeated pattern (translation symmetry). Our
approach exploits the interplay between discrete rotation
symmetry groups in a Cartesian space and the frieze
translation symmetry groups in the corresponding polar
space (Figure 3). Figure 2 provides an overview of our
proposed rotation symmetry detection approach. Each
component of our approach is explained in detail below.

3.1 Frieze-Expansion
Given a potential rotation center (x, y) in an image
and an angular step size 2π/N , we propose a Frieze-
expansion (FE) process to rotate each diameter (starting
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Fig. 3. There is a unique correspondence between the seven
frieze groups in the frieze-expansion patterns and the two
discrete rotation symmetry groups in 2D Cartesian space.

from the horizontal diameter) going through (x, y) to its
vertical position and to re-align them consecutively from
left to right while advancing about the center (x, y) clock-
wise in the original image (Figure 4 (a),(b)). The obtained
pattern is called a Frieze-expansion pattern (FEP)(Figure
4 (b)). If the candidate center location (x, y) in the origi-
nal image is indeed the center of a rotational symmetry,
the FEP becomes a true frieze pattern [34] with non-
trivial horizontal translation symmetry. Since dihedral
and cyclic groups are the only discrete rotation symme-
try groups and O(2) is the only continuous symmetry
group of a 2D object (Figure 1), there exists a unique,
mathematically proven, bijective relation between the
discrete rotation symmetry groups (Cn, Dn, O(2)) and
the seven frieze groups [13] (Figure 3). If there is a
rotation symmetry in an image, the symmetry group of
its FEP must fall into one of the seven frieze groups.
Figure 3 shows the correspondence of the seven frieze
groups and two discrete rotational symmetry groups un-
der their respective spaces. A constant FEP corresponds
to a continuous rotation symmetry group O(2). Instead
of finding rotation symmetry properties of an object in
its original space, we propose to detect its corresponding
translation symmetry of FEP and treat symmetry group
O(2) as a special case of FEPs. We only use the upper
half of FEP for rotation symmetry detection given the
redundancy of the upper and lower halves of FEP (in
Figure 4 (b)). However, we do keep the full (the upper
and lower halves) FEP because it reveals important
information about the cardinality, as will be explained
in Section 3.4.2.

3.2 Stage 1: Center of Rotation Detection

We propose a rotation center detection method that
combines a set of rotation symmetry saliency maps
from (1) a pointwise Rotation Symmetry-Strength (RSS)
measure computed from the DFT coefficients of FEP, (2)
a Symmetry Shape Density (SSD) function defined in
terms of the phase information of FEP, and (3) a potential
rotation center map based on local feature matchings.
Potential rotation centers are detected by finding local
peaks of RSS and SSD saliency maps combined with

Fig. 4. (a) Original image; a point (x,y) is selected as a potential
symmetry center. (b) Frieze-expansion (FE) [28] transforms a
rotation symmetry in Cartesian space to a Frieze-expansion
pattern (FEP) with translation symmetries in a polar-transformed
space. N is the width of the FEP which is the resolution of
the FE. R is the height of the FEP and corresponds to the
diameter of the largest possible circular region (centered at
(x,y))contained within the input image. (c) 1D DFT of the FEP
(row-by-row); horizontal axis is the index of DFT basis and
segmented regions are marked in blue lines. (d) RSS overlaid
on the original image. (e)(f)(g) are the sum of absolute DFT
coefficients of the segmented regions in (c) respectively. (h)(i)(j)
are the segmented frieze patterns from (b). (k) Final rotation
symmetry group detection result.

the probable rotation centers from pairwise local feature
matching. All centers from these three different rotation
symmetry saliency maps are collectively considered as
potential rotation centers.

3.2.1 Rotation Symmetry Strength (RSS)

Let px,y(r, n) be an N×R FEP (Figure 4 (b)) expanded at
an image position (x, y) where r∈[1,R], n∈[1,N], R and N
are the height and width of the FEP respectively. A one-
dimensional horizontal discrete Fourier transform (DFT)
is performed on each row of the FEP. The kth coefficient
of the DFT [35] of the rth row, Px,y(r, k) is

Px,y(r, k) = ax,y(r, k) + ibx,y(r, k)

=
N∑
n=1

px,y(r, n)e−i
2π
N (n−1)(k−1) (1)

where ax,y(r, k) is the real part and bx,y(r, k) is the imag-
inary part of the DFT coefficient. Px,y(r, k) represents
the complex value of each frequency component of the
spatial domain information px,y(r, n).
Sx,y(r, k) is the energy spectral density of px,y(r, n):

Sx,y(r, k) = Px,y(r, k)Px,y(r, k) = ax,y(r, k)2 + bx,y(r, k)2

(2)
The value of Sx,y(r, k) reflects the relative strength of a

translational symmetry with the kth potential frequency.
All possible phase differences between px,y(r, n) and one
of the corresponding DFT components (sine or cosine
wave) are between 0 and π

2 , which corresponds to the
DFT phase. With the angular step size 2π

N , we have N
points for each row of the FEP and N coefficients for each
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Fig. 5. Sample rotation symmetry saliency (RSS) map overlaid
on real images. * Best viewed in color

corresponding spectral density. Due to the symmetric na-
ture of DFT coefficients [35], only the first half (k = 2...N2 )
of the Sx,y(r, k) excluding DC coefficient (k = 1) need to
be considered.

Originally, Rotation symmetry strength (RSS) is a func-
tion of center position (x, y), the radius r and the angular
step size θ. In the rotation center detection step of our
algorithm, the largest circle with radius r inside the given
image for each center location (x, y) is used (Figure 4
(a)) and the angular step size θ is fixed to 2π

N , where
N = 90 in all our experiments. RSS then becomes a
function of position (x, y) only and can be represented
as a two dimensional RSS map. Higher values of RSS
imply higher likelihood of rotation symmetry centered
at that location. By calculating RSS values at each pixel
of an image we can construct a pointwise RSS map,
which reveals the rotation symmetry saliency of the
given image (Figure 5).

Let kpeak(r) be the DFT coefficients of the rth row satis-
fying Sx,y(r, kpeak) ≥ mean{Sx,y(r, k)|k = 2, 3, 4, ..., N2 }+
2 · std{Sx,y(r, k)|k = 2, 3, 4, ..., N2 }. Rotation symmetry
strength (RSS) at an image position (x, y) can then be
defined as:

RSS(x, y) =
R∑
r=1

ρr
mean(Sx,y(r, kpeak(r)))

mean(Sx,y(r, k))
(3)

where,

ρr =

{
1, if Mod(kpeak(r),min(kpeak(r))) = 0
0, otherwise

In the frequency domain, we need to check the coinci-
dence among Sx,y(r, kpeak(r)) entries to confirm that all
indices kpeak(r) are multiples of the smallest index. If
all kpeak(r) indices satisfy this condition, it means that
they support the same repeated pattern. Therefore there
exists a rotational symmetry in the row (ρr=1).

We use a hierarchical search algorithm to accelerate the
process. We start from the observation that most rotation
symmetries remain when an image is scaled down. We
perform a full search over the smallest image level at
the top of the image pyramid. The initial RSS map
provides the potential centers of rotation symmetries and
is enlarged using bilinear interpolation to the size of
the next level of the pyramid. RSS of the neighborhood
regions of the detected potential center points are re-
fined at a higher resolution. This process repeats until
we reach the original image resolution. We select the
final candidate symmetry center points at the highest
resolution. We adopt a well-known peak visiting method

(a) (b) (c)

(d) (e) (f)

Fig. 6. Bidirectional flow (a) A rotationally symmetric object
with a rotation center x. (b) FEP of (a): when expanded around
the correct center, its FEP is a true frieze pattern characterized
by translation symmetries. (c) Intensity variation example of a
single row of (b). (d) A rotation symmetry object with an arbitrary
sample point. Indicated angles represent phase of the 2nd DFT
component. Flow line (blue) is intersecting the rotation center.
(e) FEP of (d): if the center of FE is off (blue x), a single cycle of
sine wave component is formed in its FEP. (f) Intensity variation
of a single row of (e).

called the inhibition-of-return mechanism [36] to extract
local maxima in descending order of the RSS saliency
map. We continue to extract local maxima until the RSS
value falls below a threshold, mean(RSS)+β×std(RSS).

3.2.2 Bidirectional Flow
To construct a phase-based rotation symmetry saliency
map, we propose a bidirectional flow vector. Figure 6(a)
is an input image with a detected center (marked with an
x) and Figure 6(b) is its FEP at x. With the correct rotation
center, its FEP shows horizontal translational symmetry
(Frieze pattern), while an off-centered point (Figure 6(d))
leads to a distorted frieze pattern as its FEP (Figure
6(e)). Points A and B in Figure 6(d) (on the boundary
with the shortest and the longest distance from the off-
centered point, respectively) are also indicated in Figure
6(e). The FEP is distorted by a single cycle wave with an
arbitrary phase due to the off-centered point. Intensity
variations along each row of the FEP also have a single
cycle wave component with the identical phase. Now
consider performing a 1-dimensional DFT on each row.
The 2nd component of the DFT characterizes the single
cycle wave on FEP. Angle Φ in Figure 6(d) corresponds
to the phase of the 2nd DFT component in each row of
FEP.

Let ci = (xi, yi) be an arbitrary point near the correct
rotation symmetry center and Pxi,yi(r, k) be the DFT
coefficients of the rth row of FEP based on ci. Then φi(r)
is defined as the phase of the 2nd DFT component for
the rth row:

φi(r) = arctan(
Re(Pxi,yi(r, 2))
Im(Pxi,yi(r, 2))

) (4)

Phase of ci is calculated by taking the median of the
phase values Φi = median(φi(r)). Now, we can draw a
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(a) FEPs (b)Input image (c)FEPs of the true centers

Fig. 7. Bidirectional flow examples: (a) Two off-centered FEPs
(blue x’s shown in (b)). (b) True center (marked with a red x)
estimated by intersecting two bidirectional flows obtained from
two arbitrary off-centered points (marked with a blue x). (c) New
FEP from the estimated true rotation center (red x).

line through the point ci with slope(− 1
tanΦi

) calculated
from its phase. We define this line as a bidirectional flow of
the point ci. The potential correct rotation center should
lie on the bidirectional flow because the bidirectional
flow points to the shortest(A) and the longest(B) loca-
tions from ci (Figure 6(c)). The bidirectional flow line is
defined as:

tanΦi
xi + yitanΦi

y +
1

xi + yitanΦi
x = 1 (5)

If we have another point cj = (xj , yj) that is not
on the bidirectional flow of ci, we can estimate the
potential rotation symmetry center C by intersecting
the two bidirectional flows detected separately through
phase analysis:

C =
(
x
y

)
=

(
sixi−sjxj+yj−yi

si−sj
sisj(xi−xj)+siyj−sjyi

si−sj

)
(6)

where si = − 1
tanΦi

and sj = − 1
tanΦj

are slopes of the
intersecting lines respectively (see the examples in Figure
7).

Figure 6(d) shows the phase Φi along the location of
an off-centered point. If the sample point is located at
the left(right) half circle, the phase is negative(positive).
Note that the phase angle is discretized by the step
size of FE. Therefore, there exists a maximum phase
estimation error of emax =

(
180
N

)o where N is the number
of columns of FEP. We compute all bidirectional flows
from discretely sampled points of a given image, shown
as short oriented line segments centered on the sample
points (Figure 8 (b)).

3.2.3 Symmetry Shape Density (SSD)
Each pair of bidirectional flows has one intersecting
point, which indicates a potential rotation symmetry

(a)Input Image (b)Bidirectional Flows (c)SSD (d)Supporting flows

RSS and SSD complement each other in rotation symmetry center detection

Fig. 8. Symmetrical Shape Density (SSD) maps and bidirec-
tional flows overlaid on real images. Middle row is the affine-
skewed version of the top row. (b) Bidirectional flows from the
discretized image locations (c) All intersecting points of those
pairs build the SSD after smoothing with a Gaussian kernel (d)
Supporting flows for high density points. A single mode of SSD is
supported by points from all circular directions. Affinely skewed
object has a pair of modes: blue flows for the left mode and
yellow flows for the right mode. Bottom row: complementary
RSS (between objects) and SSD (on an object) for rotation
symmetry center detection.

center. With a set of z bidirectional flows we can calculate
at most z2−z

2 intersecting points. We define Symmetry
Shape Density SSD(x, y) as the convolution of the in-
tersecting point distribution D(x, y) with a l×l Gaussian
kernel G(l, l) (SSD(x, y) = D(x, y) •G(l, l)), where l and
the sigma of the Gaussian kernel are proportional to
the image size. Each value of D(x, y) corresponds to
the cumulative number of intersecting points C at the
location (x, y) calculated in the equation (6).

Figure 8 (b) is an example of a bidirectional flow map
and Figure 8 (c) is its SSD. The true rotation center
points have higher symmetry shape density. By using the
same peak visiting method called the inhibition-of-return
mechanism [36], we can measure the potential rotation
symmetries at each image location. Figure 8 (bottom
row) shows how RSS and SSD work complementarily
in detecting different types (between objects vs on an
object) of rotation symmetries.

With an affinely transformed symmetry, there are two
high-density points located on the major axis of the
elliptical shape of the symmetric object (Figure 8 (d)).
This characteristic enables us to locate the center of an
affinely transformed object by taking the middle point
of the two high-density points and the orientation of
the affine transformation by taking the orientation of
the major axis recovered by connecting the two high-
density points. The remaining problem is how to decide
whether a high-density point is a single point of a non-
affine transformed object or one of the two points of
an affinely transformed object. Figure 8 shows the two
different types of high-density points (from affine and
non-affine objects). Yellow and blue lines of Figure 8 (d)
represent the bidirectional flows contributing to the high
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Fig. 9. SSD map and detected centers under occlusion

density of the SSD. One of the high-density points of
the affinely transformed object is supported by sample
points from one-half circle (blue) and there is another
center point in the pair supported by sample points from
the other half circle (yellow). By storing the pattern of the
supporting sample points (half ellipse or full circle) for
each intersecting point, we can decide whether a high-
density point comes from an affinely transformed object
or not. Figure 9 is an example showing the potential
for rotation symmetry center detection using SSD on
occluded images.

3.2.4 Rotation Symmetry Center Localization
In addition to the two different types of rotation symme-
try saliency maps (RSS and SSD), we also incorporate a
rotation symmetry center detection method using local
features (LF). Similar to [25], we use the potential centers
of rotation symmetry from feature matching. Our exper-
iments include, but are not limited to, SIFT key features.
We collect all centers from the three rotation symmetry
saliency maps (RSS, SSD and LF) as the potential centers
of rotation symmetries.

3.3 Stage 1: Affine Deformation Estimation
Real world images taken from an arbitrary angle often
contain perspective distortion caused by the projection
of a 3D object into a 2D planar space. In most cases,
however, objects are of limited spatial extent and far
enough away from the focal point of a camera so that
we can use a weak perspective approximation [30].
Therefore, affine transformation estimation of rotation
symmetry in real world images has a justifiably wide
applicability in computer vision.

After the construction of a set of rotation symmetry
saliency maps, we perform a phase analysis on the FEP
to estimate potential affine transformations. We then
analyze the symmetry group on the rectified image. We
re-calculate new rotation symmetry strength values after
rectification on each potential center. The orientation and
skew components are the two unknown variables for
affine rectification, corresponding to an estimation of
(1)the amount of rotation from the zero-phase axis and
(2)the aspect ratio, respectively.

The orientation can be predicted by drawing the major
axis of an ellipse intersecting the pair of high density
points found in the SSD map. In this section, we de-
tect the orientation using low frequency phase analysis.
Figure 10 (a) shows an affinely transformed image of
Figure 6 (a) and Figure 10 (b) is its FEP. We can observe
a sine wave pattern repeated twice in Figure 10 (b). This

(a) (b)

(c)

Fig. 10. (a) Affinely transformed rotation symmetry object with
true center. (b) FEP of (a): if the center is correct, only sine wave
of double cycles formed in its FEP (c) Orientation detection and
alignment for both phase values (Φ1 and Φ2) defined in Equation
(16).

means that the intensity variations along each row of the
FEP repeat twice with identical phase. Now we perform
a 1-dimensional DFT on each row and investigate the
3rd DFT component, which corresponds to the double
repetition (kth DFT component correspondes to the k−1
repetition). The phase of the 3rd component corresponds
to Φ1 = median(Φ(r)) in Figure 10 (a), where

Φ(r) = arctan(
Re(Px,y(r, 3))
Im(Px,y(r, 3))

). (7)

The phase could be detected and aligned to either the
object or the background because the algorithm does
not know which region is from the object. Therefore,
in this step, we have an additional possible orientation
of phase Φ2 = Φ1 + 2

π . Figure 10 (a) shows the phase
angle for both the long and short axes of the object.
Two zero-phase axes from both object and background
are shown. Figure 10 (c) shows the orientation detection
and alignment results for both phase values. Note that
if we have affinely skewed rotation symmetry, we can
easily estimate the orientation from the two high density
point pairs detected by SSD. Then, we can decide and
verify the correct orientation by choosing the phase with
the closer to this estimated orientation. If there is no
estimated orientation from the previous step, both cases
should be investigated.

The long axis of an affinely transformed symmetry is
aligned to either the horizontal or vertical axis (Figure
10) for both phases. We calculate and compare RSS val-
ues for each different aspect ratio of the aligned images
by changing the length of the x-axis. In other words,
we calculate RSS values for all ratio steps between 1:1
and 1:σ(0 < σ < 1). The aspect ratio that maximizes
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RSS is selected. In our experiments, σ = 0.5 and the
step size is 0.05. Equation (8) shows the inverse affine
transformation matrix of a given image:

T =
[
α 0
0 1

][
cos( Φ̂−90

2 ) −sin( Φ̂−90
2 )

sin( Φ̂−90
2 ) cos( Φ̂−90

2 )

]

=

[
αcos( Φ̂−90

2 ) −αsin( Φ̂−90
2 )

sin( Φ̂−90
2 ) cos( Φ̂−90

2 )

]
(8)

where α(σ ≤ α ≤ 1) is the aspect ratio and Φ̂
is the phase of the maximum RSS. Transformation T
maps a given affinely transformed planar symmetric
object to its maximum Euclidean symmetry, upon which
we perform a frequency analysis to find its rectified
rotation symmetry group. Each potential center can have
a different affine transformation that will be detected
and rectified separately. Based on the rectified rotation
symmetry image, we calculate RSS values of the poten-
tial rotation symmetry centers and perform peak visiting
again to eliminate further potential rotation symmetry
centers below the threshold. Since originally elliptical
objects (R42 of Figure 19) have an inherent ambiguity
from a single view, our algorithm always finds the
implied circular rotation symmetry object by an affine
rectification.

3.4 Stage 2: Symmetry Group Analysis

With the affine rectified image, we are now ready to in-
vestigate the cardinality (fold), rotation symmetry group
type (Dihedral/Cyclic/O(2)) and corresponding sup-
porting regions of detected rotation symmetry groups
[28]. Figure 4 illustrates how symmetry groups can be
analyzed using the spectral density. The number of folds
corresponds to k − 1 when the kth DFT component has
the highest coefficient. The symmetry supporting region
can be obtained by segmenting consecutive rows of the
FEP with similarly high coefficient in the spectral density
plot (Figure 4 (b)). Finally, to classify symmetry group
types, we use the proven relationship between transla-
tion symmetry group (frieze groups) and the 2D rotation
symmetry groups (Figure 3). The key to distinguish
between Dihedral and Cyclic groups is whether the FEP
has a vertical reflection symmetry.

3.4.1 Supporting Region Segmentation
As can be seen in Figure 4(c), several consecutive rows
may have similar peak distributions of the DFT spectral
density. This indicates a ”frequency cluster” leading to
one contiguous symmetry-supporting region. We can
therefore differentiate one symmetry region from an-
other type of symmetry region (circular bands) even
though they share the same center. By grouping con-
secutive dominant peaks, we can delineate each sym-
metry region on both the converted frieze pattern and
the original image. With real world images, noise can
cause detection failure in a narrow band and divide one

Fig. 11. Examples of determining the number of folds from
segmented FEPs. Red arrows indicate the dominant coefficient,
each of which corresponds to (a) 4th , (b) 15th , (c) 23th , (d)
13th and (f) 5th DFT coefficient. The fold is DFTcoefficient−1
(Section 3.4).

symmetry region into multiple subregions, even though
they have the same symmetry characteristics. To avoid
this problem, we merge consecutive symmetry bands
if they share the same number of folds and symmetry
type. Similarly, we eliminate narrow symmetry regions
that are hardly perceived by the human eye. Figure
4(c) shows a segmented result. Figure 4(e) shows the
summed DFT power spectrum of corresponding sym-
metry regions, from which we can decide the number of
folds.

3.4.2 Estimating Symmetry Group Cardinality
From the DFT coefficient plot of each supporting region,
we find the highest coefficient basis k. The number
of folds corresponds to k-1. Note that we only con-
sider AC coefficients. For example, the 7th coefficient is
associated with the cosine/sine waves with six cycles
[39]. This responds most strongly to the six-fold rotation
symmetry. In Figure 4, the summed up DFT density
plot in (e) has a maximum peak at the 6th component
and (g) has its maximum peak at the 5th component,
which represents a 5-fold and a 4-fold rotation symmetry,
respectively. The reader can verify this with respect to
the corresponding frieze patterns in Figure 4(h) and (j).
Figure 11 shows several fold decision examples from
the DFT spectral density image. If a Frieze expansion
has horizontal reflection symmetry with respect to the
center row (Figure 4(b)), the inverse Frieze expansion
in its image space has a rotation symmetry with even
fold, otherwise it is odd. For example, the pattern in
Figure 4(j) is reflected symmetrically in figure 4(b), but
the pattern in 4(h) is not. This knowledge helps to decide
the number of folds robustly.

3.4.3 Symmetry Group Classification
We can prove that a FEP of cyclic symmetry has no
vertical reflection, while a FEP of dihedral symmetry
has to have vertical reflection (Figure 3). By checking
the existence of vertical reflection in a frieze pattern, we
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Fig. 12. Sample experimental results with synthetic and real images for all five rotation symmetry properties (center, type, # of
folds, supporting region and affine transformation). R98 and R121 are from Caltech-256 [37], R102 is from PASCAL [38]. Supporting
region of affinely skewed objects are shown in rectified image. * Best viewed in color. Red/Blue points are the potential rotation
centers found from the RSS and SSD saliency maps (Section 3.2.1 and 3.2.3) respectively. Results of [25] on the same images are
shown on the rightmost column.

can differentiate cyclic from dihedral symmetry groups
(Figure 3). Furthermore with the fold information, we
can identify the tile of a Frieze pattern [34] computation-
ally. We flip a tile (the smallest cell of a frieze pattern)
horizontally and slide it over the FEP while calculating
correlation. If there is a periodic match corresponding
to the dominant frequency we detected from the DFT
coefficients investigation, we conclude this region is
dihedral, and if not, we conclude that it is cyclic. In other
words, if there is vertical reflection in the Frieze pattern,
it falls into the dihedral rotation symmetry group. One
exception is shown in Figure 4(f). Most of the coefficients
are zero, signifying that the corresponding region of the
original image is uniform, as in Figure 4(i). This indicates
the existence of the continuous rotation symmetry group,
O(2).

4 EXPERIMENTAL RESULTS

We evaluate our proposed skewed rotation symmetry
group detection algorithm under various conditions us-
ing a diverse set of test images. A total of 170 images
is collected from the internet and public image data sets
like PASCAL [38] and Caltech-256 [37]. Images are cate-
gorized into three subsets: 39 synthetic images with both
single and multiple rotation symmetries within the same
image, 104 real images with a single rotation center and

47 with multiple rotation centers (see supplemental ma-
terial). We further divide the data set into three ground
truth levels for quantitative evaluations. We test two
different versions of center detection methods proposed
in our approach. Method #1 detects rotation symmetry
centers by combining RSS and SSD only and Method
#2 incorporates the local feature detection method with
Method #1. We use the empirical value β = 1.8 for the
threshold of both saliency maps, l = (X + Y )/24 and
sigma = l/4 for the Gaussian kernel in SSD construction
when the image size is X×Y (see Section 4.1 and Figure
16 for a discussion of the parameter β and detection
accuracy).

Figure 12 shows successful results from each of the
three test sets respectively. R4 in Figure 12, displays
a cyclic 3-fold rotation symmetry with a global center
(red) as well as three locally distorted 3-fold symmetry
centers (blue). R6 in Figure 12 has multiple co-centered
symmetry groups. Supporting regions of the four dif-
ferent cyclic symmetry groups (C3, C6, C4 and C5) are
correctly segmented and the symmetry group types are
detected. R36 in Figure 12 is a good example demon-
strating the multiple symmetry detection performance.
Affinely transformed five fold symmetries and three fold
symmetries at the centers of hexagons are all found
successfully. In the wallpaper patterns like R37 (Figure
12), all symmetry centers are correctly found. These
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Fig. 13. Center detection success but # of folds or rotation
symmetry group type detection failure cases. R141 and R155
are from PASCAL [38]. Results of [25] on the same images are
shown on the rightmost column. * Best viewed in color

results show the potential ability of lattice (translation
symmetry) detection of the proposed algorithm.

R128 (Figure 12) is a good example showing how two
symmetry saliency maps (RSS and SSD) complement
each other for different types of rotation symmetries.
Red/Blue points are the potential rotation centers found
by the RSS and SSD respectively. The RSS responds well
to the patterned symmetries while the SSD responds well
to circular shaped symmetries. R140 in Figure 12 also
shows the complementary performance of RSS and SSD.
Two cacti on the upper right corner are correctly found
although they are small and affinely transformed.

Our proposed algorithm can detect high order of folds
(22-fold in R47 in Figure 12 and 33-fold in R134 in Figure
13), occluded objects (R47 in Figure 12) and affinely
skewed symmetries (R135 in Figure 13). Figure 13 shows
some failure cases (the # of folds or rotation symmetry
group type) due to deviation of the center detection,
ambiguous cardinality and background clutter.

4.1 Quantitative Evaluation

To evaluate and compare different rotation symmetry
detection algorithms on different types of images in a
more precise and semantically meaningful (to human)
manner, we define three levels of rotation symmetries:
(1) rotation symmetry formed by a set of objects (level-
1, among objects, Figure 14(a)); (2) rotation symmetry of
a single object (level-2, single object, Figure 14(b)); and
(3) rotation symmetry of a sub-part of an object (level-3,
within one object, Figure 14(c)). This division depends on
our definition of an object, which is subjective. Here we
use the most commonly accepted and least ambiguous
concept of everyday object as a basis (from 5 raters). The
full test-image sets and their respective labeled ground
truth are provided in the supplemental material. Figure

(a) Level-1 symmetry (b) Level-2 symmetry (c) Level-3 symmetry
(global: among objects) (an object) (local: part of an object)

Fig. 14. Three levels of symmetries (among objects, on an
object and within an object): Our experiments are evaluated on
each level (Table 1-4) respectively.

Fig. 15. Rotation symmetry center detection (Table 4): Pro-
posed Method #2 success results where Proposed Method #1
failed. * Best viewed in color. Red/Blue points are the potential
rotation centers found from the RSS and SSD maps respec-
tively.

14 shows samples of each image and the corresponding
ground truth evaluated.

Tables 1, 2 and 3 summarize the quantitative eval-
uation and comparison results among [25], [28] and
our two proposed rotation symmetry group detection
algorithms on the level-1, level-2 and level-3 test image
sets, respectively. The Proposed Method #1 using both
RSS and SSD shows an overall higher detection rate in all
types (Table 1, 2 and 3) than [28] and [25]. The Proposed
Method #2 integrating the local feature method with the
RSS and the SSD has the best performance rates of all.

Figure 15 shows several challenging cases where the
local feature method provides a synergy in the center
detection step. Table 4 shows not only the relative dif-
ference between a pair of rotation symmetry detection
algorithms but also whether the difference is statistically
significant in terms of the p-values calculated using
paired t-test on each pair of detection accuracies.

Figure 16 shows the Precision-Recall and ROC curves
for Loy and Eklundh [25] and the Proposed Method
#1. Loy and Eklundh [25] fix the maximum number of
rotation symmetry centers to be detected (T1). In Figure
16 (a) and (c), we show the Precision-Recall and ROC
curves of [25] and proposed method #1 on rotation sym-
metry center detection. For comparison, we use the same
T1 as in [25] for the proposed algorithm. Figure 16 (b)
and (d) show the Precision-Recall and ROC curves with
respect to the threshold for rotation symmetry strength
(T2) in the rotation center decision step. It corresponds
to the β in our Proposed Method that sets the threshold
for the peak visiting of our two proposed maps (RSS
and SSD) (see Section 3.2.1). In rotation symmetry center
detection problems, true negative means all pixel points
of an image except the true positive rotation centers.
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TABLE 1
Quantitative Experimental Results for Level-1 Symmetry (Global: among Objects)

Method Data Set TP Center Rate FP Center Rate # of Folds Cn/Dn/O(2)
Loy and Eklundh [25] ECCV2006 13 images with 34 GT 3/34=9% 5/34=15% 2/3=67% N/A
Lee et.al. [28] CVPR2008 13 images with 34 GT 26/34=76% 4/34=12% 24/26=92% 26/26=100%
Proposed Method #1 (RSS+SSD) 13 images with 34 GT 28/34=82% 4/34=12% 25/28=89% 28/28=100%
Proposed Method #2 (RSS+SSD+LF) 13 images with 34 GT 28/34=82% 8/34=24% 25/28=89% 28/28=100%.

TABLE 2
Quantitative Experimental Results for Level-2 Symmetry (on an Object)

Method Data Set TP Center Rate FP Center Rate # of Folds Cn/Dn/O(2)
Synthetic (29 images/48 GT) 31/48=65% 4/48=8% 22/49=45% N/A

Loy and Eklundh [25] ECCV2006 Real-Single (58 images/58 GT) 50/58=86% 41/58=71% 16/64=25% N/A
Real-Multi (21 images/78 GT) 32/78=41% 6/78=8% 12/42=29% N/A
Overall (108 images/184 GT) 113/184=61% 51/184=28% 50/155=32% N/A
Synthetic (29 images/48 GT) 36/48=75% 0/48=0% 42/54=78% 44/54=81%

Lee et.al. [28] CVPR2008 Real-Single (58 images/58 GT) 25/58=43% 33/58=57% 22/32=69% 24/32=75%
Real-Multi (21 images/78 GT) 19/78=24% 21/78=27% 18/25=72% 19/25=76%
Overall (108 images/184 GT) 80/184=43% 54/184=29% 82/111=74% 87/111=78%
Synthetic (29 images/48 GT) 43/48=90% 12/48=25% 44/62=71% 51/62=82%

Proposed Method #1 (RSS+SSD) Real-Single (58 images/58 GT) 47/58=81% 37/58=64% 30/59=51% 49/59=83%
Real-Multi (21 images/78 GT) 52/78=67% 22/78=28% 37/67=55% 50/67=75%
Overall (108 images/184 GT) 142/184=77% 71/184=39% 111/188=59% 150/188=80%
Synthetic (29 images/48 GT) 43/48=90% 12/48=25% 44/62=71% 51/62=82%

Proposed Method #2 (RSS+SSD+LF) Real-Single (58 images/58 GT) 54/58=93% 31/58=53% 35/66=53% 54/66=82%
Real-Multi (21 images/78 GT) 55/78=71% 22/78=28% 40/70=57% 53/70=76%
Overall (108 images/184 GT) 152/184=83% 65/184=35% 119/198=60% 158/198=80%.

TABLE 3
Quantitative Experimental Results for Level-3 Symmetry(Local: within an Object)

Method Data Set TP Center Rate FP Center Rate # of Folds Cn/Dn/O(2)
Loy and Eklundh [25] ECCV2006 7 images with 37 GT 0/37=0% 0/37=0% N/A N/A
Lee et.al. [28] CVPR2008 7 images with 37 GT 14/37=38% 0/37=0% 14/14=100% 14/14=100%
Proposed Method #1 (RSS+SSD) 7 images with 37 GT 25/37=68% 0/37=0% 25/25=100% 25/25=100%
Proposed Method #2 (RSS+SSD+LF) 7 images with 37 GT 25/37=68% 0/37=0% 25/25=100% 25/25=100%.

TP, FP and GT represent ’True Positive’, ’False Positive’ and ’Ground Truth’ for rotation center detection respectively.
TP Center Rate = # of TP Rotation Centers / # of GT Rotation Centers, FP Center Rate = # of FP Rotation Centers / # of GT Rotation Centers

# of Folds Rate = # of Correct Order of The Rotation Symmetry Group Found / # of Distinct Symmetry Groups of TP Centers
Cn/Dn/O(2) Rate = # of Correct Cn/Dn/O(2) Found / # of Distinct Symmetry Groups of TP Centers

Cn/Dn/O(2) are the cyclic, dihedral and continuous rotation symmetry group types.
Note # of distinct symmetry groups of TP centers ≥ # of TP centers, because multiple rotation symmetry groups in an image may share the

same rotation center. The complete set of the output images can be found in our supplemental material.

To make ROC curves visible, we set the fixed number
(=TP+FP) for true negatives. ROC curves show that for
a fixed FP rate, the proposed algorithm has a higher TP
rate than the Loy and Eklundh [25] algorithm. In Figure
16 (b), the Loy and Eklundh algorithm shows higher
precision when recall<60% but lower precision than
the proposed method for higher recall. This indicates
the incompleteness of their algorithm for handling all
symmetry images in the test set.

4.2 Failure Cases
Though the overall success rates of the proposed method
#2 are significantly better than existing rotation sym-
metry detection algorithms [25] [28] (Tables 1-4), the
current detection accuracy on all fronts (rotation center,
the order and the type of the symmetry group) is barely
satisfactory (e.g. Table 2: 83% or less at the object-
level). Figure 17 demonstrates why the correct estimation
of the order of the rotation symmetry group can be

very challenging. For example: (1) a see-through rota-
tion symmetry supporting region has a rather cluttered
background (R81 in Figure 17), and (2) distortion of the
rotationally symmetric object can be beyond affine (R105
in Figure 17).

4.3 Algorithm Complexity
Given an image of size IxI, RSS(Section 3.2.1) investigates
the linearly sub-sampled points of the image (O(I2)) and
FE is performed at each point to the maximum diameter
possible within the image (O(I1)). Thus, the complexity
of the RSS map construction is O(I3). SSD(Section 3.2.3)
also investigates each sampled point of the image, fol-
lowed by the FE and DFT for phase analysis (O(I3)).
Affine detection and frequency detection perform selec-
tively on the high potential centers. Therefore, the total
complexity of the proposed algorithm is O(I3). The size
of a symmetry group (# of folds) does not affect the
proposed algorithm complexity. The average processing
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TABLE 4
Statistical Significance for The Rotation Center Detection

Accuracy Improvements

Loy and Eklundh [25] Loy and Eklundh [25]
→ Proposed Method #1 → Proposed Method #2

TP FP Overall* TP FP Overall*
Level-1 (3→28) (5→4) (-2→24) (3→28) (5→8) (-2→20)
P-value 4.76e-11 0.3246 1.50e-08 4.76e-11 0.0831 1.00e-05
Level-2 (113→142) (51→71) (62→71) (113→152) (51→65) (62→87)
P-value 2.21e-08 4.59e-06 0.1990 4.30e-11 1.44e-04 5.50e-04
Level-3 (0→25) (0→0) (0→25) (0→25) (0→0) (0→25)
P-value 2.50e-10 N/A 4.56e-08 2.50e-10 N/A 4.56e-08

All levels (116→195) (56→75) (60→120) (116→205) (56→73) (60→132)
P-value 3.16e-22 2.60e-05 1.05e-09 1.77e-25 5.36e-06 8.09e-13.

Level-1 (13 images/ 34 GT), Level-2 (108 images/ 184 GT) and
Level-3 (7 images/ 37 GTs). We compute the significance of detection

accuracy improvement on each same image with each pair of
algorithms. Therefore the paired t-test is used to calculate the

p-values. * Overall1→2 = (TP1 − FP1)→ (TP2 − FP2)

(a)Precision-Recall rates, T1=[1,∞] (b)Precision-Recall rates, T2=[0,2]

(c)ROC curves, T1=[1,∞] (d)ROC curves, T2=[0, 2]

Fig. 16. Precision-Recall and ROC on object level (level-2)
data set: Precision = TP

TP+FP
, Recall = TP

TP+FN
, TPrate =

TP
TP+FN

, FPrate = FP
FP+TN

,where TP = # of true positives,
FP = # of false positives, FN = # of false negatives and TN
= # of true negatives. T1 is the allowed maximum number
of rotation symmetry centers varying from 1 to ∞. T2 is the
threshold for rotation symmetry strength in the saliency maps
varying from 0 to 2. * T1=3 in (b) & (d) is the default value
of the Loy and Eklundh [25] code. ROC curves show that the
proposed algorithm outperforms Loy and Eklundh [25] algorithm
on rotation center detection, when TP rate > 60%.

time for a 500x500 image is around 50 CPU seconds
(coded with Matlab and run on a Windows XP, 3.2GHz
Pentium CPU) and the average processing time of the
local feature based method [25] is around 8 seconds.

5 DISCUSSION

5.1 The Equivalence of Discrete Fourier Transform
and Autocorrelation
Though frequency analysis on the spectral density seems
to be a natural choice for finding repeated patterns in an

Input/Output FEP

R81 R105

Fig. 17. FEPs of # of folds detection failure cases: R81 and
R105. R81: A see-through object: background clutter weakens
the foreground rotation symmetry. R105: Non planar curved sur-
face of the object can not be rectified by an affine transformation.

Fig. 18. Relation between spectral density S(k) and autocor-
relation A(n). ((a)-(d)-(e)-(f)) is the processes of our algorithm,
which is equivalent to using the DFT of autocorrelation ((a)-
(b)-(e)-(f)). Peak finding algorithms [7] use (a)-(d)-(e)-(b)-(c) to
reduce the time complexity. * DC coefficients are not shown.

image, given only a small number of cycles in a real im-
age, some earlier symmetry detection algorithms choose
a peak finding method on the auto-correlation map of
input images [26], [34], [40]. For example, [34] used auto-
correlation to find the underlying lattice (translation
symmetry) in frieze and wallpaper patterns via inverse
FFT of the spectral density (for computational efficiency).
Based on Wiener-Khinchin theorem [39], we can estab-
lish an equivalence relation between the spectral density
S(k) and the auto-correlation A(n) for the same input as
follows (Figure 18):

A(n) =
N−1∑
m=0

x(m)x(n+m) =
N∑
k=1

S(k)ei
2π
N n(k−1) (9)

From equation (9) one can verify that autocorrelation
and spectral density represent the same information in
different domains. DFT decomposes autocorrelation into
a set of frequency components with the highest coeffi-
cient assigned to the strongest component. Our proposed
frequency analysis method on the spectral density inves-
tigates regularity of autocorrelation by correlating with
densely defined components (sine and cosine waves)
rather than detecting coarse peak locations in the spatial
domain.

5.2 Challenges in Quantitative Evaluations

Our initial exploration of an effective skewed rotation
symmetry group detection algorithm has led to some
encouraging results (Tables 1-4, Figures 12, 13 and 15 ).
There are several lessons we have learned through this
study.
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Fig. 19. Various types of ambiguities during groundtruth label-
ing: (1) types of symmetry groups (cyclic vs dihedral) – R62;
(2) # of folds – R95 (from Caltech-256 [37]), R147; (3) affine
deformation from a single view is inherently ambiguous: R42.

5.2.1 Ground Truth Labeling

Mathematically, the concept of symmetry group and its
associated properties are well-defined [13]; computation-
ally, however, real world symmetry is a discretely sam-
pled continuous measure [18]. This imposes tremendous
difficulty when it comes to the labeling of the rotation
symmetry ground truth on a real image for a quantitative
evaluation of the symmetry detection algorithm. For
example, to assess three semantic levels of symmetries
(level-1: among objects, level-2: on the object, and level-
3: on a subpart of an object as shown in Figure 14) can
be ambiguous if each rater has a different opinion of
what is an ”object”. In our evaluation step, much thought
has been put into constructing a test image set that is
sufficiently challenging to all detection algorithms, yet
contains apparent symmetries to all human viewers. We
resolve this by reaching a consensus among five differ-
ent human observers and removing any controversial
images from the current test image set. The inherent
ambiguity in human perception, especially for arbitrary
real world scenes, is a research topic in its own right and
is beyond the scope of our current paper.

Besides difficulties in labeling the centers of a rotation
symmetry, deciding the proper order and the type of
a rotation symmetry group can also be challenging for
images like the ones shown in Figure 19, even though
the rotation symmetry centers are obvious. We have
removed such images from our current quantitative
evaluation set of symmetry group detection algorithms.

5.2.2 Controlled Variations

Even though we have obtained quantitative evaluation
results (Tables 1-4), questions remain on how the rotation
symmetry detection algorithms work under variation of
imaging conditions. For example, how do the resolution,
lighting and perspective distortions of digital images
affect the output of the algorithm, and how do the al-
gorithms perform on images with no human-perceived-
symmetries? An extensive, detailed and controlled set
of tests should be carried out in future research with
fine tuned variations of input images (real and synthetic
data), perhaps in combination with an investigation of
human perception of real world symmetries.

6 CONCLUSION

We propose a novel skewed rotation symmetry detection
algorithm from unsegmented real images with single
and multiple rotation symmetry groups. Our method
is complete in two senses: first, it detects all types
of 2D rotation symmetry groups (cyclic, dihedral and
continuous); second, it detects all five properties of a
skewed rotation symmetry group (center of rotation,
affine deformation, type and number of folds of the
symmetry group, and supporting region). The novelty of
the proposed approach resides in a clear understanding
and exploitation of the interplay between (1) the rotation
symmetry groups in Cartesian coordinates and the frieze
translation symmetry groups in polar coordinates; and
(2) the spatial signal and its frequency (including phase)
counterpart. In addition, we also propose and utilize
three complementary saliency maps using a represen-
tation of global rotation symmetry strength (RSS), sym-
metrical shape density (SSD) and local feature matching
method (LF). Quantitative evaluation and comparison
of the proposed method and state of the art algorithms
[25], [28] on a test set of 170 images supports the claim
that the newly proposed approach achieves statistically
significant superior performance (Table 4).

This work is only the first step towards a systematic
exploration for computational means to capture various
types of real world symmetry. Though the results are
encouraging, many research problems remain. We would
like to further enhance the complexity (O(I3)) of the
current algorithm, improve its robustness on rotation
symmetry group center, fold and type detection, and
better understand the complex relation between machine
and human perceptions of real world symmetries.
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