
Curved Glide-Reflection Symmetry Detection

Seungkyu Lee1 Yanxi Liu1,2

1 Department of Computer Science and Engineering
2 Department of Electrical Engineering

The Pennsylvania State University, University Park, PA 16802, USA
sklee@psu.edu yanxi@cse.psu.edu

Abstract

We generalize reflection symmetry detection to a curved
glide-reflection symmetry detection problem. We propose
a unifying, local feature-based approach for curved glide-
reflection symmetry detection from real, unsegmented im-
ages, where the classic reflection symmetry becomes one
of four special cases. Our method detects and groups sta-
tistically dominant local reflection axes in a 3D parameter
space. A curved glide-reflection symmetry axis is estimated
by a set of contiguous local straight reflection axes. Exper-
imental results of the proposed algorithm on 40 real world
images demonstrate promising performance.

1. Introduction

Symmetry or near-symmetry is ubiquitous in the world
around us. Automatic detection of symmetry in natural and
man-made objects has been a lasting research interest in
computer vision and pattern recognition [13]. Reflection
symmetry is one of the most common basic symmetries
[18], that has been used in many different fields for vari-
ous applications, from face analysis [12], vehicle detection
[5] to medical image analysis [10].

There exists a large body of 2D/3D reflection symmetry
detection algorithms in the computer vision literature, rang-
ing from Euclidean reflection symmetry [9, 11], to affinely
[4, 15] and perspectively distorted [1, 2, 6, 17] reflection
symmetry detections.

In 1983, Kanade coined the term skewed symmetry [4]
denoting reflection symmetry of an object going through
global affine or perspective skewing. The detection of
reflection symmetry, rigid or skewed, has dominated the
symmetry detection literature in computer vision. Even
recently, new algorithms are developed for partial or ap-
proximate Euclidean reflection symmetry detection in sub-
sampled 3D data [11], and from un-segmented images di-
rectly [9]. The first quantitative evaluation paper on dis-

Figure 1: Curved (top) and straight (bottom) glide-
reflection symmetry axes detected by the proposed algo-
rithm (yellow lines)

crete symmetry detection algorithms [13] considers [9], a
local feature-based method, one of the best state of the art
reflection symmetry detection algorithms.

However, when examining carefully, we can observe
that many real world symmetrical objects/patterns do not
present a classic reflection symmetry associated with a
straight axis of reflection (Figure 1). Instead, they often
have either a curved reflection axis or a glide-reflection
symmetry – a primitive symmetry composed of a reflec-
tion and a translation along the direction of the reflection
axis [18]. Except the algorithm in [7] determining glide-
reflection symmetries for specific wallpaper/frieze symme-
try group classifications, glide-reflection symmetry detec-
tion algorithms are rare. Glide-reflection with curved axis
(Figure 1), the focus of this paper, has not been addressed
computationally.
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Figure 2: Four special cases of a curved glide-reflection
symmetry and their detected axes by the proposed algorithm
(yellow lines). Blue dots are the middle points of the sup-
porting local feature pairs.

The curved reflection symmetry can often exist for a
composed structure of multiple objects (Figure 2) that may
not have a continuous closed contour thus quite different
from medial axis, a topological skeleton of an object shape
derived from the object contour [3]. Even for a connected
body, medial axis may not always be consistent with the
curved reflection symmetry axis of the texture on real ob-
jects (Figure 1). Peng et. al. [14] deals with the curved
worm backbone detection and straightening problem, which
is an application-specific, medial axis-based method.

The contributions of this paper include: (1) a conceptual
generalization to curved glide-reflection symmetries such
that reflection symmetry that has been dominating computer
vision symmetry detection literature for the past 40 years
becomes one of its four special cases; (2) a novel curved
glide-reflection symmetry detection algorithm; (3) a test im-
age set (40 images) and quantitative evaluations and an axis-
straightening.

2. Curved Glide-Reflection Formalization
Glide-reflection is defined [18] as a symmetry com-

posed of a translation T along and a reflection R about

the same axis (Figure 2 bottom). Given a pair of image
patches Pi, Pj with a glide-reflection symmetry, we have:
Pi = T + R(Pj). Thus, a pure reflection is a special case
of a glide-reflection when T = 0. We can now define a
curved glide-reflection symmetry as: a sequential collection
of local glide-reflection symmetries whose reflection axes
are connected and tangent to a smooth curve. Thus a curved,
glide-reflection symmetry can be expressed as a sequence of
(Ti, Ri)s where in general Ti 6= Tj and Ri 6= Rj . The four
special cases (Figure 2) are:

• (1) Reflection when T=0;

• (2) Glide-reflection when T 6= 0;

• (3) Local glide-reflections when multiple glide-
reflections exist, and T1 6= T2, and T1 6= 0, T2 6= 0;

• (4) Curved reflection when multiple reflections exist,
T1 = T2 = 0, R1 6= R2.

3. Glide-Reflection Detection
Our symmetry detection algorithm is a local feature

point based matching method [9]. A feature point Pi is rep-
resented by its location xi, yi, orientation φi and scale si.
Given a set of detected feature points, all possible pairs of
feature points are investigated to find the reflection symme-
try matches based on the local feature descriptor Ki. The
orientation of the reflection axis is calculated from the ori-
entations of a pair of matched points. After that, we calcu-
late the amount of orientation deviation of the two matched
feature points to find the translation T of the glide-reflection
symmetry.

3.1. Feature Point Detection

Feature points-based matching allows efficient corre-
spondence detection by investigating local feature points
rather than the whole input image. The selection of the
feature points is critical to our proposed algorithm perfor-
mance. If only a small number of feature points are found
from the input image or corresponding feature points are
not found robustly, we will only have a weak cue to support
a reflection symmetry. In our experiments, we use the SIFT
[8] feature point matching. Though SIFT detects distinc-
tive points robustly with good repeatability [9], SIFT key
points are only detected at local maxima or minima loca-
tions, which are rarely found on a low-textured image with
gradual change of intensity. Thus we propose to use several
additional image filters before performing the key point de-
tection, such as gradient and Canny edge detector. These
filtered images create additional key points from local re-
gions where key points were not detected using SIFT in the
original intensity image (Figure 3). As a result, we achieve
more potential matching pairs for symmetry detection.



Figure 3: Feature points detection from the three different
filtered inputs

Any other feature point detection method also can be ap-
plied for better matching pairs detection as long as it pro-
vides the feature descriptor, orientation and scale of the fea-
ture point.

3.2. Matching Pairs Selection

Given SIFT feature points and their local descriptor vec-
tors, we compare all possible pairs of orientation normal-
ized feature points. If two orientation normalized feature
points exhibit a glide-reflection symmetry, the descriptor
vector of one point matches with the mirrored descriptor
vector of the other point. Similarity for matching is quan-
tified by the Euclidean distance between the SIFT descrip-
tors. After we sort the similarity of pairs at each feature
point, we take the top 3 as the matched pairs at each fea-
ture points. At this step, the translation component T of the
two feature points is not in consideration (Figure 4). Both
(Pi, Pj) and (Pk, Pj) pairs will be dealt with as the same
symmetry matches, which correspond to perfect reflection
symmetry and glide-reflection symmetry respectively shar-
ing the same reflection axis. In [9], glide-reflection pairs
like (Pk, Pj) are penaltized. In our algorithm, we deal with
both glide-reflection and reflection symmetries uniformly
while the transformation T value tells them apart.

Once we find all best matching pairs for each feature
point, we characterize the glide-reflection symmetry of
them. Let Pi = (xi, yi, φi, si) and Pj = (xj , yj , φj , si) be
two feature points (Figure 5). φi, φj and φij are the orienta-
tion values of two key points and the line connecting them.
If the two points of a matched pair form a glide-reflection
symmetry, the orientation of its axis, φaxis, is simply the

Figure 4: Reflection symmetry pair (Pi, Pj) (T=0) versus
glide-reflection symmetry pair (Pk, Pj) (T 6=0)

Figure 5: The orientation of the glide-reflection axis φaxis
and translation Tij

average of the orientations of the two key points.

φaxis =
φi + φj

2
= φij + ψij +

π

2
(1)

Where ψij is the deviation angle of the glide-reflection axis
from the perpendicular line to the line connecting the two
points (Pi and Pj). Then the translation Tij can be calcu-
lated from the following equation.

Tij = dijsin(ψij) = dijsin(
φi + φj − π

2
− φij) (2)

where, dij =
√

(xi − xj)2 + (yi − yj)2 is the distance be-
tween the two points. We also calculate the distance rij
from the image center (xc, yc) to the glide-reflection axis.

rij = (
xi + xj

2
− xc)sinφaxis − (

yi + yj
2

− yc)cosφaxis
(3)

Now we can express our glide-reflection symme-
try specifically as Pi = Tij + Rrij ,φaxis

(Pj), where
Rrij ,φaxis

is the reflection mapping with the reflection axis
(rij , φaxis). Given the specific form of the three dimen-
sional parameter space for glide-reflection symmetries, we
construct and analyze the 3D distribution of the three glide-
reflection parameters detected in real images. Each matched
pair (Pi and Pj) in the 3D parameter space is weighted by



the product of the scaling Sij and distance Dij components
as follows [9]:

Mij = Sij ×Dij

= exp(
−|si − sj |
si + sj

)× exp(
−d2

ij

2max(dij)
) (4)

Feature point pairs of similar size and shorter distance
get higher weights than others. This 3D parameter space
distribution is convolved with a Gaussian kernel to build
the density plot. Local maximum points indicate dominant
axes. If the glide-reflection axis of input image is straight,
the voting in the 3D parameter space should be centered
around a point-like local maxima in (rij , φaxis).

Figure 6 shows the 3D parameter space examples of the
four cases of glide-reflection symmetries. Reflection is de-
tected near Tij = 0 (red circle of Figure 6 (a)). Glide-
reflection has single non-zero Tij value (red circle of Figure
6 (b)) while locally deformed glide-reflection has multiple
(two) non-zero Tij values (One is positive and the other is
negative in Figure 6 (c)). In Figure 6 (d), three local max-
imum locations on the Tij = 0 plane support a curved re-
flection axis connecting three local reflection symmetries.
These special cases form the basic building blocks for the
general curved glide-reflection symmetry case.

4. Curved Reflection Axis Detection
From an unsegmented image without any previous

knowledge, we need to extract all potential local corre-
sponding matches for glide-reflection symmetry. When the
glide-reflection axis is curved, the axis does not appear as
a single point in the 3D parameter space, as it does with a
straight axis case. A curved axis is considered as a sequence
of short straight glide-reflection axes having different yet
smoothly varying orientations and different translation T s.
Therefore, a curved axis can be estimated by a set of con-
tiguous points in the 3D parameter space. Based on the de-
tected local glide-reflection matches, our algorithm seeks a
set of local axes supporting a curved glide-reflection sym-
metry.

4.1. Axes Grouping in 3D Parameter Space

In real world images, multiple local straight glide-
reflection axes of different orientations and T s form a single
curved glide-reflection. Figure 7 (b) shows seven local axes
(yellow lines) supporting a curved axis detected by our al-
gorithm (Figure 7 (f)). First we analyze reflection symmetry
axes density in the 3D parameter space (Figure 7 (c)). We
find the local maximum points on this 3D parameter space
density which gives seven local axes. Each red circled set
of matching pairs in Figure 7 (c) corresponds to each local
axis shown in 7 (b). Note that they have two different types
of translation components (Ta and Tb) which can be clearly

(a)Input (b)Seven local axes

(c)3D parameter space (d) 2D (rij , φaxis) space

(e)2D density (f)Output

Figure 7: An example of curved glide-reflection axis de-
tection: Blue points in (b) are middle points of supporting
matched pairs for each local axis. Yellow lines are local
axes. 3D parameter space (c) shows each detected local
axis (red circled). They have two different types of trans-
lation components (Ta and Tb) which are shown in (b).

detected in our 3D parameter space (Figure 7 (c)). After
that, local axes near (with respect to the Euclidean distance
of (rij , φaxis) coordinate) each other are grouped. This can
be done in a 2D density plot (Figure 7 (d)) obtained by cu-
mulating points along the T -axis of the 3D parameter space
density. As a result, we find a series of local straight axes
having contiguous rij and φaxis values. Figure 7 (e) shows
a detected axes group corresponding to a curved glide re-
flection axis in Figure 7 (f).



(a) Reflection (b) Glide-reflection (c) Local glide-reflections (d) Curved reflection

Figure 6: 3D parameter space examples of the four sub types of curved glide-reflection symmetries: Red circles show the
characteristic patterns detected in the 3D parameter space location.

Method Detection Processing
rate time∗

Loy and Eklundh [9] 7.5% 6.6(9.8)sec
Peng et. al. [14] 0.0% 75.0(220.5)sec
Proposed 70.0% 9.9(11.5)sec

Table 1: Quantitative experimental results. ∗ Mean (stan-
dard deviation) processing time of 40 images (See all results
in the supplemental material)

4.2. Curve Fitting

Given all local axes detected in the 3D parameter space
supporting a curved glide reflection axis, we can locate the
middle points mk of all supporting feature point pairs of
the local axes back in the spatial domain. White points in
Figure 7 (b) represent the feature point pairs supporting the
selected axes. Blue points in Figure 7 (b) are the middle
points mk of supporting feature point pairs. By connecting
all middle points, we can get a curved glide-reflection axis.
However, the algorithm does not guarantee that the detected
middle points are dense enough to find the correct glide-
reflection axis. To achieve a smooth and precise curved
axis, we use a regression method for curve fitting given the
middle point set mk. In our algorithm, we fit polynomial
curves of the degree c varying from 1 to 5. Each degree of
the polynomial has four orientations (r = 0o, 45o, 90o and
135o). We calculate the summation of distance S(ci, rj) =∑N
k=1 dij(k) where dij(k) is the distance from the mk to

the polynomial of (ci, rj)). Among the total 20 polynomial
curves (5 degrees× 4 orientations), the one having the low-
est distance S from all middle points is selected as the final
curved axis ((cfit, rfit) = arg minci,rj

S(ci, rj)).

5. Experimental Results
We test our algorithm on the 40 various images of leaves,

reptiles, fishes and spinal x-ray images. Table 1 shows the
detection rate and mean processing time compared to the

two previous methods [9] [14]. All methods are coded by
Matlab and run on the Windows XP, 3.2GHz Pentium CPU.
The processing time of the proposed algorithm mainly de-
pendent upon the number of detected feature points varying
from hundreds to thousands. Detailed experimental results
and potential applications of the proposed algorithm are ex-
plained in the following sections with Figure 8, 10, 11, 12
and 13.

5.1. Curved Glide-Reflection Detection

Figure 12 shows straight glide-reflection axes detection
on some synthetic wall paper images. Figure 13 shows ex-
perimental result on real world images. We find the curved
reflection symmetries at leaves or trunks (Figure 13 (a), (d),
(e) and (f)). Figure 13 (c) is a lizard with a reflection sym-
metry pattern on its back. This is a good example having a
medial axis and reflection axis at different locations. Figure
13 (h) is vertical cut image of a zebra fish. Inside tissue of
the fish supports the curved reflection axis. Left part of the
detected axis in Figure 13 (d) is inaccurate due to a middle
point outlier. Figure 13 (j) is a failure result due to its com-
plicated background clutters. In Figure 13 (k), not enough
key point matches are found to support the whole curved
axis.

5.2. Axis Curvature Detection

One application of our algorithm is the detection of the
curved spine axis from the x-ray images. Figure 8 shows
several curved spine axis detection results of the Scoliosis
spine x-ray images. When they diagnose the Scoliosis, the
curvature of the spine plays an important role. Our algo-
rithm can detect the curvature of the spine automatically by
investigating the parameterized curve fitted on the curved
spine in an X-ray image.

5.3. Curved Axis Straightening & Recognition

Once we find the curved glide-reflection axis with the
parameterized axis model, we can calculate the curvature



Figure 8: Experimental results on the Scoliosis X-ray spine
images. Detected axis of the rightmost image is not accurate
because of the lack of supporting feature point pairs.

Figure 9: Curved axis straightening

at any location on the curve. Based on the curvature in-
formation at each location, we can recover the straight axis
by realigning each normal line of the curved axis vertically
(Figure 9).

Figure 10 shows two examples of the curved axis
straightening. Figure 10 (a) is a leaf from the Swedish leaf
database [16]. Original leaf image has curved reflection
axis. Curve on the axis is not an innate nature of the leaf and
introduces noise on the shape description of the leaf. After
automatic curved axis detection by the proposed algorithm
we can straighten the original image. This process is a type
of normalization along the reflection axis and may increase
the leaf recognition performance. Any other shape recog-
nition method of the deformable objects can benefit from
straightening them along the reflection axes. This may lead
to the quantification of the deformation for further descrip-
tion of the shape. Figure 10 (b) is another example with a
spine x-ray image from the previous section.

(a) Swedish leaf

Input Curved axis Straightened
(b) Scoliosis spine

Figure 10: Curved axis straightening examples

Figure 11: Curved axis detection on the Swedish leaves [16]

6. Discussion & Conclusion

We generalize the traditional reflection symmetry con-
cept to curved glide-reflection symmetries that populate the
real world, especially in biomedical image data. We pro-
pose a feasible algorithm based on local feature extrac-
tion and parameter subspace matching. We have evaluated
our algorithm using a 40-real-image test set with 70% suc-
cess rate. The proposed algorithm has a O(N2

f ) complex-
ity where Nf is the number of feature points. Though the
proposed algorithm shows promise, there is plenty of room
for improvements. First of all, like all feature-based meth-
ods the performance of our algorithm suffers if the feature
point extraction step fails. So a more effective and versa-
tile interesting-feature extractor is needed. The proposed



Figure 12: Glide-reflection axes detection on wallpaper pat-
terns.

algorithm can deal with affine or perspective skewing of a
curved glide-reflection symmetry as long as the feature is
invariant to affine or perspective transformation. Second,
the grouping method in our 3D parameter space favors big-
ger and longer curved axes supported by more feature point
pairs. This strategy occasionally eliminates small, weak
but true curved symmetries. Hierarchical approaches can
be adopted to address this problem. Finally, outlier mid-
dle points at the polynomial curve fitting step can distract
the fitted curve from the ground truth. A better regression
method and an outlier elimination method can improve the
curve fitting performance. The outcome of our proposed
algorithm can be used for image matching, curvature detec-
tion in biomedical images and object recognition.
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Figure 13: Experimental results on real-world images


