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Abstract

Time-varying spatial patterns are common, but few com-
putational tools exist for discovering and tracking mul-
tiple, sometimes overlapping, spatial structures of tar-
gets. We propose a multi-target tracking framework that
takes advantage of spatial patterns inside the targets even
though the number, the form and the regularity of such pat-
terns vary with time. RANSAC-based model fitting algo-
rithms are developed to automatically recognize (or dis-
miss) (il)legitimate patterns. Patterns are represented using
a mixture of Markov Random Fields (MRF) with constraints
(local and global) and preferences encoded into pairwise
potential functions. To handle pattern variations continu-
ously, we introduce a posterior probability for each spa-
tial pattern modeled as a Bernoulli distribution. Tracking is
achieved by inferring the optimal state configurations of the
targets using belief propagation on a mixture of MRFs. We
have evaluated our formulation on real video data with mul-
tiple targets containing time-varying lattice patterns and/or
reflection symmetry patterns. Experimental results of our
proposed algorithm show superior tracking performance
over existing methods.

1. Introduction

Multi-target tracking has been a standing challenge in
computer vision. Its applications include surveillance,
sports video and biomedical data analysis. The essence of
tracking is to use available information, from both image
observations and prior knowledge, to infer the target loca-
tions in time. Our prior knowledge can be encoded into
various models to regulate the tracking, for example, previ-
ous work has used the adaptive appearance models [19, 11],
temporal motion models (filters) [9], spatiotemporal consis-
tency models [21], target interaction models [8, 22, 16] and
global scene constraint models [1, 18]. Little attention has

Figure 1. Tracking 108 multiple targets in a marching band video.
(A): the 100th frame, two partially overlapping lattice patterns are
detected and tracked; (B): the 350th frame, both a lattice pattern
and a reflection symmetry pattern are found and tracked.

been paid to explore and take advantage of spatial patterns
in the targets.

In this paper, we address the problem of tracking multi-
targets that contain time-varying regular patterns. These are
frequently seen in scenarios (Figure 2) such like moving
textiles (clothes, dress, scarf), flying through city scenes,
human/animal group movements (marching band in figure
1 or other types of team-movements), flying birds (geese),
schooling fish and tagged cardiac MR videos.

Effective pattern recognition during multi-target track-
ing is novel and of utter importance for a deeper and higher
level (semantic level) understanding of the multi-subjects
being tracked, leading to potential social, cultural or bio-
logical implications that current tracking systems are not
prepared to handle. On the other hand, multi-targets with

1



Figure 2. Real world examples of various time-varying lattice patterns and reflection symmetry patterns.

repeating patterns pose special computational challenges to
state of the art tracking systems [10], with high ambiguous
targets and dynamic topological structures.

The framework we proposed is general and the number
of time-varying patterns is not limited. To start, we select
two most common and mathematically well-defined types
of 2D regular patterns: 2D repeating (lattice) and bilateral
reflecting patterns (selected from a finite set of regular pat-
terns) to track directly on low resolution real world video
data. By defining a different set of topological constraints,
future users can utilize our framework to track their own
specific patterns.

To track multiple targets that have time-varying spa-
tial patterns, we face two intertwined problems: 1) To
recognize the (dis)appearance of spatial patterns from tar-
get locations; 2) To utilize pattern constraints for infer-
ring target locations. By treating the patterns as latent
variables that guide the tracking, we adopt an iterative
two-step framework similar to the dynamic expectation-
maximization (EM) method [7], addressing both problems
simultaneously(Figure 4). In the first (E-like) step we detect
possible patterns and evaluate their posterior probabilities
based on previous tracking results. In the second (M-like)
step, on a mixture of MRFs, we infer optimal target loca-
tions under pattern constraints controlled by posteriors as
well as cues from image observations.

The idea of applying graphical models to pass mes-
sages among targets has been widely used in the multi-
target tracking community. Khan et al. [8] adopt an on-
the-fly MRF to model the motion prior of interacting ants;
Yu and Wu [22] model target competition using an ad-
hoc Markov network to address the problem of coalescence
among nearby targets; Qu et al. [17] propose a Magnetic-
Inertia Potential Model. All these approaches work by re-
pelling targets that are too close to each other, however they
limit their consideration to local interactions only.

For tracking topology-invariant patterns, Lin and Liu
[10] propose a lattice-based MRF for tracking near-regular

textures. Park et al. [15] propose an efficient mean-shift be-
lief propagation (MSBP) algorithm for inference on lattice-
structured graphical models for multi-target tracking. Yang
et al. in [20] have proposed the idea of online exploring mo-
tion correlation among several targets for more robust track-
ing. These algorithms do not adapt to topology or motion
correlation variations during tracking.

2. Spatial Patterns

Spatially regular patterns can be formally categorized
in terms of their corresponding symmetry groups. In this
work, we focus on two basic types of spatial patterns: lattice
patterns and reflection patterns. A perfect lattice pattern has
a corresponding symmetry group with a pair of translation
symmetry generators leading, naturally, to an underlying
lattice structure[4] (thus the term ‘lattice pattern’); while a
reflection pattern has a bilateral reflection symmetry group
of order 2 .

2.1. Pattern Modeling

We are interested in modeling, detecting and tracking
the deformation of mathematically well-defined regular pat-
terns in real world videos (Figure 2). Therefore, we need
to represent and measure the degree of distortions of po-
tential lattice or reflection patterns respectively. Figure 3
illustrates a snapshot of a video frame where three poten-
tial patterns encountered during tracking are detected under
our proposed framework (Section 3). A key function of our
approach is to monitor the birth and death of (near) regular
patterns contained in the multi-target set continuously.

2.1.1 Lattice Pattern

A perfect lattice pattern (point grid) in 2D Euclidean space
can be modeled by two smallest linearly independent gen-
erating vectors T1 = (t1x, t1y)T and T2 = (t2x, t2y)T

[14], as well as one of the node (not unique) as its origin



O = (ox, oy)T , so that each node v of the lattice can be
indexed by a unique (i, j) ∈ Z2

v(i, j) = O + iT1 + jT2 = (1 i j) · w, (1)

where w = (O, T1, T2)T is the lattice parameter and
v(i± 1, j) and v(i, j ± 1) are the T1-neighbors and the T2-
neighbors of v(i, j) respectively. Given the index and posi-
tion of the lattice nodes {(in, jn, v(in, jn))|n = 1, . . . , N},
let the generating matrix M be

M =
[ 1 i1 j1

...
...

...
1 iN jN

]
, (2)

and V = [v(i1, j1) · · · v(iN , jN )]T . We can compute the
minimum mean-square-error (MMSE) estimate of w as

ŵ = (MTM)−1M · V, (3)

with mean-square error distance D2 being

D2 =
1
N
‖V −Mŵ‖22. (4)

2.1.2 Reflection Pattern

In 2D Euclidean space, a reflection symmetry with axis l
maps an arbitrary point p onto a bilateral symmetric location
p′|l. A reflection pattern indexed by k consists of target
pairs that are symmetric w.r.t. the same axis lk. We define a
symmetry deformation distance dij,k for each pair of points
(pi, pj) w.r.t. axis lk as

dij,k = ‖p′i|lk − pj‖2, (5)

and the overall symmetry deformation distance of a whole
reflection pattern Gk is the maximum deformation distance
of its pairs

Dk = max
(i,j)∈Ek

dij,k. (6)

Figure 3. Sample detection result: a mixture of Markov networks
containing 2 lattice patterns connected by red and green edges re-
spectively and 1 reflection symmetry pattern connected by blue
curves.

The reason for using maximum distance instead of mean
squared distance is that symmetry pattern detection is likely
to include some outliers. Dk defined in 6 is sensitive to the
worst pair, so we can easily detect outliers and thus modify
our pattern by removing them.

2.2. Pattern Recognition

Given all target locations, we apply RANdom SAmple
Consensus (RANSAC) [5] to discover patterns as subsets
of all targets. Since the process of pattern (de)formation is
gradual, it is not necessary to do spatial pattern recognition
for each frame. Therefore we refresh the pattern set peri-
odically and when any pattern posterior drops below some
threshold. Otherwise we maintain the set of detected pat-
terns and only evaluate the pattern posterior probabilities
once the tracking result is updated.

2.2.1 Lattice Detection and Evaluation

To detect lattice structures, in each RANSAC iteration, we
randomly sample one target and two of its neighbors within
a search radius r to propose a unit lattice. The lattice model
parameter {O, T1, T2} can thus be initialized, meanwhile
all other targets are assumed to be ‘outliers’. We then try
to expand the lattice to its maximum along the positive and
negative directions of T1 and T2. During each expansion,
we first predict new target locations using the current lattice
model. If the nearest ‘outlier’ is within some error bound
d, this target is accepted as an inlier and the lattice model is
updated using equation 3. In our implementation, we use re-
cursive least squares (RLS) [6] as an alternative of equation
3 to update the model incrementally instead of recomputing
everything once new targets are accepted.

Each RANSAC iteration returns a lattice model. After
enough iterations (we run 200 times in our implementation),
lattices that are either too small or completely contained by
bigger ones are removed. It is also forbidden for one target
to belong to two lattices except on the boundary. When such
conflict occurs, we keep the lattice that covers more targets.

After applying equation 3 to update pattern parameters,
we use

p(pattern) = exp{−D
2

2σ2
} (7)

to evaluate the pattern posterior, where D is a quantitative
measure of pattern deformation obtained in equation 4, and
σ controls the tolerance of lattice pattern deformation.

2.2.2 Reflection Pattern Detection and Evaluation

For global reflection symmetry pattern detection, the tra-
ditional Hough transform approach [12] fails because any
pair of targets (vi, vj) can generate a reflection axis proposal
with a large portion of proposals being outliers. Therefore



we have to explore local topology to get rid of false re-
flection pairs in the first place. Similar to [13], in each
RANSAC iteration, we randomly pick targets i and j, pro-
pose reflection axis lij and then find out the nearest neigh-
bor of i and j, denoted by r and t respectively. If r and t
are also symmetric over lij within some tolerance, we ac-
cept it as a good proposal and check all other targets to find
symmetrical pairwise matches that share the same reflection
axis. We acknowledge a reflection pattern if we can find a
significant number of supporting pairs that share the same
axis.

We reestimate the pattern parameters when the tracker
states are updated. Minimizing Dk in equation 6 directly is
a nonlinear problem and difficult to solve. Instead, we turn
to an heuristic approach to fit a reflection axis to all mid
points of the reflection pairs. The posterior probability of a
reflection pattern is thus estimated by substituting equation
6 to equation 7.

3. Multi-target Tracking on a Mixture of
Markov Networks

We propose a novel framework to achieve adaptive
multi-pattern multi-target tracking by inferring the optimal
target states on a mixture of Markov networks with posteri-
ors estimated in the pattern detection phase.

Let S = {s1, · · · sN} and O = {o1, · · · oN} denote the
states (pixel coordinates) and observations of N targets in
the current frame, Ŝp denote the estimated target states in
the previous frame. Spatial pattern k is represented as an
undirected graphical model Gk(Vk, Ek), where Vk ⊆ S is
the subset of targets that belong to pattern k. Pattern pref-
erences and constraints are encoded into pairwise potential

Figure 4. Our tracking framework. At E-like step, we detect pat-
terns and/or evaluate pattern posteriors based on previous tracking
results. At M-like step, we estimate the best target states given de-
tected patterns, image observation and motion prior via inference
on the mixture of Markov networks.

functions ψk(si, sj) defined on Ek implying statistical de-
pendency between the states of target i and j for each edge
(si, sj) ∈ Ek. Optimal target states can then be inferred
using belief propagation along the edges.

To construct a Markov network to represent statistical
dependency among the targets, we connect each target in
a lattice pattern with its T1 and T2 neighbors. We favor
multi-target configurations that appear more regular under
the given lattice topology by defining

ψlat(si, sj) = exp(−‖si − sj − Tm‖
2

2σ2
lat

), (8)

where σlat controls the tolerance of the lattice deformation,
and m ∈ {1, 2} depending on whether target i and target j
are connected via T1 edge or T2 edge.

Similarly, for reflection patterns, we connect each reflec-
tion symmetric pair to form a Markov network and define
pairwise potential on the edges to be

ψref (si, sj) = exp(−
d2
ij,k

2σ2
ref

), (9)

with σref controls the tolerance of the reflection deforma-
tion.

We combine all Markov networks to form a mixed net-
work (multi-graph) G(V,E), such that{

V =
⋃
i=1...K Vi

E = {(si, sj , k)|(si, sj) ∈ Ek}
(10)

We also assign pattern indicators γ = {γ1, . . . , γK}with
γk ∈ {1, 0} indicating whether detected pattern k is a true
or false positive. The pattern posterior is thus a Bernoulli
distribution with p(γk), short for p(γk = 1), representing
the probability of pattern k being correct. The joint proba-
bility of target states given observations, motion prior and
pattern indicators can be defined on the mixed Markov net-
work G and factorized to

p(S|O, Ŝp, γ) ∝
∏
k

∏
(i,j)∈Ek

ψγk

k (si, sj)
∏
i

φ(si, oi, ŝ
p
i ),

(11)
where φ(·) is the measurement potential between a state and
image observation incorporated with motion prior. Pattern
indicator γk controls whether all edges in Gk take effect.
We first apply the sum-product rule to obtain the marginal
distribution of si

p(si|O, Ŝp, γ) ∝ φ(si, oi, ŝ
p
i )
∏
k

∏
j:(j,i)∈Ek

mji,k(si, γ),

(12)
where mji,k(si, γ) is the message passed from target j to
target i on graph Gk under pattern indicator γk,

mji,k(si, γ) =
∑
sj

(·)j\iψγk

k (sj , si), (13)



where we introduce the shortened notation

(·)j\i = φ(sj , oj , ŝ
p
j )

∏
l∈N(j)\i|k

mlj,kj
(sj), (14)

whereN(j)\i|k represents the set of neighbors of j over all
patterns, except target i over pattern k.

The sum-product rule is then used again to sum out γ

p(si|O, Ŝp)
=

∑
γ∈{0,1}K

p(si|O, Ŝp, γ) · p(γ)

∝
∑

γ∈{0,1}K

φ(si, oi, ŝ
p
i )
∏
k

∏
(j,i)∈Ek

mji,k(si, γ)p(γ)

= φ(si, oi, ŝ
p
i )
∏
k

∏
(j,i)∈Ek

∑
γk∈{0,1}

mji,k(si, γ)p(γi)

= φ(si, oi, ŝ
p
i )
∏
k

∏
(j,i)∈Ek

m̃ji,k(si, γ) (15)

where we have modified the message passing from target
j to i by incorporating pattern posteriors into the original
message

m̃ji,k(si) =
∑

γk∈{0,1}

mji,k(si, γ)p(γk)

=
∑
sj

(·)jψ̃k(sj , si) (16)

where the pairwise potential on Gk is also redefined by

ψ̃k(sj , si) = ψk(sj , si)p(γk) + p(γk). (17)

It can be seen by comparing equations 15 and 16 with equa-
tions 12 and 13 that instead of doing summations over γ,
which means running BP 2K times for different configura-
tions of γ, we can directly incorporate the pattern posterior
into the pairwise potential functions via alpha-blending ac-
cording to equation 17 and perform BP only once on G.
Furthermore, by introducing the pattern posterior p(γ) we
make ‘soft’ decisions on whether a pattern is correct or not,
and thus are able to smoothly adapt to pattern formation,
deformation and reorganizations.

4. Experimental Results
4.1. Data Sets

We evaluate our approach on three archived marching
band performance videos, with a total of 670, 326 and 414
frames and the number of tracked targets being 128, 192
and 108, respectively. The marching band members form
time-varying lattice patterns and reflection symmetry pat-
terns. Another test video shows parachuters forming a lat-
tice structure, including 560 frames and 81 targets initially.
All of these videos are of low resolution, with small size
and similar-looking targets.

4.2. Experimental Setup

To demonstrate the contribution of modeling spatial pat-
terns, we apply our framework on a simple tracking model
by using one fixed appearance template for all targets, and
by calculating the normalized cross-correlation score as the
observation measurement. The state si of target i is its pixel
coordinate in the current frame. We assume a 1st-order dy-
namic motion prior, modeled by P (si|ŝpi ) ∼ N(ŝpi ,Σ),
where N(µ,Σ) is the normal distribution with mean µ
and variance Σ. A more sophisticated tracking model
with adaptive appearance updating, multi-feature fusion or
temporal particle filtering could be incorporated with our
framework directly.

The positions of all targets to be tracked are given in
the first frame while all lattice and reflection patterns are
detected automatically (Section 2). For marching band
videos, we also estimate the perspective transformation of
the ground plane in advance using the first frame, so that the
lattice and symmetry patterns can be detected and evaluated
in a rectified view.

We model the spatial interaction among targets using a
mixture of three types of Markov networks: lattice pattern,
reflection symmetry pattern and a close-target competition
network introduced in [22], which repels targets that are
too close to each other. σlat and σref that control toler-
ance of pattern deformation are set to 5 and 10 respectively.
When a target moves out of the image boundary, its image
observation is ignored by setting observation likelihood to
uniform distribution, however given the spatial pattern con-
straint, we can keep tracking the invisible targets.

The lattice and symmetry pattern (re)initialization is im-
plemented using Matlab, which takes about 2 seconds for a
frame containg about 100 targets. We do pattern reinitializa-
tion every 30 frames to detect newly formed patterns. The
inference on a mixture of graphical models is implemented
using C++, which takes less than 1 second for a frame con-
taining about 100 targets. Considering that RANSAC-based
pattern detection can be processed in parallel, and more ef-
ficient inference approaches on loopy graphical models can
be adopted, e.g. [15], both parts can be further accelerated
for real-time application.

4.3. Qualitative Tracking Results

Sample tracking results are shown in Figures 5 - 8. The
most dominant patterns are all correctly detected, recog-
nized and tracked. The pattern transitions are also handled
“softly” via the proposed inference framework on a dynam-
ically composed mixture of Markov networks. The func-
tionality of this framework can also be interpreted as a ma-
jority vote scheme: When a large proportion of targets in a
pattern is tracked correctly, the posterior probability of the
pattern is high so that the rest of the targets, when caught



Figure 5. Detection and tracking lattice and reflection patterns on video #1. Left: 200th frame, middle: 400th frame, right: 650th frame

Figure 6. Detection and tracking reflection patterns on video #2. Left: 1th frame, middle: 200th frame, right: 300th frame

Figure 7. Detection and tracking lattice and reflection patterns on video #3. Left: 100th frame, middle: 200th frame, right: 400th frame

Figure 8. Tracking and monitoring a breaking away lattice pattern of a parachute video. Left: 230th frame, 81 targets; middle: 400th
frame, 49 targets; right: 530th frame, only 36 targets are left



in ambiguity, can be corrected via pattern constraints. On
the other hand, when the pattern is varying in time, its pos-
terior will drop dramatically and thus the pattern constraint
is decreased, leaving the individual trackers with more free-
dom. Figures 7 and 8 demonstrate the advantage of using
spatial constraints to continue tracking targets that are out of
the image boundary, and the target identities can be reestab-
lished upon their return (Figure 8).

4.4. Quantitative Comparison

In order to make quantitative comparisons against two
alternative tracking approaches, we have manually labeled
the groundtruth for two of the challenging marching band
videos. One alternative method applies the close-target re-
pel model as in [22], the other applies mean-shift track-
ing [3] independently on each individual target with kernel
bandwidth being 7 pixels.

We define a tracker as ‘lost’ if the pixel distance between
the tracker’s position and the target ground truth is larger
than some threshold. Comparisons of results are shown in
Figures 9 and 10. A lost tracker is marked as a false positive
(FP) and the corresponding ground truth location is marked
as false negative (FN). In our case, the number of FP and
FN are equal since the number of trackers is always equal
to the number of targets. The close-repel framework works
well for targets surrounded by others, who are more con-
strained to resolve appearance ambiguity, while targets on
the boundaries are more likely to be lost due to background
clutter.

We also compare with topology-fixed single lattice track-
ing approach (Lin & Liu PAMI07 [10]) on marching band
video #3 to demonstrate the multi-lattice adaptivity of our
approach to varying topologies. The result and statistics are
shown in Figure 11.

Please refer to project website for related videos:
http://vision.cse.psu.edu/NRTtracking.html

5. Conclusions & Future Work
We propose a novel inference framework to track mul-

tiple targets that form time-varying spatial patterns. Each
pattern is specified with a Markov network enabling both
local (short range) and global (long range) relations among
multiple targets. Through inference on such a mixture of
Markov networks, we effectively exploit spatial domain in-
formation and its interplay with temporal cues to achieve
robust tracking and a high level of understanding of the tar-
gets tracked.

By treating spatial patterns as Bernoulli variables, we ad-
just the spatial pattern constraints according to their pos-
terior probability, so that the algorithm can handle pattern
transitions softly and adaptively. Experimental results on
various challenging videos demonstrate the effectiveness of

our approach and superior performance of the proposed al-
gorithm over existing methods.

Currently, our framework is applied to a sequential track-
ing model where the targets are updated frame by frame.
We plan to incorporate detection-and-association [2] based
tracking next, so that we can utilize spatiotemporal patterns
directly to further enhance tracking robustness.
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