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Abstract. We propose a novel, self-validating approach for detecting
curved reflection symmetry patterns from real, unsegmented images. Our
method benefits from the observation that any curved symmetry pattern
can be approximated by a sequence of piecewise rigid reflection patterns.
Pairs of symmetric feature points are first detected (including both inliers
and outliers) and treated as ‘particles’. Multiple-hypothesis sampling and
pruning are used to sample a smooth path going through inlier particles
to recover the curved reflection axis. Our approach generates an explicit
supporting region of the curved reflection symmetry, which is further
used for intermediate self-validation, making the detection process more
robust than prior state-of-the-art algorithms. Experimental results on
200+ images demonstrate the effectiveness and superiority of the pro-
posed approach.

1 Introduction

Symmetry is pervasive in nature and man-made environments [1, 2]. It is one
of the most important cues for human and machine perception of the world [1].
Automatic perception of symmetry patterns from images has been a standing re-
search topic in computer vision. Reflection symmetry [2], as one of the four basic
symmetries, is the most common and has received most attention in psychology
as well as in computer vision [1]. Various applications utilize reflection symmetry
such as face analysis [3], multi-target pattern analysis and tracking [4], vehicle
detection [5] and medical image analysis [6].

Reflection symmetry detection algorithms dominate the literature of all types
of symmetry detections [1, 7]. For example, Sun and Si [8] used histogram of
gradient orientations to find the orientation of dominant reflection axis. Masuda,
et. al. [9] explored edge features to measure symmetry similarity and Loy and
Eklundh [10] matched feature points and then extracted reflection (and also
rotation) symmetry patterns via clustering; Mitra et.al. [11] developed partial
or approximate Euclidean reflection symmetry detection in subsampled 3D data.

Besides rigid reflection symmetry, Kanade in 1983 proposed the term skewed
symmetry denoting reflection symmetry of an object going through global affine
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Fig. 1. Some example images containing curved reflection pattern, including real-
world/synthesized, segmented/unsegmented, nature/man-made object images.

or perspective skewing [12]. Symmetry recognition from global affinely and per-
spectively distorted views has also been well studied in [13–17], where the re-
flection axis is assumed to be a straight line. In real world however, many sym-
metrical objects/patterns present curved reflection axles as shown in Figure 1.
Automatically recognizing curved symmetry axis from unsegmented images is
motivated by a wide range of applications. For example, symmetric region seg-
mentation and curvature analysis from spine x-ray images, as well as leaves
recognition and classification, can all benefit from a curved reflection detection
algorithm.

Lee and Liu in [18] proposed the first, state-of-the-art curved glide-reflection
symmetry extraction algorithm from real, unsegmented images. Their algorithm
detects symmetric feature points first, which we refer to in this paper as sym-
metry ‘particles’ and then clusters these particles in the parameter space, sub-
sequently fits a polynomial function to obtain the curved symmetry axis. The
weakness of this approach is the ability against potential outliers (in some cases
much more than the number of inliers) contained in the particles, which can se-
riously affects the robustness of clustering and curve fitting of the reflection axis.
Besides, the polynomial fitting of symmetry axis misclassifies many inlier/outlier
particles, as a result, the supporting region of the detected symmetry is not well
defined thus making it hard to quantitatively assess the reliability of the detected
pattern online.

Based on these facts and the abundance of real world curved reflection sym-
metries (Fig.1), we propose a curved reflection symmetry detection approach
that explicitly selects symmetry ‘particles’ with local supporting regions and
achieves more robust performance than [18] on curved reflection symmetry ex-
traction by being able to effectively self-validate the detected results.

We adopt the bottom-up framework of [18, 10] that first detects and matches
symmetric feature points to form symmetry particles (including both inliers and
outliers), while build up symmetric regions in the higher level. The major novel
advantage of detecting deformed symmetry patterns from bottom-up is that
feature points are free of global deformation, meanwhile local deformation can be
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handled by more sophisticated feature points such as SIFT [19], which is robust
against scale change and rotation with good repeatability and high efficiency.

A crucial part of our approach is to discover a smooth path going through
inlier particles on the image to approximate a valid curved reflection axis. One
challenge is that the set of symmetry particles detected in the first step can be
misleading. This is because feature point matching only considers local patches
around the feature points, and symmetry, on the other hand, is a non-local, con-
tinuous feature [20]. There always exist many outlier feature point pairs, that
only appear symmetrically in a small local region. To effectively validate the
symmetry particles, region-based evaluation and verification are more robust
and should be adopted. It can be seen that one symmetry particle is uniquely
specified by a pair of feature points, while 2 particles, consisting of 4 feature
points, form a closed quadrilateral region. If we approximate the local symme-
try axis using straight line within the quadrilateral, a region-based reflection
symmetry evaluation step can be done easily and reliably. Therefore given any
pair of symmetry particles, we can quantitatively measure the symmetry-ness
within the corresponding region, which we refer to as ‘consistency between sym-
metry particles’, and establish a graph structure with all vertexes representing
symmetry particles and the edges representing a straight reflection axis between
two particles and the weight on this edge indicating the consistency or local
symmetry score. (Figure 2 -C,D)

By establishing the graph of linked symmetry particles, we turn this problem
of curved symmetry pattern recognition into a problem of seeking a smooth path
in the graph that maximize the symmetry property along the path. We will show
in Section 2.3 that this is a global optimization problem and we thus propose a
multiple hypothesis path sampling and pruning approach for real world curved
reflection symmetry detection. Validation results on more than 200 images of
three categories show superior curved reflection symmetry detection rates of our
algorithm than [18].

One important advantage of explicitly selecting symmetry particles to ap-
proximate curved reflection is that we can obtain a well-defined continuous sup-
porting region of reflection symmetry along the curved axis. As we use thin-plate
spline (TPS) warping to rectify the axis, we can evaluate quantitatively and glob-
ally how symmetric the rectified region is, thus achieving self-validation, making
the algorithm more robust.

2 Our Approach

The bottom-up framework for curved reflection symmetry pattern detection
starts with recognizing symmetric feature point pairs. Each pair of feature points
xi1, xi2 provides us with a symmetry axis particle li = {xi, αi}, where xi1, xi2, xi ∈
R2 are the image coordinates of the two symmetric feature points and their mid-
dle point, αi is the orientation perpendicular to the line joining the points xi1

and xi2, with ambiguity of angle π. In the next stage, we evaluate the pair-wise
consistency among all symmetry particles and establish an undirected graph
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G{V,E}, with V = {li} being the set of all particles and any edge (i, j) ∈ E
means the line segment joining particle xi and xj reflects the symmetry property
locally. The recognition of curved reflection patterns thus becomes a problem of
discovering a smooth path from the graph G, which goes through a subset of its
vertices (particles), (li1 , li2 , · · · , lik

), to approximate the curved reflection axis
(Figure 2).

Fig. 2. The framework of our approach: (A)input image; (B)detected SIFT feature
points marked as pink dots and successfully matched feature point pairs connected
using green dashed lines; (C)representing feature points pairs as yellow particles
with red short lines indicating the directions of potential reflection symmetry axis
αi; (D)Maximally connected components in particle pairwise consistency graph G;
(E)Sampled optimal path from G; (F)Rectified region via TPS warping.

2.1 Symmetry Particles Discovering

We adopt SIFT feature for effective symmetric points recognition since it is
rotation and scale-invariant [19]. By rearranging the SIFT descriptor vectors vi,
we can describe the same local patch in the mirror image, denoted by v(m)

i . The
symmetry distance between two feature points is defined to be the Euclidian
distance of the description vectors

d(i, j) = ‖vi − v(m)
j ‖2 (1)
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For each point, we find top 3 best matches with smallest symmetry distance
and then reject matches either having different scales or do not satisfy the angular
constrains. Let a pair of SIFT feature points be (xi1, φi1, si1) and (xi2, φi2, si2),
where φi1, φi2 and φi12 are the orientation angles of two feature points and
the line connecting them, respectively. We specify the angular constraint that
the orientation of two feature points should also be symmetric, which means
(φi1 + φi2)/2 ⊥ φi12. Each accepted pair of feature points then corresponds to a
symmetry particle as illustrated in Figure 3 (a).

Fig. 3. An illustration of angle constrains and quadrilateral rectification

2.2 Generating Pairwise Consistency Graph

Given two symmetry particles, li = (xi, αi) and lj = (xj , αj), and let the direc-
tion from xj to xi be αij , as illustrated in Figure 3 (b), we evaluate whether
they form a near-symmetry region based on both of their geometric consistency
and the appearance symmetry score. Assuming αi and αj are the tangents of the
symmetry axis curve at locations xi and xj respectively, the geometric consis-
tency requires that the curve be smooth, which means αi, αj and αij are along
the similar directions, leading to the following two conditions:

|αi − αj | < TH1 (2)

|αij −
1
2

(αi + αj)| < TH2. (3)

In our experiments, we set both thresholds to be TH = π/8. Once the pair of
particles passed the geometric consistency, we rectify the local image patch to
evaluate the appearance symmetry score by warping the quadrilateral formed by
vertexes xi1, xi2, xj1, xj2 into an equilateral trapezoid, where the length of the
parallel sides are ‖xi1 − xi2‖2 and ‖xj1 − xj2‖2 respectively, and the height is
‖xi−xj‖2, as illustrated in Figure 3 (c). TPS warping is used in our approach to
deal with the most general transformation without assuming any specific cases
like affine or perspective.

To evaluate the symmetry score of an equilateral trapezoid, we flip the trape-
zoid according to the middle axis and calculate normalized cross correlation
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(NCC) with the original patch, which returns a score between −1 and 1. If the
NCC score is above a threshold (0.5 in our experiments), we impose an edge be-
tween particles li and lj and record the NCC score as well as the area (supporting
region) of the trapezoid for future use.

2.3 Multiple Hypothesis Path Sampling and Evaluation

The pairwise consistency graph can be further divided into several subgraphs
based on connectivity. In cases where multiple symmetry patterns exist, each
subset possibly contains one symmetry pattern. In cases of single symmetry
pattern detection, we only focus on the subset with maximum number of vertices,
which in most cases contains the most dominant pattern.

We then look for a smooth path within the subgraph(s) that maximizes the
‘symmetry’ along it. The symmetry score of a path can be obtained after we
use TPS warping to rectify the whole path into connected equilateral trapezoids
and evaluate its symmetry score the same way as we do for a single trapezoid.
For the sake of computation time, it is also reasonable to approximate the path
symmetry score using weighted summation of piecewise scores.

Let a path p going through N vertexes p = (v1, . . . , vi, . . . , vN ), or N − 1
edges p = (E1, . . . , Ei, . . . , EN−1), with Ei = (vi, vi+1, NCCi, si), where NCCi

and si are the symmetry NCC score and the area of the trapezoid corresponding
to the pair of particles li, li+1. We approximate the NCC score of a path using

sp =
N−1∑
i=1

si (4)

NCCp =
1
sp

N−1∑
i=1

si ·NCCi (5)

To ensure the smoothness of the path, we require the turning angle at each
vertex be less than a threshold of π/5, which means

∠(xi − xi−1)− ∠(xi+1 − xi) < π/5, i = 2, 3, . . . , N − 1, (6)

where ∠() is the orientation of a vector, xi correspond to the 2D coordinate of
vi in the image.

We define 2 criteria c1 and c2 given a path p for its ranking, one is the
approximation of the path symmetry score, the other also favors paths covering
more area:

c1(p) = NCCp (7)
c2(p) = NCCp + λ · log(Sp) (8)

The traditional graph solutions for finding optimal paths such as Dijkstra’s
algorithm is not suitable here for the criteria in equations 7 or 8 and the smooth-
ness condition in equation 6, all involves global information of the paths. The
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enumeration of all possible pathes is also computationally unaffordable. As an
alternative, we try to selectively sample the paths with high likelihood.

Once a path is initiated, we can enumerate the next valid vertexes to extend
the current path. Each enumeration would generate an extended path hypothesis,
each of which can be further extended recursively. Such an iterative approach
forms a multiple hypothesis sampling of all possible pathes. The complexity of
this sampling scheme grows exponentially and is unbounded depending on the
density of the graph, thus we need to perform efficient pruning to cut unlikely
paths in the first place. In each iteration after all current paths having been
extended, we prune paths with low likelihood, and only keep a maximum number
of K hypothesis in the pool. When K = 1, this becomes a greedy algorithm that
starts at a random vertex and finds the local optimum; When K = ∞, we find
global optimum by enumerating all valid paths in the graph that contains the
initialization vertex. In our experiment, we take paths ranked top 100 either
under criteria 1 or criteria 2. The reason we set up 2 criteria is that although
we favor longer curves finally, we want to protect potential paths in the pool
before they have been fully extended. This punning policy effectively bounds
the computation within linear complexity meanwhile providing us with good
enough solutions.

The algorithm for sampling and pruning paths recursively is illustrated in
Table 1, note that once a path p is extended by a new vertex vN+1, its NCC
score approximation can be updated also in an efficient recursive form,

NCC(new)
p =

NCC
(old)
p · s(old)

p +NCCN · sN

s
(old)
p + sN

. (9)

For the complete paths (can not be extended any more) returned by the
multiple hypothesis sampling, instead of using equation 5 for approximation,
the one with highest score according to equation 8 is selected to be the final
result.

For the final candidates returned by the multiple-hypothesis sampler, we use
criteria c2 in 8 to rank them, however, instead of using NCC score approxima-
tion as equation 5, we use TPS warping to straighten the curved reflection axis
to calculate the accurate NCC score. based on the c2 ranking, the path that
produces highest score is selected as final result.

3 Experimental Results and Comparison

We test our algorithm on 210 images including 2 subcategories of the Swedish
Leaf dataset [21]–one has curved reflection symmetry pattern on every single leaf
(Quercus rober, 75 images), the other has curved reflection symmetry pattern
among the leaves on a branch (Sorbus aucuparia, 75 images), as well as a human-
spine X-ray dataset containing 30 images that we collect ourselves. We also
collected a set of miscellaneous real-world and synthesized images with curved
reflection symmetry patterns (30 images). In addition, we compare our approach
with the method in [18] on the same image sets.
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Algorithm 1: Multiple Hypothesis Path Sampling

Input:
G(V,E), with V = {vi}, E = {(vk1, vk2, NCCk, sk)|k = 1, 2, . . . ,K};

Initialize:
Randomly pick a vertex vi, mark it as incomplete and put it into the path pool;

while exists incomplete paths in the pool
for all incomplete paths in the pool

if the path can be further extended
replace the path with all valid extend paths;
update path NCC score (Eq.9) and mark them as incomplete.

else
Mark the path as complete.

Prune paths in the path pool with low likelihood score.
Return:

All paths remaining in the pool.

3.1 Our Results

A representative selection of our results on the Swedish leaf dataset, spine X-ray
dataset and miscellaneous images is shown in Figures 4, 5, 61. For each image,
we tag the detection results of curved reflection axis, as well as its support region
specified by symmetric feature points. We also straighten the curved reflection
axis and show the rectified image in the supporting region on the right.

(H) and (I) in Figure 6 show 2 different reflection patterns being detected
from the same image. This is achieved when we separate the consistency graph
G into several connected components, each of which could be checked for the
existence of reflection patterns.

It can be seen from these results and rectified images that piece-wise rigid
reflection is a reasonable approximation for curved reflection. Our method is
effective and robust in selecting a small subset of inlier symmetry particles ex-
plicitly to represent the reflection pattern. If necessary, curve fitting can be
further applied on the selected inlier particles to obtain a smoother curve.

Although we introduced several heuristic thresholds in the algorithm, e.g.,
TH1 = TH2 = π/8, THNCC = 0.5, they are mainly for efficiency concerns. A
stricter threshold helps saving time by pruning bad hypothesis in an earlier stage;
Relaxing the thresholds would result to more outliers being included in the path-
sampling stage. However the final results are relatively insensitive against the
threshold changes, which is because our approach has the self-validation ability,
making it perform robustly in finding the correct inlier particles even when the
outliers are more than inliers (which is usually the case).

In addition, we make some extra tests on images containing human perceived
straight-reflection symmetries (Figure 7). The results demonstrate a more accu-
rate capture of the slight deformations of the seemingly straight reflection axes

1 See our project page for a complete set of Data and Results at
http://vision.cse.psu.edu/research/curvedSym/index.shtml
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(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

Fig. 4. Results of Swedish leaf data set. top row: single leaf with curved reflection
symmetry pattern; bottom row: multiple leaves form curved reflection symmetry pat-
tern; a-f: original images tagged with detected curved reflection axis(pink), supporting
region(green); A-F: rectified images with a straightened reflection axis(pink).

(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

Fig. 5. Results of Spine X-ray data set. a-f: original images tagged with detected curved
reflection axis(pink), supporting region(green); A-F: rectified images with a straight-
ened reflection axis(pink).
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(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

(g) (G) (h) (H) (i) (I)

(j) (J)

(K) (K)

Fig. 6. Results of miscellaneous images. a-k: original images tagged with detected
curved reflection axis(pink), supporting region(green); A-K: rectified images with a
straightened reflection axis(pink).
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by our piece-wise curve approximation algorithm, indicating the rarity of per-
fectly straight reflection symmetries in real world.

(a) (b) (c)

Fig. 7. Examples of detecting almost-straight reflection symmetries.

(a) (b) (c)

Fig. 8. Examples of failed cases, where (a) failed due to severe background clutter; (b)
and (c) failed because not enough feature points are detected in the first place thus
missed the dominant reflection pattern, while finding some local reflection symmetries.

Some failure examples are also shown in Figure 8, where (a) failed due to
severe background clutter; (b) and (c) failed because not enough feature points
are detected in the first place so that the dominant reflection symmetry pattern
is not (fully) recognized. From the experiment, most of the failure cases are due
to not enough feature points being extracted. Therefore to make our approach
more robust, multiple types of feature point detection can be adopted here e.g.,
Harris-Laplace [22], which detects corner like points and is complement with
Hessian-Laplace (blob-like) feature points.

3.2 Quantitative Evaluation and Comparison with [18]

We also apply Lee and Liu’s approach [18] to the same data sets and make
quantitative comparisons. For each image, we tag it success if more than 4/5
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Dataset Leaf dataset Spine dataset Miscellaneous images Overall

# images 150 30 30 210

proposed 83.3% 80.0% 73.3% 81.4%

Lee & Liu [18] 40.0% 66.7% 70.0% 48.1%

Table 1. Success rates of our proposed algorithm and Lee & Liu’s [18].

of the curved reflection axis is detected, and failure otherwise. Our method has
higher success rate on all three datasets as reported in Table 1.

Some of the detection results of Lee and Liu’s in [18] are also shown here
in Figure 9 for an intuitive comparison. It can be seen that by defining an
explicit supporting region and TPS warping to rectify the curve, we achieve self-
validation in our method thus being more robust against outliers and yield to
better performance.

(a) (A) (b) (B) (c) (C)

Fig. 9. Comparisons of our proposed approach with Lee & Liu in [18]. a-c: Lee & Liu’s
approach; A-C: our approach.

4 Conclusions

In this paper, we propose a bottom-up curved-reflection symmetry detection
approach, starting from recognizing symmetric points pairs (particles) in the
bottom level and extract a consistent structure among the particles to form the
symmetry pattern in the higher level. Multiple-hypothesis sampling and pruning
method is shown to be effective in discovering the optimal curved structures
from real world images. As a by-product, we obtain the supporting regions from
selected particles and use them for self-validation. Quantitative evaluation and
comparison against state-of-the-art algorithm on 210 real images confirm the
superior robustness of our proposed approach.

Acknowledgement. We thank Lee and Liu [18] for providing their source code.
This work is supported in part by an NSF grant IIS-0729363 and a gift grant to
Dr. Liu from Northrop Grumman Corporation.



Curved Reflection Symmetry Detection with Self-validation 13

References

1. Liu, Y., Hel-Or, H., Kaplan, C.S., Gool, L.V.: Computational symmetry in com-
puter vision and computer graphics. Foundations and Trends in Computer Graph-
ics and Vision 5 (2010) 1–195

2. Weyl, H.: Symmetry. Princeton University Press (1952)
3. Mitra, S., Liu, Y.: Local facial asymmetry for expression classification. In: Proceed-

ings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’04). Volume 2. (2004) 889 – 894

4. Liu, J., Liu, Y.: Multi-target tracking of time-varying spatial patterns. In: Com-
puter Vision and Pattern Recognition Conference (CVPR ’10). (2010)

5. Kuehnle, A.: Symmetry-based recognition of vehicle rears. Pattern Recogn. Lett.
12 (1991) 249–258

6. Mancas, M., Gosselin, B., Macq, B.: Fast and automatic tumoral area localisation
using symmetry. Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP ’05). IEEE International Conference on 2 (2005) 725–728

7. Park, M., Lee, S., Chen, P.C., Kashyap, S., Butt, A.A., Liu, Y.: Performance eval-
uation of state-of-the-art discrete symmetry detection algorithms. In: Computer
Vision and Pattern Recognition Conference (CVPR). (2008) 1–8

8. Sun, C., Si, D.: Fast reflectional symmetry detection using orientation histograms.
Real-Time Imaging 5 (1999) 63–74

9. Masuda, T., Yamamoto, K., Yamada, H.: Detection of partial symmetry using
correlation with rotated-reflected images. Pattern Recognition 26 (1993)

10. Loy, G., Eklundh, J.: Detecting symmetry and symmetric constellations of features.
In: European Conference on Computer Vision. (2006) II: 508–521

11. Mitra, N., Guibas, L., Pauly, M.: Partial and approximate symmetry detection for
3d geometry. ACM Transactions on Graphics 25 (2006) 560–568

12. Kanade, T., Kender, J.R.: Mapping image properties into shape constraints:
skewed symmetry, affine-transformable patterns, and the shape-from-texture
paradigm. In: Human and Machine Vision. (1983) 237–257

13. Shen, D., Ip, H., Teoh, E.: Robust detection of skewed symmetries. In: International
Conference on Pattern Recognition vol.3. (2000) 1010–1013

14. Van Gool, L., Proesmans, M., Moons, T.: Mirror and point symmetry under per-
spective skewing. In: Proceedings of IEEE International Conference on Computer
Vision and Pattern Recognition. (1996) 285–292

15. Carlsson, S.: Symmetry in perspective. In: European Conference on Computer
Vision vol.1. (1998) 249–263

16. Lei, Y., Wong, K.: Detection and localisation of reflectional and rotational sym-
metry under weak perspective projection. Pattern Recognition 32 (1999) 167–180

17. Cornelius, H., Loy, G.: Detecting bilateral symmetry in perspective. In: CVPRW.
(2006) 191

18. Lee, S., Liu, Y.: Curved glide-reflection symmetry detection. In: Computer Vision
and Pattern Recognition Conference (CVPR ’09). (2009) 1046 – 1053

19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

20. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 1154–1166
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