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Abstract

We introduce a novel data-driven mean-shift belief prop-
agation (DDMSBP) method for non-Gaussian MRFs, which
often arise in computer vision applications. With the aid
of scale space theory, optimization of non-Gaussian, mul-
timodal MRF models using DDMSBP becomes less sen-
sitive to local maxima. This is a significant improvement
over standard BP inference, and extends the range of meth-
ods that are computationally tractable. In particular, when
pair-wise potentials are Gaussians, the time complexity of
DDMSBP becomes bilinear in the numbers of states and
nodes in the MRF. Experimental results from simulation and
non-rigid deformable neuroimage registration demonstrate
that our method is faster and more accurate than state-of-
the-art inference algorithms.

1. Introduction

Probabilistic graphical models, a marriage of graph the-
ory and probability theory, has become a popular area of
research in vision and machine learning in recent years
[1, 11, 29, 21]. Probabilistic graphical models are graphs
in which nodes represent random variables and edges rep-
resent probabilistic relationships. A graphical model com-
pactly specifies the factored form of a joint probability dis-
tribution over all variables, allowing inferences to be effi-
ciently performed by marginalization. Probabilistic graph-
ical models are especially popular in the computer vision
community because many common vision problems can
be mapped naturally into a graphical model framework
[3, 8, 21, 11, 29, 22, 15, 28].

A major computational stumbling block in graphical
models is the fact that summing over the joint probability
distribution is exponential with respect to the number of
nodes in a graphical model. Many researchers have pro-
posed various alternatives to find approximate solutions in-
stead [1]. When the graph is sparsely connected, belief

propagation (BP) algorithms can turn an exponential infer-
ence computation into one that is linear with respect to the
number of nodes in the graph. However belief propaga-
tion is only applicable when the variables in the nodes are
discrete-valued or jointly represented by a single multivari-
ate Gaussian distribution. This limitation rules out its use in
many computer vision applications.

In this paper, we propose a novel inference algorithm
called DDMSBP that is less sensitive to local maxima for
non-Gaussian MRFs. In addition, when pair-wise poten-
tials are Gaussians, the time complexity of the algorithm
becomes O(LG)1, and convergence is guaranteed as long as
the dynamic MRF structure maintained during DDMSBP
has a diagonally dominant inverse covariance. Besides be-
ing applicable to continuous MRFs, the proposed method is
also applicable to discrete MRFs where the number of labels
is too large to perform standard discrete belief propagation.

To validate the performance and applicability of the pro-
posed algorithm, we apply the method to both continuous
MRFs and a deformable neuroimage registration problem
formulated as a discrete MRF. Results show the proposed
method is faster and more accurate than other state-of-the-
art algorithms [21, 13].

2. Related Work
Improving speed of inference on a graphical model is an

active area of research. For discrete domains, Ramanan and
Forsyth [23] improved the speed by static state space prun-
ing and Coughlan and Shen [3] improved the speed by dy-
namic pruning and adding of states. For special case MRFs
with convex potential functions, Felzenszwalb and Hutten-
locher [5] reduced the computation time of belief propaga-
tion by several orders of magnitude using min convolution,
bipartite graphs and multi-grid methods. More recently, Ko-
modakis and Tziritas [13] proposed an optimization method
using duality theory of linear programming to provide an al-
ternative, more general view of state-of-the-art techniques

1L: number of labels or samples, G: number of nodes in the graph.
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like α-expansion. In contrast to α-expansion, their derived
algorithms generate solutions with guaranteed optimality
properties for a much wider class of problems. However,
none of these methods is suitable for high dimensional con-
tinuous spaces.

For continuous cases, variational inference and expecta-
tion propagation (EP) has been proven to be effective [1].
However, as noted by T. Minka [20], EP can lead to a poor
approximation when potentials in the graphical model are
complicated (multimodal).

Several versions of continuous BP for non-Gaussian
graphical models have been proposed [29, 11, 8]. By rep-
resenting arbitrary density functions using particles, non-
parametric belief propagation (NBP) can approximate BP
inference for a continuous hidden variable space. How-
ever, the standard NBP algorithm is slow due to the sam-
pling process on the products of samples [8]. To address
this issue, a variant of NBP was proposed using sequential
density estimation and mode propagation [8]. Later, Park
et al [22, 21] proposed a more efficient mean-shift belief
propagation (MSBP) method. They use mean-shift to per-
form nonparametric mode-seeking on implicitly defined be-
lief surfaces generated within the belief propagation frame-
work. Since MSBP only needs to compute a local grid of
samples, it can achieve better efficiency. However, MSBP
can suffer from local maxima if the mean-shift bandwidth
is not set properly. Another limitation of all current BP al-
gorithms is the uncertainty about their convergence when
applied to a non-Gaussian MRF.

Recent work on smoothing-based optimization [14] and
mean-shift with a variable bandwidth [2] has shown that it
is possible to find a global maximum of a highly multimodal
function. These results are based on scale space theory [16],
which shows that local optima disappear very fast for most
functions with increasing variance of the Gaussian blur ker-
nel. Although it is not always possible to trace back from
the global maximum of a blurred function to the original
global maximum, it is typically possible to trace back to a
significant local maximum [14].

3. Data Driven Mean-Shift Belief Propagation
We develop two theorems that connect MSBP [22, 21],

smoothing based optimization [14], and Gaussian belief
propagation for inference of a non-Gaussian MRF. Since
the proposed method adapts gradually to the given data dur-
ing the MSBP procedures, we call this method data driven
mean-shift belief propagation (DDMSBP).

3.1. Background

Consider smoothing a function f(x) by convolving with
a zero-mean Gaussian blur kernel with covariance matrix
σ2I . The value of this smoothed function evaluated at lo-

Figure 1: Progress of smoothing based optimization is
shown from (a) ∼(d), where the dotted red line is the sam-
ple mean computed by Eq. (1), the solid red line is the
unnormalized Gaussian proposal function N (x;µ(t), σ(t)),
the black solid line is the original objective function f(x),
the solid blue line is a sample drawn from the Gaussian pro-
posal function N (x;µ(t), σ(t)), and the green solid line is
the original objective function at sample location s, f(s).

cation µ is equivalent to F (µ, σ) =
∫
N (t;µ, σ)f(t)dt

where N (t;µ, σ) is a multidimensional Gaussian with
mean µ and covariance matrix σ2I .

Leordeanu and Hebert [14] define a sequence of mean
and variance pairs (µ(t), σ(t)) where

µ(t+1) =

R
xN (x;µ(t), σ(t))f(x)dxR
N (x;µ(t), σ(t))f(x)dx

(1)

σ(t+1) =

s R
(1/n

Pn
i=1(x

k
i − µ

(t)
i )2)N (x;µ(t), σ(t))f(x)dxR

N (x;µ(t), σ(t))f(x)dx
(2)

and prove that the following inequalities hold:

F (µ(t+1), σ(t)) ≥ F (µ(t), σ(t)) (3)

F (µ(t), σ(t+1)) ≥ F (µ(t), σ(t)) (4)

Fig. 1 shows sample progress of this smoothing-based
optimization procedure [14] on an arbitrary function f(x).
As can be seen, the estimate of the global mode is ap-
proaching the true global mode with increasing confidence
expressed by inverse variance of N (x;µ(t), σ(t)) as the



smoothing-based algorithm iterates. Although the estima-
tion of global mode and confidence are wrong at first, the
estimation error decreases and confidence increases with
more iterations.

3.2. Theorems for DDMSBP

We generalize the result of Leordeanu and Hebert [14] to
apply to belief propagation in a non-Gaussian MRF. With
the aid of scale space theory, optimization of non-Gaussian,
multimodal MRF models become less sensitive to local
maxima. This is a significant improvement over standard
BP inference.

Theorem 1: Consider the joint probability in an
MRF:

p(x) = k
∏
ij

ψ(xi, xj)
∏
i

φ(xi) (5)

where k, x, φ, and ψ are a normalizing constant, N dimen-
sional column vector x = [x1x2 · · ·xN ]T , unary potential
function, and pair-wise potential function respectively. To
estimate

x̂ = argxmax p(x) (6)

belief propagation can be applied repeatedly to a dy-
namic MRF2 defined by unary potential functions
φ(xi)N (xi;µ

(t)
i , σ(t)) where N (xi;µ

(t)
i , σ(t)) is a Gaus-

sian distribution with mean µ
(t)
i and standard deviation

σ(t). Let p(xi)(t) be the marginal density for node i at
iteration t. Then the updated mean and standard deviation
for the next iteration are given as µ(t+1) =

∫
xip(xi)(t)dxi

and σ(t+1) =
[

1
N

∑N
i=1

∫
(xi − µ(t)

i )2p(x)(t)dxi
]1/2

Proof : We start by multiplying p(x) by the multi-
variate Gaussian N (x;µ(t), σ(t)I)

N (x;µ(t), σ(t)I)p(x) =
kN (x;µ(t), σ(t)I)

∏
ij ψ(xi, xj)

∏
i φ(xi).

(7)

Since N (x;µ(t), σ(t)I) has a diagonal covariance matrix,
N (x;µ(t), σ(t)I) can be decomposed to a product of uni-
variate Gaussians

N (x;µ(t), σ(t)I) =
∏
i

N (xi;µ
(t)
i , σ(t)) (8)

and p(x)N (x;µ(t), σ(t)I) can be rewritten as:

p(x)N (x;µ(t), σ(t)I) =
k
∏
ij ψ(xi, xj)

∏
i φ(xi)N (xi;µ

(t)
i , σ(t))

(9)

2A dynamic MRF is an MRF varying over time. In our case the MRF
is varying over iterations (t).

To compute the mean and standard deviation of each vari-
able xi, a marginal density (belief), p(xi)(t) = k′b(xi)(t)

where k′ is a normalizing constant, is first computed by
the BP algorithm on an MRF with unary potential func-
tion given as φ(xi)N (xi;µ

(t)
i , σ(t)). The updated mean and

standard deviation at node i, i = 1 ∼ N , are then given by:

µ
(t+1)
i = k′

∫
xi

xib(xi)(t)dxi (10)

σ
(t+1)
i =

√
k′
∫
xi

(xi − µ(t)
i )2b(xi)(t)dxi (11)

respectively.
Therefore, the mean of all nodes in column vector nota-

tion µ(t+1) is given as:

µ(t+1) =


µ

(t+1)
1

µ
(t+1)
2

...
µ

(t+1)
N

 =


k′
∫
x1
x1b(x1)(t)dx1

k′
∫
x2
x2b(x2)(t)dx2

...
k′
∫
xN

xNb(xN )(t)dxN


(12)

Since the marginal density for node i, p(xi)(t) = k′b(xi)(t)

is defined as:

k′b(xi)(t) =
R R

...
R

xk,k 6=i
p(x)N (x;µ(t),σ(t))dx1...dxkR R

...
R

xk
p(x)N (x;µ(t),σ(t))dx1...dxk

=
R R

...
R

xk,k 6=i
p(x)N (x;µ(t),σ(t))dx1...dxkR

x
p(x)N (x;µ(t),σ(t))x

(13)
for unnormalized p(x)N (x;µ(t), σ(t)), the denominator of
Eq. (13) is the same for all nodes, i = 1 · · ·N . Then Eq.
(12) can be summarized as:

µ(t+1) =

∫
x
xp(x)N (x;µ(t), σ(t))dx∫

x
p(x)N (x;µ(t), σ(t))dx

(14)

It follows from Eqs. (1) and (3) that µ(t+1) − µ(t) is in a
gradient ascent direction of the smoothed function:

P (x, σ) =
∫
t

N (x− t; 0, σ2I)p(t)dt (15)

and that

P (µ(t+1), σ(t)) ≥ P (µ(t), σ(t)). (16)

The sigma update rule can be shown similarly. This theorem
explains the good experimental results of mean-shift belief
propagation (MSBP) presented by Park et al. [22, 21] where
a constant blur kernel was used and no theoretical connec-
tion was given between BP and non-parametric mode seek-
ing. Based on Theorem 1, we can seek the MAP estimate x̂
by applying BP repeatedly on a dynamic MRF with unary



potential functions φ(xi)N (xi;µ
(t)
i , σ(t)) updated accord-

ing to Eq. (14) at each iteration (t).
Theorem 1 states that optimization on an MRF only

requires computing mean and variance of a smoothed
marginal density function, and that the mean and variance
updates perform non-parametric gradient ascent in a
scale-space representation of the joint probability. The
motivation of Theorem 2, below, is that we may approxi-
mate the unary potential function of the dynamic MRF by
a Gaussian and use the closed form Gaussian BP rule [31]
for each update. Theorem 2 also provides a confidence
measure on the approximation error during each iteration.

Theorem 2: Consider the joint probability in a dy-
namic MRF:

p(x) = k
∏
ij

ψ(xi, xj)
∏
i

φ(xi)N (xi;µ
(t)
i , σ(t)) (17)

where the belief propagation message update rule is:

mik(xk) =
∫
xi

φ(xi)N (xi;µ
(t)
i , σ(t))q(xi, xk)dxi (18)

with q(xi, xk) given by:

q(xi, xk) = ψ(xi, xk)
∏

m∈N(i)\k

mmi(xi). (19)

Consider approximating the message given by Eq. (18)
with

m̂ik(xk) =
∫
xi

N (xi; µ̂, σ̂)q(xi, xk)dxi (20)

where N (xi; µ̂, σ̂) is a Gaussian distribution with mean µ̂i
and variance σ̂2

i defined as

µ̂i =

Z
xi

xiφ(xi)N (xi;µ
(t)
i , σ(t))dxi (21)

and

σ̂2
i =

Z
(xi − µ̂)2φ(xi)N (xi;µ

(t)
i , σ(t))dxi. (22)

When σ(t) → 0 the approximation error,
|mik(xk) − m̂ik(xk)| becomes 0, and the estimated
marginal means and variances over unary potential func-
tions given by φ(xi)N (xi;µi, σ) and N (xi; µ̂, σ̂) become
identical.

Proof : Without loss of generality, let the non-Gaussian
multimodal function φ(xi) be represented as a mixture of
Gaussians

φ(xi) =

∞X
m=1

wmN (xi;µm, σm) (23)

where the wm are mixing coefficients that sum to 1,∑∞
m=1 wm = 1. Since the product of Gaussians is also

a Gaussian, Eq. (18) becomes :

mik(xk) =

Z
xi

∞X
m=1

wmN (xi;µmi, σmi)q(xi, xk)dxi (24)

where µmi and σmi are:

µmi =
µmσ

(t)2 + µ
(t)
i σ2

m

σ(t)2 + σ2
m

, σmi =

s
σ2

mσ(t)2

σ(t)2 + σ2
m

(25)

Similarly, the mean µ̂i and variance σ̂2
i are computed as:

µ̂i =
∫
xi
xiφ(xi)N (xi;µ

(t)
i , σ(t))dxi

=
∑∞
m=1 wm

∫
xi
xiN (xi;µmi, σmi)dxi

=
∑∞
m=1 wmµmi

(26)

and

σ̂2
i =

∫
(xi − µ̂)2φ(xi)N (xi;µ

(t)
i , σ(t))dxi

=
∑∞
m=1 wm

∫
(xi − µ̂)2N (xi;µmi, σmi)dxi

=
∑∞
m=1 wm

∫
{xi − (µ̂− µmi)})2N (xi; 0, σmi)dxi

=
∑∞
m=1 wm

{
σ2
mi + (µ̂− µmi)2

}
(27)

respectively.
Now as σ(t) → 0, we find that µmi → µi, σmi → 0,

µ̂ → µi, and σ̂ → 0 from Eq. (25) ∼ (27). Therefore
mik(xk) becomes:

mik(xk) =
∑∞
m=1 wm

∫
xi
N (xi;µi, 0)q(xi, xk)dxi

mik(xk) = q(µi, xk)
∑∞
m=1 wm = q(µi, xk)

(28)
where we use the equalities N (µi, 0) = δ(x − µi)3 and∑∞
m=1 wm = 1. Similarly, the approximated message be-

comes:

m̂ik(xk) =
∫
xi

N (xi;µi, 0)q(xi, xk)dxi = q(µi, xk).

(29)
Therefore, the approximated messages and original mes-
sage become identical, and so do the beliefs.

Corollary 1 : For an MRF defined by non-Gaussian
multimodal unary potential functions and Gaussian
pair-wise potential functions4, a problem given by:

x̂ = argxmax p(x) (30)

3δ(x) is a Dirac delta function
4We note that non-Gaussian multimodal distributions as unary potential

functions are prevalent while pair-wise potential functions tend to be Gaus-
sians in computer vision problems, e.g. regularized deformation fields,
MRF models for lattice structures, and so on.



may be solved by an iterative sequence of closed-form
solutions when σ(t) → 0.

Corollary 2 : For the same problem, Eq. (30), the
iterative closed form solution is guaranteed to converge
as long as the dynamic MRF during each iteration has
diagonally dominant Σ−1

ij . Proof: This is so because the
dynamic MRF at any iteration (t) is a Gaussian MRF, by
definition. The convergence of the Gaussian MRF for a
diagonally dominant Σ−1

ij is proven by the work of Weiss
and Freeman [31].

3.3. DDMSBP Algorithm

When all the messages and potential functions are Gaus-
sian for a dynamic MRF at iteration (t), they can be ex-
pressed by their means and covariances. Therefore, we may
perform BP in bilinear time with respect to L and G (The-
orem 1 and 2). Letting the number of iterations required
for the “while” loop and Gaussian BP be kw and kb re-
spectively (Fig. 2), the time complexity of the DDMSBP
is O(Gkwkb+LGkw) ' O(LG) where kw and kb are con-
stant. Furthermore, the proposed algorithm can be imple-
mented on a parallel processor using up to G threads with-
out loss of accuracy. Then time complexity becomes O(L).

1 Start with initial values of µ(0) and σ(0), set t = 0
2 while σ(t) ≤ ε
3 Draw samples s1, s2, ..., sm

from the normal distribution N (xi;µ
(t)
i , σ(t))

4 Compute weighted means for every node
Set: µ̂i =

Pm
j=1 sjφi(sj)Pm

j=1 φi(sj)

5 Compute weighted variances for every node

Set: σ̂i =
√

1
N

∑N
i=1

Pm
j=1(sj−µ̂j)2φi(sj)Pm

j=1 φi(sj)

6 Build Gaussian MRF
using computed µ̂i and σ̂i

7 Run Gaussian BP

8 Set: µ(t+1) to mean estimate of Gaussian BP

9 Set: σ(t+1) to the mean of all variance
estimates of Gaussian BP

10 t← t+ 1
11 end

Figure 2: Pseudo code for DDMSBP algorithm: Lines 4
and 5 are for the approximation of φ(xi)N (xi;µ

(t)
i , σ(t))by

N (xi; µ̂i, σ̂i) to define the dynamic MRF at iteration (t).

4. Validation of DDMSBP
To validate our approach, we demonstrate applications

of DDMSBP to an interpolation problem on a continuous
MRF, and to 3D deformable registration using a discrete
MRF.

4.1. Interpolation Problem on Continuous MRF

To test the performance of the proposed method on a
continuous MRF, we adopt the approach of Park et al [21]
who modified the simulation performed by Weiss and Free-
man [31] to use non-Gaussian unary potentials. Likewise,
we also run NBP [27, 11, 29], simulated annealing us-
ing Markov Chain Monte Carlo (MCMC) moves [6, 24],
MSBP, EP, and the proposed method on the same problem
to perform inference on a 25×25 grid with the same param-
eter settings (Fig. 3). Approximating the joint MAP by the
max-marginal estimate using NBP is a common practice in
problems defined on graphs since there is no max-product
BP for continuous multimodal MRFs [10]. We use L=200
samples for DDMSBP, NBP, and simulated annealing, ep-
silon=0.01 for DDMSBP and MSBP, and 11 bins for MSBP
for the first experiment.

(a) Surface z(x, y) (b) Samples of unary potentials

(c) Given measurement of z(x, y) (d) Initialization

Figure 3: (a) Surface z(x, y) = (x2 + y2)/50 (b) Sample
non-Gaussian unary potentials out of 25 × 25 functions (c)
Actual measurement where only 20% of the nodes are mea-
surable (d) Random initialization of pixel labels at the 2D
grid points

The joint probability used in the simulation is the same
as in [21] and is given as:

P (X, z) = k
∏
ij

e−β(xi−xj)
2 ∏

i

φ(xi, zi), (31)



where k is a normalization constant and β = 0.1 if nodes
xi,xj are neighbors in a 4 connected graph and 0 otherwise.
The multimodal unary potential is

φ(xi, zi) = e−αi(xi−zi)
2

+ 0.7e−αi(xi−zi−ri)
2
, (32)

where αi is randomly selected to be 10−6 or 1 with proba-
bility of 0.8 and 0.2 respectively and ri is randomly chosen
between [0, 5] (Fig. 3b). When αi = 1, we set measurement
zi to be a sample from the surface z(x, y) = (x2 + y2)/50
and zi = 0 otherwise. As can be seen in Fig. 3c only 20%
of the nodes are observable and the rest of the nodes have a
weak prior of zero. Note that zi is a measurement at node i,
one of the 2D grid points expressed by (x, y).

(a) Accuracy vs time trade off by −log(P (x, z))

(b) Left:Estimate surface, Right: Smoothing bandwidth at each iteration

Figure 4: (a) Accuracy vs time trade off by −log(P (X, z))
(b) The results of estimation using the proposed method
(Left) and the smoothing bandwidth at sample iterations
(Right) are shown.

As can be seen in Fig. 4a, EP converges fast but with
less accuracy in terms of MAP criterion than NBP, MSBP,
and DDMSBP. This lack of accuracy is expected when EP is
used for multimodal unary potentials. The proposed method
converges several orders of magnitude faster than the other
methods (except EP) while achieving better accuracy in
terms of MAP criterion. We ran both MSBP and the pro-
posed DDMSBP method 100 times to measure the bounds
plotted in Fig. 4a. Fig. 4b shows progress of variance
(bandwidth) smoothing parameter updates during a sample
run.

4.2. 3D Deformable Registration via discrete MRF

Neuroimage registration has been a fundamental re-
search topic for many years in medical image analysis,
where establishing correspondence between two sample im-
ages is crucial for many applications, including neuroim-
age classification [26], computer aided diagnosis [17, 18],
statistical quantification of human brains and neuroimage
segmentation [30]. While traditional registration techniques
such as affine registration can account for differences in po-
sition and shape, they are not sufficient for modeling lo-
cal deformations. Many deformable registration techniques
have been proposed [12]. One of the major limitations of
these algorithms is their execution time, which can take
hours to complete. Recently Glocker et al. and Shekhovtsov
et al. [7, 25] proposed a fast deformable registration algo-
rithm using an MRF-based model. In this section we com-
pare our DDMSBP algorithm with [7] on a volumetric de-
formable registration problem.

4.2.1 Registration Method using DDMSBP

We follow the method developed by Glocker et al.[7] to
validate the proposed algorithm. We use four resolution
levels, starting with 40 mm control point spacing which is
then refined to 20, 10 and finally 5 mm, resulting in a grid
size varying from 7 × 7 × 6 at the lowest resolution to −
49× 49× 39 at the highest.

The registration is performed by optimizing joint density
over an MRF defined by:

P (X, z) = k
∏
ij

e−β(xi−xj)
2 ∏

i

φ(pi + xi, zi), (33)

where φ(pi + xi, zi) = e−α(1−(zi+1)/2)2 , α is a weight for
similarity, zi is a normalized cross correlation (NCC) com-
puted between a volume at control point pi in a fixed image
over volumes at pi + xi in a warped image where xi cor-
responds to deformation vector, and β is a regularization
weight set to 0.005 as suggested by Glocker et al.[7]. For
xi, we use sparse sampling along the main axis as in [7].
The voxel size at each grid point is a cube of size equal to
the grid spacing.

Although the proposed method is intended for con-
tinuous MRFs, the method does not assume smooth-
ness of the unary potential φ(xi, zi). Hence, DDMSBP
can be applied to a discrete MRF as well. Sparse
sample labels and associated observations φ(pi + xi, zi)
can be generalized to form a mixture of Gaussians∑N
m=1 φ(pm + xm, zm)N (µm, σm) where each Gaussian

component has very small σm. We therefore can apply Eqs.
(26) and (27) to perform the proposed DDMSBP algorithm
on discrete data instead of performing lines 4 and 5 in the
pseudo code given by Fig. 2.



(a) Checkerboard before (b) Checkerboard after (c) Difference before (d) Difference after (e) Volume overlap

Figure 5: Sample results of registration for one subject are shown. Checkerboard and difference image before and after
registration clearly show the performance of DDMSBP-based deformable registration. (e) shows the volume overlap of gray
matter between the manual segmentation by experts and the one found by our algorithm. The red color shows True Positive
(TP) regions, the yellow color shows False Positive (FP) regions, and the blue color shows False Negative (FN) regions.
ITK-SNAP was used to generate this figure [32]

4.2.2 Inter Subject Brain Registration

We use the Internet Brain Segmentation Repository (IBSR)
structural brain MR dataset provided by the Center for Mor-
phometric Analysis at Massachusetts General Hospital5.
This dataset can be considered as a gold standard for reg-
istration as all the images in the dataset have been manu-
ally labeled by experts. The T1-weighted images in this
dataset have been positionally normalized into the Talairach
orientation (rotation only) and have a resolution of 0.9375×
0.9375× 1.5 mm ( image dimensions of 256× 256× 128).
To validate our method, we select one of the 8 images as
the reference (ISBR 01 ana) and deformably register the re-
maining seven to this reference. The recovered deformation
field is then applied to the segment labels. The accuracy
of the method is quantitatively shown by reporting three
measures derived from the volume overlap of the manual
segmentation and the segmentation found by our algorithm
(Fig. 6). The measures are DICE coefficient, sensitivity and
specificity [4]. In the literature, a DICE score larger than
0.7 is considered good even for the segmentation of large
objects (e.g. brain tissues) [19].

4.2.3 Experiment

All the experiments are performed on an OS X 10.5.8 ma-
chine with Intel Core 2 Duo 2.4Ghz 4GB DDR3. Since the
scope of this paper is limited to the inference algorithm, we
use the standard implementation for data computation and
BSpline warping in the ITK library [9]. We compare the in-
ference engine of the proposed DDMSBP method to a state-
of-the-art method [13] for inference on a discrete MRF,
called FastPD6. We use L(= N) = 31 and epsilon = 0.01
for DDMSBP and FastPD. As can be seen in Fig. 6 the
proposed method produces better results in terms of DICE,
sensitivity and specificity, and it is also two times faster than

5http:// www.cma.mgh.harvard.edu/ibsr/
6http://www.csd.uoc.gr/∼komod/FastPD/

FastPD for the inference computation (2.60 sec vs. 5.62 sec
for 3D)7.

Figure 6: We compare the proposed method to FastPD in
terms of DICE, sensitivity, and specificity.

5. Conclusion

We have presented a new BP algorithm called DDMSBP
along with theoretical results demonstrating that DDMSBP
is less sensitive to local maxima for non-Gaussian MRFs.
In particular, when pair-wise potentials are Gaussians, our
method has a time complexity of O(LG), and guarantees
convergence as long as the dynamic MRF constructed has a
diagonally dominant inverse covariance. Application of the
proposed method to numerical simulation on a continuous
MRF and non-rigid deformable 3D brain registration on a
discrete MRF confirm that our method is faster and more
accurate than state-of-the-art algorithms in both domains.

7The score we measured for FastPD [7] is 6.11% lower than the one
reported by Glocker et al. [7]. However, running that algorithm ourselves,
as in the experiments here, is the only way to rule out other factors and get
a fair comparison between the two inference engines.
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