
Beyond GPS: Determining the Camera Viewing Direction of
A Geotagged Image

Minwoo Park
Dept. of CSE

Penn State University
mipark@cse.psu.edu

Jiebo Luo
Kodak Research Lab.

Eastman Kodak
jiebo.luo@kodak.com

Robert T. Collins, Yanxi Liu
Dept. of CSE

Penn State University
{rcollins,yanxi}@cse.psu.edu

ABSTRACT
Increasingly, geographic information is being associated with per-
sonal photos. Recent research results have shown that the addi-
tional global positioning system (GPS) information helps visual
recognition for geotagged photos by providing location context.
However, the current GPS data only identifies the camera location,
leaving the viewing direction uncertain. To produce more precise
location information, i.e. the viewing direction for geotagged pho-
tos, we utilize both Google Street View and Google Earth satellite
images. Our proposed system is two-pronged: 1) visual matching
between a user photo and any available street views in the vicin-
ity determine the viewing direction, and 2) when only an overhead
satellite view is available, near-orthogonal view matching between
the user photo and satellite imagery computes the viewing direc-
tion. Experimental results have shown the promise of the proposed
framework.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: IMAGE PROCESSING AND
COMPUTER VISION—Scene Analysis

General Terms
Algorithms, Measurement

1. INTRODUCTION
Millions of camera phones and digital cameras are sold each year

world wide. With the explosion of photos and videos on the In-
ternet, dealing with the large amount of unorganized visual data
has become immensely challenging. To address this problem, one
fast-emerging phenomenon in digital photography and community
photo sharing is geo-tagging. The presence of geographically rel-
evant metadata with photos and videos has opened up interesting
research avenues in the multimedia research community for visual
recognition of objects, scenes and events [8].

However, the current GPS data only identifies the camera lo-
cation while the interesting scene in the photo may not be at the
specified geo-location because it may be in the distance along an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

arbitrary viewing direction. Viewing direction data provided by a
mobile device with a digital compass is error prone because the
digital compass is sensitive to motion and magnetic disturbances.

The use of reference images has its own challenges because 1)
reference images are not evenly distributed throughout the world,
and 2) GPS data associated with the reference images found in the
digital photo communities may be inaccurate and inconsistent.

In this paper, we address the deficiency of GPS data and scarcity
of reference images by utilizing Google Street Views (covering ma-
jor cities) when available and Google Earth satellite views (cover-
ing the entire globe) otherwise. Our goals are 1) to estimate the 2D
viewing direction given GPS coordinates, and 2) to provide a gen-
eral framework that can cover the entire world. Fig. 5 illustrates
our goals with examples (with actual estimated by the proposed
algorithms) taken in urban and suburban environments.

2. RELATED WORK
There is a growing body of work based on geotagged photos.

Snavely et al. [13] developed the Photo Tourism system for brows-
ing large collections of photographs in 3D. Their system takes as
input large collections of images from either personal photo collec-
tions or photo sharing web sites, and automatically computes each
photo’s viewpoint and a sparse 3D model of the scene.

Later, Snavely et al. [12] takes a large set of community or per-
sonal photos, reconstructs camera viewpoints, and automatically
computes orbits, panoramas, canonical views, and optimal paths
between views.

However, these works have not dealt with mapping of data back
to actual maps. To address this problem, Kaminsky et al. [5] align
3D point clouds with overhead images by computing optimal align-
ment using an objective function that matches 3D points to image
edges while imposing free space constraints based on the visibility
of points in each camera. However, their method is not suitable for
estimating the viewing direction of a single arbitrary user photo be-
cause the method requires hundreds of images related to the photo.

Lalonde et al. [6] estimate camera parameters and geo-location
by detecting the sun position and sky appearance from an image
sequence and fitting a model of the predicted sun position and sky
appearance to the detected sun position and sky appearance.

Schindler et al. [11] automatically geo-tag photographs taken
in man-made environments via detection and matching of repeated
patterns on building facades. Although they show very accurate
results on a few image sets, their driving cue for the estimation is
repeating patterns and thus the algorithm requires a database for
such building facades.

Luo et al. [9] proposed a system called View Focus where they
retrieve geo-tagged photos sharing similar viewing directions using
bundle adjustment [7] that requires significant overlap in scene con-

tent between community photos. However, with the exceptions of
popular landmark spots for which there is a concentration of com-
munity photos, this requirement is often not satisfied in practice.

In contrast, our proposed method is a general framework that
can estimate the 2D viewing direction of geotagged photos in more
realistic settings. Our method only requires one input query image
that is geotagged, regardless of the picture-taking environment.

3. THE PROPOSED FRAMEWORK
Our method consists of two parts, where the first part handles

a case when Google Street View is available and the second part
handles a case when Google Street View is not available (Fig. 1).

3.1 Part 1 - When Google Street View exists
We use accurate GPS information and a viewing direction as-

sociated to Google Street View. We first download 360◦ views of
Google Street View using GPS from a user photo, collect the views
related to a user photo by RANSAC-based matching, then estimate
the viewing direction using our proposed method.

Download: Since Google Street View provides linked nodes where
each node indicates its view center and pointers to neighboring
nodes, we first identify the Street View node that is closest to the
location of a given user photo and download all Street View images
that are within a certain peripheral area by traversing the linked
nodes. Then we generate API calls [1] that simulate viewing angle
rotations at every 30◦ and download the simulated views. There-
fore, each view contains information about both the location and
viewing direction. These are the references we use to estimate the
viewing direction of the user photo.

Relevant image collection: For all of the downloaded images,
we follow RANSAC-based homography matching by Brown and
Lowe [3]. Since rigid objects such as buildings and traffic signs are
everywhere whenever Street Views are available, the RANSAC-
based homography matching is effective. We collect the every im-
age that has more than 15 matching inliers.

Viewing direction estimation: Once all the relevant images (Si
for i = 1 ∼ N) are collected, we have N viewing directions as-
sociated with Si and N sets of matching correspondences, Mus

between a user photo, U , and Si. To estimate an initial rough view-
ing direction, we examine each FOV (field of view) at every Street
View center. We seek to find overlapping regions seen by all Street
Views. Each region is given a relevance weight proportional to the
number of inliers found in the previous matching (Fig. 2a). Then
we use Parzen window estimation to find the highest mode of the
2D location of interesting region and obtain an initial estimate of
user viewing direction as a ray from the center of user location to
the highest mode (Fig. 2b).

Then we estimate a viewing direction using the fact that the point
correspondences that induce a homographic mapping must be co-
planar. However, we first relax the problem by considering only
x-axis information from Mus, since the primary goal is to estimate
the 2D viewing direction, which is the yaw angle. Through this
relaxation, we can convert a problem of 4-degree of freedom (hor-
izontal and vertical FOVs of the Street View, and pitch and yaw
angles of the user photo) to that of 2-degree of freedom (horizontal
FOV and yaw angle). Therefore, we propose the following approxi-
mation method that uses the homography constraint only and is less
dependent on the accuracy of the Street View camera parameters.

We assume that the principal point of each Si and U is the center
of each image, and that the FOV of U is extracted from the camera

metadata. Then we project 3D rays onto the y = 0 plane to form
2D rays (Fig. 3). Any plane that intersects with the y = 0 plane
results in a 2D line on the y = 0 plane. Therefore, we try to find
collinear points on the y = 0 plane. The assumption behind this is
that any 3D plane that induces homography is mostly vertical, and
thus the projection of that 3D plane onto the y = 0 plane remains
to be a line, approximately.

Now we vary horizontally the FOV for each Si and the user
viewing direction to compute a hypothetical 2D point by triangula-
tion, as shown in Fig. 3b. Since these 2D points, (xk, yk) for k =
1 ∼ m should be approximately collinear, we build a scatter matrix
of the 2D points given by

S =
1

m

[∑m
k=1(xk − x̄)2

∑m
k=1(xk − x̄)2∑m

k=1(xk − x̄)2
∑m
k=1(yk − ȳ)2

]
(1)

where x̄ and ȳ are the mean of xk and yk, respectively. Then we
compute the eigen values of S to measure the collinearity of the
points (xk, yk). We select the viewing direction and horizontal
FOV of Si that minimizes a ratio r = λmin

λmax
where λmin and λmax

are the minimum and maximum eigenvalues of the S.

3.2 Part 2 - When only a satellite view exists
When Google Street View is not available for an area, we down-

load a satellite image from Google Earth according to the GPS co-
ordinates extracted from the geotagged user photo. Since the user
photo is usually a ground-level view and the satellite view is top-
down from above, computing a match between them is extremely
challenging because two views are near orthogonal and furthermore
the appearance of common objects can vary significantly due to the
different imaging conditions. That said, the ground plane and fix-
ture objects on the ground are visible from both the aerial view and
ground view (Fig. 4b and 4d). This is the basis for matching the two
near orthogonal views in order to determine the camera viewing di-
rection. Therefore detection of ground plane from a user photo and
simulating ground-level view from the satellite view are important.

Ground Plane Detection: We first segment a user photo image
using [4]. Then we take the boundary of each segmentation as an
edge and sum all the edge responses along the x axis. This yields
a vector with length equal to the height of the image. Since we do
not expect the image to be perfectly normal to the ground plane,
we use a box filter and convolve the computed vector with the fil-
ter. For a possible large tilt change, we can increase the size of
the box filter so that we can also detect a slanted horizon. For-
mally, the solution is given as follows, Ir(y) =

∑width
x=1 Im(y, x)

where Im(y, x) is the edge magnitude at pixel (x, y) on a seg-

mented image and Ir(y) =
(
Ir(y)/sumheight

y=1 Ir(y)
)

is an edge
response at vertical axis y. The solution for horizon is given as
yMMSE =

∑height
y=1 y × (Ir ∗ BOX)(y) where BOX is a box

filter and ∗ is a convolution operator. Since everything is a lin-
ear computation, detection takes less than a second. The plane
is given by an image region confined by 1 ≤ x ≤ width and
yMMSE ≤ y ≤ height.

Simulating Ground-level View from a Satellite View: Since we
can extract the FOV of the user camera, we can simulate a ground-
level view in a certain viewing direction by rotating the FOV on the
co-located satellite image, extracting image patch covered by the
FOV, and warping to the ground-level view (Fig. 4c and 4d).

Alignment and Matching: We resize both images into small patches,
which we call codes, to normalize the horizontal axis and vertical

Figure 1: Overview of the proposed approach: a) GPS information tagged in a user photo is used to check the availability of reference
images from the Internet. b) If Google Street View is available, surrounding views at that location are downloaded and homography-based
matching is performed. If not, a satellite aerial view at the location is downloaded from Google Earth, and a novel matching between the two
near-orthogonal views is performed to estimate the viewing direction. c) The estimated viewing direction is displayed on the satellite view.

Figure 2: Initial estimate of yaw angle. The red circles in a) and
b) indicate the user location and blue circle in b) indicates 2D loca-
tion of interesting object. a) FOV at every Street View center. Each
region covered by FOV is given a relevance weight proportional to
the number of inliers found in matching. b) Parzen window estima-
tion of interesting area seen by Street View.

axis (Fig. 4b and 4d). Since we use the same FOV when simulat-
ing a ground-level view from the satellite image, this normalization
makes the horizontal axes of the two codes approximately corre-
spond to each other. However, the y-axes that relate to distances
from a camera center may not correspond to each other because we
do not know the tilt angle of the camera (Fig. 4a and 4b).

If we regard the vertical axis as a time axis, there is a conceptual
similarity between our matching problem and time series analy-
sis where two signals have different speed and acceleration (e.g.,
speech). The similarity score of the two 3 × w matrices (mi,mj)
where w is the width of the code extracted from both codes at dis-
tance (i, j) is used to evaluate similarity between two time series at
a given time (i,j) (see Fig. 4b and 4d).

Having converted our matching problem to time-series analy-
sis, we can use normalized cross correlation (NCC) to generate a
2D disparity map between the codes and use dynamic program-
ming to find the minimum shortest path, as can be seen in Fig.
4. Although we can use any types of appearance similarity scores
and features such as the earth-mover’s distance [10] and color his-
togram, NCC and texture help overcome the differences in terms
of optics, weather, lighting and other factors originated from two
extremely different imaging conditions (by a camera on a satellite
vs. a consumer-level camera on the ground). Finally, we choose
the viewing direction that generates the minimum shortest path as
our solution.

Figure 3: The red lines are rays from each camera center. The
green lines are rays passing through the principal points. The white
crosses are the triangulated 2D points. a) Triangulation of rays
cannot find any crossing points visible by both cameras showing
the given viewing direction is not possible. b) 2D points that are
visible by both cameras are computed by triangulation of rays.

4. EXPERIMENTAL RESULTS
We first note the best option for accurate ground truth genera-

tion is to use traditional surveying methods that require intensive
labors and expertises [2]. Instead, we have used iPhone 3GS to
collect ground truth data since a manual verification of GPS and
viewing direction on the spot is possible using Google Map appli-
cation right on the iPhone 3GS. As a result, we built a dataset of 55
images with ground truth viewing directions in Washington D.C.,
New York City, Rochester, NY, and State College, PA areas for our
experiments (we will make the dataset public). The dataset is small
given the effort needed to obtain and verify the ground truth, but
it is larger than the one used in [11]). More importantly, it covers
significantly more diverse cities of various sizes and flavors (two
major metropolitan cities, a mid-size city, and a college town).

Our experiments show an average mean error of 11.1◦ and stan-
dard deviation of 9.5◦ when estimating viewing direction. Fig. 5a
and 5b shows examples in the urban environments using the Part
1 algorithm and Fig. 5c and 5d shows examples in the suburban
or park environments using the algorithm from Part 2. Note that
our algorithms can handle cases with foreground objects (Fig. 5c)
as long as they do not overwhelm the scene. Moreover, Fig. 5e
shows the trajectories of a person collecting data in D.C and the
corresponding viewing direction estimates.

Figure 4: When only a satellite view exists: a) user photo, b) de-
tected ground plane from the user photo using horizon detection,
c) extraction of the ground plane at a specific user photo location,
viewing direction, and FOV, d) simulated ground level view using
the result of c), e) dynamic time warping and disparity score for b)
and d).

There are failures when the structures on the ground plane are
either indistinctive (looking out to the lake from the beach) or con-
fusing (looking at two identical buildings next to each other). Re-
markably, even such estimates are still roughly in the same general
directions, with the worst error on the entire dataset being 37.63◦.

We notice that the GPS device used for collecting the ground
truth was inaccurate at the center of New York City (in the middle
of the concrete jungle with maximum signal interference). This
suggests a future research direction where we want to estimate both
the viewing direction and (more accurate) GPS coordinates. Also
the Part 2 problem is in general far more ill-posed than Part 1 and
perhaps multiple co-located web photos can be helpful. We will
pursue further in these directions.

5. CONCLUSIONS
We propose a general framework to estimate the camera view-

ing direction of a single geotagged photo in any environment and
have demonstrated its promises. The main contributions are the
exploitation of Google Street View and Google Earth satellite im-
ages as references, and the solutions designed to overcome various
technical challenges inherent within each ill-posed scenario. Our
methods perform the best when the recorded GPS coordinates are
accurate. In future work, we hope to evaluate the proposed algo-
rithms on a larger scale and further diversified dataset and refine
potentially noisy GPS coordinates while estimating the associated
viewing directions within the same framework.

6. REFERENCES
[1] Google APIs. http://code.google.com .
[2] Nokia Challenge (2009/2010): Where was this Photo Taken, and

How? http://comminfo.rutgers.edu/conferences/mmchallenge
/2010/02/10/nokia-challenge/.

Figure 5: Example results. (a),(c): user photos. (b),(d): estimated
viewing directions (red triangles) using Part 1 and 2 algorithm re-
spectively compared with ground truth (green triangles). (e) tra-
jectories of a person collecting data in D.C and the corresponding
viewing direction estimates.

[3] M. Brown and D. Lowe. Automatic panoramic image stitching using
invariant features. International Journal of Computer Vision,
74(1):59–73, August 2007.

[4] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision,
59(2):167–181, 2004.

[5] R. Kaminsky, N. Snavely, S. Seitz, and R. Szeliski. Alignment of 3D
point clouds to overhead images. Computer Vision and Pattern
Recognition Workshop on Internet Vision, 2009.

[6] J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros. What do the sun
and the sky tell us about the camera? Int. J. Comput. Vision,
88(1):24–51, 2010.

[7] M. A. Lourakis and A. Argyros. SBA: A Software Package for
Generic Sparse Bundle Adjustment. ACM Trans. Math. Software,
36(1):1–30, 2009.

[8] J. Luo, J. Yu, D. Joshi, and W. Hao. Event recognition: viewing the
world with a third eye. In ACM Multimedia, pages 1071–1080, 2008.

[9] Z. Luo, H. Li, J. Tang, R. Hong, and T.-S. Chua. Viewfocus: explore
places of interests on google maps using photos with view direction
filtering. In ACM Multimedia, pages 963–964, 2009.

[10] Y. Rubner, C. Tomasi, and L. J. Guibas. A Metric for Distributions
with Applications to Image Databases. In International Conference
on Computer Vision, pages 59 – 66, 1998.

[11] G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and
F. Dellaert. Detecting and matching repeated patterns for automatic
geo-tagging in urban environments. In IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[12] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding paths
through the world’s photos. ACM Trans. Graph., 27(3), 2008.

[13] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring
Photo Collections in 3D. ACM Trans. Graph., 25(3):835–846, 2006.

