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Abstract— We generalize the concept of bilateral reflection
symmetry to curved glide-reflection symmetry in 2-dimensional
Euclidean space, such that classic reflection symmetry becomes
one of its six special cases. We propose a local feature-based ap-
proach for curved glide-reflection symmetry detection from real,
unsegmented 2D images. Furthermore, we apply curved glide-
reflection axis detection for curved reflection surface detection in
3D images. Our method discovers, groups and connects statisti-
cally dominant local glide-reflection axes in an Axis-Parameter-
Space (APS) without pre-assumptions on the types of reflection
symmetries. Quantitative evaluations and comparisons against
state of the art algorithms on a diverse 64-test-image set and 1125
Swedish leaf-data images show a promising average detection
rate of the proposed algorithm at 80% and 40% respectively,
and superior performance over existing reflection symmetry
detection algorithms. Potential applications in computer vision,
particularly biomedical imaging, include saliency detection from
unsegmented images and quantification of deviations from nor-
mality. We make our 64-test-image set publicly available.

Index Terms— symmetry, glide-reflection, curved axis, curved
surface.

I. INTRODUCTION

SYMMETRY or approximate-symmetry is ubiquitous in
the world around us and plays an important role in human

and animal perception [1] [2] [3] [4] (Figure 1). Likewise,
symmetry should play an important role for object description
and recognition in computer vision [5]. An accurate automatic
symmetry detection algorithm can aid many computer vision
methods that perform pattern perception, object recognition
and scene understanding. Among the four primitive symmetry
types in 2D Euclidean geometry [6] (Figure 1): reflection,
rotation, translation and glide-reflection, reflection symmetry
(Figure 2 III, V, VI, VII) is one of the most commonly
observed, analyzed and computationally treated primitive sym-
metries [6] [7] [5] (Table I). Reflection symmetry detection has
been used in various applications, including face analysis [8],
vehicle detection [9] [10] and medical image analysis [11] [12]
[13].

Many real world symmetrical objects/patterns do not present
a formally defined, rigid reflection symmetry that is associated
with a straight reflection axis (e.g. Figure 2 VI)). Instead,
they often follow either a curved reflection axis or a glide-
reflection axis (Figure 2 right, Figure 1 bottom). A glide-
reflection symmetry (Figure 2 II, V) is a primitive symmetry
composed of a reflection and a translation along the direction
of the reflection axis [6]. Except for the algorithm proposed in
[14], which explicitly evaluates glide-reflection symmetries for
specific wallpaper/frieze symmetry group classification, glide-
reflection symmetry detection algorithms are rarely found
in the computer vision literature. Detecting glide-reflection
symmetry with a straight axis (Figure 1 (d)), a curved axis
(Figure 1 bottom) in 2D, or curved glide reflection surface

Fig. 1. Top: Examples of four different types of primitive symmetries [5]
[6] in 2D Euclidean space: (a) Reflection (b) Rotation (c) Translation and
(d) Glide-reflection. Bottom: The real world is full of curved reflection and
glide-reflection symmetries.

Fig. 2. Left: Seven distinct types of Frieze patterns [6]. Right: Real image
samples related to the four frieze patterns that have reflection or glide-
reflection symmetries.

extraction in 3D (Figures 18 and 19) in general settings, has
not been addressed computationally. An input image that has a
curved glide reflection axis can be straightened to correspond
to one of the 4 Frieze patterns [6] [14] that have horizontal
reflection symmetries (Types II, V, VI and VII in Figure 2),
and thus our proposed algorithm is also a first step towards
detecting curved Frieze patterns in real images.

The contributions of this paper include: (1) a conceptual
and theoretical generalization of reflection symmetry to curved
glide-reflection symmetries such that reflection symmetry,
which has dominated the computer vision symmetry detection
literature for the past 40 years, becomes one of six special
cases of this generalization; (2) a novel curved glide-reflection
symmetry axis detection algorithm for 2D unsegmented im-
ages and a direct application to curved reflection surface
detection in 3D volumetric images; (3) a benchmark image set
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(available with this publication) containing 64 real images for
various types of glide reflection symmetries, and a quantitative
evaluation and comparison of our proposed algorithm with the
algorithms of Loy and Eklundh [15] and Peng et al. [16] on
straight and curved reflection symmetry detection, respectively.

II. RELATED WORK

Automatic detection of symmetry in natural and man-made
objects has been a lasting research interest in computer vision,
pattern recognition and robotics. The detection of reflection
symmetry, in particular, has dominated the symmetry detection
literature in computer vision (Table I). Since Birkoff and
Kellogg [17]’s work in 1932, there has been a large and
growing body of 2D/3D reflection symmetry detection algo-
rithms proposed in the computer vision and computer graphics
literature. These range from detecting Euclidean reflection
symmetry [15], [20], [30], [31], [33], [37], [41], [42], [46], to
affinely [18], [39] and perspectively distorted [22], [28], [29],
[29], [34], [35], [38], [43], [45], [50] reflection symmetry.

In Euclidean space, Marola [20] introduces a planar re-
flection symmetry axis detection method. Tuzikov et al. [31]
detect reflection symmetry axes from convex polygons based
on Minkowski Addition. Sun and Si [37] detect reflection
symmetry from a segmented gray image and its gradient
information. These methods work on segmented or clean
background images. On the other hand, there also are reflection
symmetry detection methods working on unsegmented gray
images. Kiryati and Gofman [33] detect globally maximal
reflection symmetry from an unsegmented gray image based
on a symmetry measure depending on the scale, orientation
and distance of a supporting region. Yla-Jaaski and Ade [54]
detect reflection symmetry of an object from its boundary
edges. Prasad and Yegnanarayana [41] build gradient vector
flow (GVF), a symmetry saliency map, and detect reflection
symmetry. GVF was subsequently also used for rotation
symmetry detection [55]. Yuan and Tang [42] find multiple
reflection symmetries from a dilated and eroded edge mea-
sure. These algorithms detect symmetric objects without any
skewing deformation. The first quantitative evaluation paper
on discrete symmetry detection algorithms [56] finds a local
feature-based method by Loy and Eklundh [15] as one of the
best state of the art reflection symmetry detection algorithms
from unsegmented images (detection rate on real multiple
object images is 44%). In this paper, we compare our proposed
algorithm with [15] on reflection symmetry with relatively
straight reflection axes.

In 1981, Kanade coined the term skewed symmetry [18]
to denote reflection symmetry of an object undergoing global
affine or perspective skewing. Ponce [22] finds skewed re-
flection symmetry from object boundaries by characterizing
Brooks ribbons. Algorithms developed by Carlsson [34], Lei
and Wong [38], Van Gool et al. [29] and Shen et al. [39]
detect reflection symmetry axes under perspective from seg-
mented objects with clean backgrounds. Marola [43] proposes
a perspective reflection symmetry axis detection method for
synthetic and real gray images. Bitsakos et al. [50] propose a
bilateral symmetry detection method from an object silhouette

(A) (B)

Fig. 3. Results from a standard medial axis detection method [58] compared
with those of the glide reflection axes (yellow curves) from our proposed
algorithm : (A) Curved glide reflection symmetry can be extracted from
a composition of multiple, disconnected objects, in this case without a
continuous closed contour. (B) Even for an object with a closed contour,
the texture pattern of the object, rather than its shape, dictates the dominant
curved reflection symmetry axis, which differs from the output of the medial
axis extraction algorithm on the same object.

under perspective. Riklin Raviv et al. [52] propose perspective
reflection and rotation symmetry extraction and segmentation
methods. Milner et al. [57] focus on the symmetry detection
of bifurcating structures like leaves. Sato and Tamura [30]’s
method detects a planar or a curved 3D reflection symme-
try from a contour shape with clean background. Recently,
algorithms have been developed for partial or approximate
Euclidean reflection symmetry detection in sub-sampled 3D
data [46], and from un-segmented images directly [33] [15]
[53]. Mitra et al. [49] propose a symmetrization method that
straightens a curved reflection symmetry object based on
locally straight reflection symmetries.

Similar to a curved reflection symmetry axis, a medial axis
is defined to be a topological skeleton of an object shape,
usually derived from the object contour [59] [58]. The medial
axis is composed of a set of centers of maximal inscribed disks
of an object boundary. For a recent survey on medial axis, refer
to [60]. Figure 3 illustrates the difference between the outcome
of medial axis and curved glide reflection axis detection.
Curved reflection symmetry can exist in a structure composed
of multiple objects, such that they may not have a continuous
closed contour (Figure 3 (a)). Even for an object with a closed
contour, the medial axis may not always be consistent with the
curved reflection symmetry axis of the texture pattern on an
object (Figure 3 (b)). Peng et al. [16] work on the curved
worm backbone detection and straightening problem, which
is an application-specific, medial axis-based approach. They
detect the medial axis from unsegmented input image based
on intensity difference from the background. We compare
the proposed method with this work in our experimental
results, because the method can take an unsegmented image
and the authors provide their source code. Levinshtein et al.
[61] propose a partial medial axes detection algorithm for
object recognition. Though the method [61] does not require
a given closed contour, the object boundary obtained from
the superpixel segmentation and grouping is necessary for the
subsequent medial axis detection.

Mid-sagittal plane (MSP) detection from the 3D MR image
of human brain is a 3D reflection symmetry plane detection
problem. Guillemaud et al. [62] propose a MSP detection
method from a set of 3D points by fitting a plane with mini-
mum distance error to the points. Liu et al. [63] [64] [13] use a
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TABLE I
REFLECTION SYMMETRY DETECTION ALGORITHMS IN THE LITERATURE

A Glance of Reflection Symmetry Detection Algorithms
2D Euclidean 2D Skewed 3D Euclidean

Segmented Un-segmented Segmented Un-segmented Segmented
1932 Birkoff & Kellogg [17]
1983 Kanade [18]
1985 Wolter et al. [19]
1989 Marola [20]
1990 Marc and Medioni [21] Ponce [22] Liu [23]
1992 Zielke et al. [24]
1993 Labonte et al. [25]
1994 Liu and Popplestone [26]
1995 Zabrodsky et al. [27] Mukherjee et al. [28]
1996 Van Gool et al. [29] Sato and Tamura [30]
1997 Tuzikov et al. [31] Sun and Sherrah [32]
1998 Kiryati & Gofman [33] Carlsson [34] Curwen et al. [35]

Bruckstein and Snaked [36]
1999 Sun and Si [37] Lei & Wong [38]
2000 Shen et al. [39]
2002 Kazhdan et al [40]
2004 Prasad et al. [41]
2005 Yuan & Tang [42] Marola [43]

Liu et al. [44]
2006 Loy & Eklundh [15] Cornelius & Loy [45] Mitra et al. [46]

Martinet et al. [47]
Podolak et al. [48]

2007 Mitra et al. [49]
2008 Bitsakos et al. [50] Pauly et al. [51]
2009 Riklin Raviv et al. [52]
2010 Liu and Liu [53]

set of correlation maps from 2D slices to estimate the 3D ideal
MSP of normal and pathological brains (where brains can be
severely asymmetrical). Ardekani et al. [65] extract MSP based
on cross correlation of two intensity vectors. Minoshima et al.
[66] detect bilateral symmetry regions using stochastic sign
change. Prima et al. [67] maximize the reflection symmetry
measured by correlation for MSP detection. In all of these
MSP detection methods, MSP is considered as a 2D planar
surface. Some human brains show a clear bending along their
mid-sagittal fissure. Stegmanna et al. [68] detect the curved
mid-sagittal surface (MSS) by maximizing local symmetry at
every 2D slice of the brain. However, the cross-correlation-
based reflection symmetry detection in their algorithm is
sensitive to irregular conditions, such as a brain tumor that
pushes the MSP to form a non-planar surface.

III. CURVED GLIDE-REFLECTION FORMALIZATION

Glide-Reflection is defined in [6] as a symmetry that is
composed of a translation T along and a reflection R about
the same axis (Figure 1 (d), Figure 2 case II). A pair of image
patches Pi1 , Pi2 has a local glide-reflection symmetry if and
only if Pi1 = Ti + Ri(Pi2) (Figure 4 (2)). When Ti = 0,
Pi1 = Ri(Pi2) is a pure reflection (Figure 4 (1)). Let Ci, short
for CRi,Ti

, represent a center point between image patches
Pi1 , Pi2 (Figure 4).

We define a Curved Glide-Reflection Symmetry as: a
sequential collection of local glide-reflection symmetries
[(T1, R1), ...(Ti, Ri), ...(Tn, Rn)] with corresponding image
patch pairs [(P11, P12), ..., (Pi1 , Pi2), ..., (Pn1 , Pn2)] and as-
sociated center points C = [C1, C2, ..., Ci, ..., Cn], such that
a smooth curve C can be found that passes through all points
in C sequentially and is tangent to each local reflection axis
of Ri at Ci. The shortest such curve Cmin is defined to be the
axis of the curved glide reflection symmetry.

Fig. 4. The six special cases of curved glide-reflection symmetry. In
(2),(3),(5),(6), only cases where patches Pi2 = Pj1 are shown, though
Pi2 6= Pj1 is also allowed.

Let Ci and Cj be two adjacent, nonidentical center points
(Ci 6= Cj) in C. Then a curved glide-reflection symmetry can
be categorized as follows:

• When Ri = Rj (Straight reflection axis)
(1) if |Ti| = |Tj | = 0, Reflection (Figure 4 (1)) ;
(2) if |Ti| = |Tj | 6= 0, Glide-Reflection (Figure 4 (2)) ;
(3) if |Ti| 6= |Tj |, Non-Uniform Glide-Reflection (Figure
4 (3));

• When Ri 6= Rj (Curved reflection axis)
(4) if |Ti| = |Tj | = 0, Curved Reflection (Figure 4 (4));
(5) if |Ti| = |Tj | 6= 0, Curved Glide Reflection (Figure 4
(5));
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Fig. 5. Curved glide-reflection and its special cases. Curved glide-reflection
includes the non-uniform glide reflection, i.e. cases (5) and (6) shown in
Figure 4. Detected axes by the proposed algorithm (yellow lines) are shown.
Blue dots are the center points of the supporting local feature pairs.

(6) if |Ti| 6= |Tj |, Curved Non-Uniform Glide Reflection
(Figure 4 (6));

IV. GLIDE-REFLECTION DETECTION

We propose a local feature point-based matching method for
glide-reflection symmetry detection. Figure 6 is a flowchart
of our proposed curved glide-reflection symmetry detection
algorithm. From a filtered input image, we collect matching
point pairs and group them in a 3D axis parameter space
(APS). A curve fitting method is applied to detect a global
curved glide-reflection axis on each detected matching point
pair group.

A. Feature Point Detection

Feature point-based matching [15] allows efficient corre-
spondence detection by examining local oriented feature points
rather than the whole input image. The set of available feature
points is critical to our proposed algorithm performance. If
only a small number of feature points are found from the
input image, the cue to support a reflection symmetry may be
missing or weak. To overcome this problem, we propose to use
multiple image filters (gray, dilated edge and gradient image)
before performing key point detection. In our experiments, we
use SIFT [69] feature point matching. Though SIFT detects
distinctive points robustly with good repeatability [15], SIFT
key points are only detected at local maxima or minima
locations, which are rare on an image with gradual change
of intensity. Thus we also filter the image using gradient and
Canny edge detectors. These filtered images give additional

Fig. 6. Flowchart for the proposed curved glide-reflection symmetry detection
algorithm.

Fig. 7. Feature point detection from three different filtered input images

SIFT key points in local regions where key points were not
detected in the original intensity image (Figure 7). As a
result, we obtain more potential matching pairs for symmetry
detection. Table III shows the effect of these image filters on
glide-reflection symmetry detection performance.

B. Matching Pairs Selection

A feature point Pi is represented by its location xi, yi,
orientation φi and scale si defined on the corresponding local
patch of the feature point [69], i.e Pi(xi, yi, φi, si) [15]. Given
a set of detected feature points, all possible pairs of feature
points are analyzed to find the reflection symmetry R based
on a set of local feature descriptors. The orientation of each
reflection axis is computed from the orientations of a pair of
matched points. The offset or translation T of a potential glide-
reflection symmetry is found from the relative locations and
orientations of matched feature point pairs (Figure 8).
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Fig. 8. The orientation of the glide-reflection axis φaxis and translation Tij

Given SIFT feature points and their local descriptor vectors,
we compare all possible pairs of orientation-normalized fea-
ture points. If two orientation-normalized feature points exhibit
a glide-reflection symmetry (Pi = T +R(Pj)), the descriptor
vector of one point matches with the mirrored descriptor vector
of the other point. Similarity for matching is quantified by the
Euclidean distance between the SIFT descriptors. After we
sort the pairs by their similarity score at each feature point,
the top N matched pairs are chosen to be the candidate set.
In our experiments, we use an empirical value of N = 3. In
[15], glide-reflection pairs (Figure 5 (2)) are penalized. In our
algorithm, we treat both glide-reflection (T 6= 0) and reflection
(T = 0) symmetries uniformly while letting the transformation
T value tell them apart.

Under our formulation, glide-reflection symmetries and
pure reflection symmetries can be distinguished in a three-
dimensional axis parameter space (APS) of glide-reflection
axes, as shown below. Let Pi = (xi, yi, φi, si) and Pj =
(xj , yj , φj , sj) be two feature points (Figure 8) and Cij be the
center point between them. φi, φj and φij are the orientation
values of two key points and the line connecting them. If the
two points of a matched pair form a glide-reflection symmetry,
the orientation of its axis, φaxis, is simply the average of the
orientations of the two key points:

φaxis =
φi + φj

2
= φij + ψij +

π

2
(1)

where ψij is the deviation angle of the glide-reflection axis
from the perpendicular line to the line connecting the two
points (Pi and Pj). Then the translation component Tij of
a potential glide-reflection axis can be calculated from the
following equation:

Tij = dijsin(ψij) = dijsin(
φi + φj − π

2
− φij) (2)

where, dij =
√

(xi − xj)2 + (yi − yj)2 is the distance be-
tween the two points. We also calculate the distance rij from
the image center (xc, yc) to the glide-reflection axis:

rij = (
xi + xj

2
− xc)sinφaxis− (

yi + yj
2

− yc)cosφaxis (3)

Now we can express our glide-reflection symmetry as
Pj = Tij + Rrij ,φaxis

(Pi), where Rrij ,φaxis
is the reflection

Fig. 9. 3D APS examples of the four special cases of curved glide-reflection
symmetries: Red circles show the characteristic patterns detected in the 3D
APS location.

mapping with respect to the reflection axis (rij , φaxis) and
Tij is a translation offset. Thus, (Tij , rij , φaxis) form a
three dimensional APS for glide-reflection symmetries (Figure
9). We construct and analyze the distribution of the three
glide-reflection axis parameters detected in real images. Each
matched pair (Pi and Pj) point in the 3D APS is weighted by

Mij , a product of the scaling Sij = e
(
−|si−sj |

si+sj
)

and distance

Dij = e
(
−d2

ij
2max(dij) ) as follows [15]:

Mij = Sij ×Dij = e
(
−|si−sj |

si+sj
) × e(

−d2
ij

2max(dij) ) (4)

where dij is the distance and si and sj are the scales of Pi
and Pj .

Feature point pairs of similar size and shorter distance are
given higher weight [15]. This 3D APS distribution is then
convolved with a Gaussian kernel (we use empirical value
σ = 2.5) to build a 3D density map. Local maximum points
indicate dominant axes.

Figure 9 shows votes in 3D APS space for four examples of
curved glide-reflection symmetry. If the glide-reflection axis of
the input image is straight, the voting in the 3D APS should
be centered around a point-like local maxima when projected
to (rij , φaxis) (Figure 9 (1)). Reflection symmetry is detected
near Tij = 0 (red circle of Figure 9 (1)). Glide-reflection
with a straight axis has a single non-zero Tij value (red circle
of Figure 9 (2)) while locally deformed glide-reflection has
multiple (two or more) non-zero Tij values (One is positive
and the other is negative in Figure 9 (3)). In Figure 9 (4), three
local maximum locations on the Tij = 0 plane indicate the
existence of a curved reflection axis. These special cases form
the basic building blocks for a general curved glide-reflection
symmetry detection algorithm.
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Fig. 10. An example of curved glide-reflection axis (cases (5) and (6) in
Figure 4) detection: Blue points in (b) are center points of supporting matched
pairs for each local axis. Yellow lines are local axes. 3D APS (c) shows each
detected local axis (red circled). They have two different types of translation
components (Ta and Tb), which are shown in (b).

V. CURVED GLIDE-REFLECTION AXIS ESTIMATION

From an unsegmented image, without any previous knowl-
edge, we need to extract potential local feature points that may
lead to corresponding matches for glide-reflection symmetry.
When the glide-reflection axis is curved, the axis does not
appear as a single point in the APS voting space (Figure 9
(4)), as it does for the straight axis case (Figure 9 (1),(2)).
A curved axis can be considered as a sequence of straight
glide-reflection axes having different yet smoothly varying
orientations with different glides (translations) T . Therefore,
a curved axis can be estimated by fitting a curve to a set of
contiguous points in the 3D APS. Based on the detected local
glide-reflection matches, our algorithm seeks a set of local
axes supporting a curved glide-reflection symmetry.

A. Grouping in a 3D APS

In real world images, multiple local straight glide-reflection
axes of different orientations and translations form a single
curved glide-reflection. Figure 10 (b) shows seven local axes
(yellow lines) supporting a curved axis that is detected by our
algorithm (Figure 10 (f)). We find the seven local maximum
points on this 3D APS density (Figure 10 (c)). Each red circled
set of matching pairs in Figure 10 (c) corresponds to a local
axis shown in 10 (b). Note that they have two different types
of translation components (Ta and Tb), which can be clearly
detected in our 3D APS (Figure 10 (c)). Local axes close
to each other with respect to the Euclidean distance of (rij ,
φaxis) coordinate are connected. This can be done in a 2D
density plot (Figure 10 (d)) obtained by accumulating points
along the T -axis of the 3D APS density. Note that the distance
between 90 and −90 in the φaxis axis is considered to be
zero. As a result, we find a series of straight local axes having
contiguous rij and φaxis values. Figure 10 (e) shows detected
axes corresponding to a curved glide reflection axis in Figure
10 (f). After a set of connected axes are detected representing
a global curved glide-reflection axis, we eliminate them from
the 3D APS and repeat the grouping to detect the next curved
glide-reflection axis.

B. Curve Fitting

Given all local axes detected in the 3D APS supporting a
curved glide reflection axis, we can locate the center points mk

(blue points in Figure 10 (b)) of all supporting feature point
pairs of the local axes back in the spatial domain. White points
in Figure 10 (b) represent the feature point pairs supporting
the selected axes. By connecting all center points, we can get
a curved glide-reflection axis. However, the detected center
points are not necessarily dense enough to find the correct
glide-reflection axis. To achieve a smooth and precise curved
axis, we apply a polynomial curve fitting given the center
point set mk. Based on an assumption that a curved axis can
be approximated by a polynomial curve, we use polynomial
curves fc(x) = a0 +

∑c
i=1 aix

i. We set c range from 1 to 5
in our experiments. Each degree of the polynomial is fit on
a rotated input image Ij to find the best fit (rotation angles
are j = 0o, 45o, 90o and 135o, respectively). We calculate
the summation of distance S(Ij , fc(x)) =

∑N
k=1 d(k) where

d(k) is the distance from the computed center points mk of
an input image Ij to the polynomial fc(x). Among the total
of 20 polynomial curves (5 polynomial degrees × 4 rotation
angles), the one having the lowest distance S from all center
points is selected as the final curved axis fcfit

(x) on Ijfit
,

where ((jfit, cfit) = arg minj,c S(Ij , fc(x))).
However, in practical applications this curve fitting method

suffers from outliers of the center points mk, causing signifi-
cant axis detection errors in curve fitting. In order to remove
outliers and find the best subset of center points modeling the
curved glide-reflection axis, we propose a modified RANSAC
algorithm [70]. Before we perform the curve fitting, we
randomly choose a subset of center points. Because we do not
know the exact target shape of the model of each axis, we have
multiple polynomial models of degrees 1 to 5. We compute
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(a) Without RANSAC (b) With RANSAC

Fig. 11. Curve fitting with and without RANSAC (a) Outlier center point at
the bottom left causes incorrect axis detection result. (b) RANSAC excludes
the outlier and finds a better glide-reflection axis.

the squared sum of Euclidean distances from all points of
the subset to each polynomial. Best fit with shortest distance
among the polynomials is selected as a potential good model.
Now we test with points outside of the subset to find a final
good polynomial model. This step is repeated k times and the
polynomial model with the lowest distance is chosen as the
final polynomial curve fit on the axis. Pseudocode for this step
is shown below:

Pseudocode of RANSAC algorithm for Curve Fitting
n is the smallest fraction of the number of mk required
k is the number of iterations
t is the threshold used to decide whether a point fits well
on the current curve
d is the fraction of the minimum number of center points
required to be a good model (d>n)

For i=1 to i=k
1. Draw a sample of n center points from the
data uniformly and at random
2. Fit polynomials to the subset and find
the polynomial of the lowest distance
3. For each point outside the subset

Measure the distance to the polynomial
If the distance is less than t, the point is close

end
If there are points in the subset with d or higher
ratio, declare a good fit
and calculate the current distance
If current distance < minimum distance

minimum distance = current distance
best polynomial = current polynomial

end
Return best polynomial, minimum distance

Figure 11 demonstrates a polynomial curve fitting example
with and without RANSAC. The detected curved axis in
Figure 11 (a) is distorted by an outlier center point outside
of the leaf at the bottom left side. RANSAC eliminates the
outlier and finds the correct axis in Figure 11 (b).

Fig. 13. Curved and straight glide-reflection axes detection comparison.
Loy and Eklundh [15] detects no curved or straight glide-reflection axis.
Several stronger glide-reflection axes in the middle of each wallpaper image
are detected by the proposed method.

VI. EXPERIMENTAL RESULTS

We test our algorithm on 64 images composed of reptile,
insect, fish, human body, tiled-pattern, human face, butterfly,
and spinal x-rays (Figure 12, 14, 13) and 1125 Swedish
leaf images [71] (Figure 15). In our experiments, parameter
values for the RANSAC algorithm are empirically assigned
as follows: The smallest ratio of the number of center points
required n is 0.3, the threshold used to decide that a point fits
well on the current curve t is 25, the ratio of the minimum
number of center points required to be a good model d is 0.9
and the iteration number k is 30.

Our method is coded in Matlab and runs on a Windows
XP, 3.2GHz Pentium CPU. The processing time of the pro-
posed algorithm mainly depends on the number of detected
feature points, varying from hundreds to thousands. Detailed
experimental results are presented below (the complete set of
results are provided in our supplemental materials). Potential
applications of the proposed algorithm are shown in Figures
16 and 17.

A. Curved Glide-Reflection Symmetry Detection in Real, Un-
segmented Images

Table II shows the detection rates and mean processing time
of the proposed algorithm compared to the reflection symmetry
algorithm of [15] on the 64-test image set. For quantitative
evaluation, we use the standard definition of true positive rate
(sensitivity) defined as the number of detected symmetries
over the number of the groundtruth (human identified). We
also record the number of false positives. We consider it a
false positive if our proposed method, with no pre-assumption
of reflection symmetry types, fits a curved axis to a straight
reflection axis due to a lack of detected center points mk on
the straight axis. On the other hand, Eklundh’s algorithm [15]
always try to find a straight reflection axis. We also compare
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TABLE II
QUANTITATIVE EXPERIMENTAL RESULTS USING DIFFERENT IMAGE FILTERS, WITH AND WITHOUT RANSAC ON 64-TEST IMAGE SET

Method Detection Results - True Positive Rate % (# False Positives) Processing time
Without With With With both Average(std)
filters/RANSAC RANSAC filters filters/RANSAC

Proposed 75% (16) 77% (15) 77% (15) 80% (13) 9.7(10.3)sec
Loy and Eklundh [15] 31% (119) 6.1(9.4)sec

TABLE III
QUANTITATIVE EXPERIMENTAL RESULTS ON DIFFERENT TYPES OF REFLECTION SYMMETRY IMAGES ON THE 64-TEST IMAGE SET

Method Detection Results - True Positive Rate (# False Positive)
Straight Straight Glide- Curved Curved Glide- Overall
Reflection(21) Reflection(15) Reflection(18) Reflection(10) (64)

Proposed 86% (3) 80% (3) 83% (3) 60% (4) 80% (13)
Loy and Eklundh [15] 91% (9) 7% (46) 0% (38) 0% (26) 31% (119)

21, 15, 18 and 10 (64 total) test images are used for straight reflection, straight glide-reflection, curved reflection and curved
glide-reflection, respectively. True positive rate (sensitivity) = #ofTP

#ofGT , GT = Ground Truth. False positive = # of False positives

Fig. 12. Experimental results on real-world images. Two separate glide-reflection axes are found in (f).

the Current medial axes detection approaches (e.g. Peng et
al [16]) is not designed to deal with the amount of clutter
that is present in real world images, our evaluation results
of [16] shows 0% sensitivity on the 64-test image set and
a significantly longer time than the algorithms presented in
Table II. Figure 12 shows some sample results of the proposed
algorithm on real world images. Curved reflection symmetries
are found on leaves or branches (Figure 12 (a), (d), (e) and (f)).
Figure 12 (f) demonstrates that multiple curved glide-reflection
symmetry axes can be detected in an image. Figure 12 (c) is
a lizard with a reflection symmetry pattern on its back, which
serves as a good example where the medial axis (extracted
from its contour) and reflection axis (extracted from its texture
pattern) differ. Figure 12 (i) is a stained pathology image of a

zebra fish, where a curved reflection axis is supported by its
interior features. The left part of the detected axis in Figure
12 (d) is inaccurate due to a center point outlier.

We further divide our 64-test image set into four subtypes:
straight reflection, straight glide-reflection, curved reflection
and curved glide-reflection symmetries and evaluate the algo-
rithms performance respectively (Table III). Figure 13 shows
some sample detection results of Loy and Eklundh’s algorithm
[15] versus our proposed algorithm.

Figure 14 (a) is a failure case, where the skewed pattern in
the lower part of the ball is not correctly detected. In Figure
14 (b), background clutter results in many outliers that could
not be completely removed by RANSAC. It also shows that
polynomial curves may not be sufficient to capture the whole
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Fig. 14. Axis detection failure cases due to (a)background clutters (b)the
skewed pattern in lower part and (c)the lack of key points.

curved axis. In Figure 14 (c), not enough key points are found
to support the whole curved axis.

Figure 15 shows the detection results on the Swedish leaf
classes from [71] that contain curved glide-reflection axes.
Class 4 (Figure 15 (a)) has a weak texture pattern and
challenging asymmetric contour shapes. Most leaves of Class
6 (Figure 15 (b)) have asymmetrical contour shapes where
medial axis detection fails to detect the correct glide-reflection
symmetry axes. Clear symmetric patterns on the leaves help
our method to detect the correct curved axes. Class 10 has
more complicated contours and patterns. Table IV summarizes
the curved glide-reflection symmetry axis detection rate on all
15 classes of the Swedish leaf data set. The best detection rate
is 65.3% of class 11 and the worst detection rate is 12.0%
of class 7. Figure 15 (d) shows sample results of leaf axis
detection failure. In most failure cases, lack of enough matched
key point pairs causes the failure of correct and complete leaf
axis detection.

B. Axis Curvature Estimation
One application of our algorithm is the detection of the

curved spine axis from 2D x-ray images. Figure 17 (b) shows
several curved spine axis detection results of the Scoliosis
spine x-ray images. Our algorithm can detect the curvature
of the spine automatically.

The curvature of a spine is an important cue for the diag-
nosis of Scoliosis disease. Cobb angle [72], a measurement
that has been used for the evaluation of curves in Scoliosis,
is an absolute angle difference of the two perpendicular lines
at the two most tilted vertebrae to the horizontal line (Figure
16 left). Let f(x) be a polynomial function representing the
detected curved axis of a spine. We estimate the Cobb angle
by taking a derivative of the detected curved axis and finding
local maxima and minima points. Estimated Cobb angle θ̂ then
can be computed as follows:

θ̂ =
∣∣∣arctan(f

′
(X1

0 ))− arctan(f
′
(X2

0 ))
∣∣∣ (5)

where X1
0 and X2

0 are two points where f
′′
(x) = 0. Figure

16 left shows automatic Cobb angle detection results from a
spine image.

Fig. 15. Sample results of curved glide-reflection symmetry axis detection on
the Swedish leaves [71] classes 1,7 and 13 respectively (Table IV). (d) Sample
results of leaf axis detection failure from classes 4,6 and 10, respectively, due
to failure of outlier elimination (class 1) or lack of enough center points
detected (class 7 and 13).

C. Curved Axis Straightening

Once we find the curved glide-reflection axis with the
parameterized axis model, we can calculate the curvature at
any location on the curve. Based on the curvature information
at each location, we can recover a straight axis by realigning
each normal line of the curved axis vertically (Figure 16 right).

Figure 17 shows two examples of curved axis straighten-
ing. Some Swedish leaves [71] (Figure 17 (a)) have curved
reflection axes. After automatic curved axis detection by the
proposed algorithm we can straighten the original images. This
process is a type of normalization process along the reflection
axis for leaf image registration. Shape recognition methods
for deformable objects can benefit from this quantification and
normalization of the deformation for further discrimination of
the shape. Figure 17(b) is another example using X-ray images
of spines with Scoliosis disease from the previous section.

VII. CURVED GLIDE-REFLECTION SURFACE DETECTION

Our proposed algorithm can also be applied to curved glide
reflection surface detection based on a set of 2D slices. Local
glide-reflection symmetries in each slice are detected and their
center points are collected (Figure 18 (b)). We then perform
a surface fitting [73] on the center points of the set of 2D
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TABLE IV
SYMMETRY AXIS DETECTION FROM SWEDISH LEAF DATA [71]

Leaf - Classes Detection Rate
(15classes x 75samples Loy and Proposed Method
= 1125leaves) Eklundh [15] Neither RANSAC Only Filter Only Filter+RANSAC
Ulmus carpinifolia (class 1) 5/75 = 6.7 18/75 = 24.0 18/75 = 24.0 21/75 = 28.0 21/75 = 28.0
Acer platanoides (class 2) 18/75 = 24.0 29/75 = 38.7 30/75 = 40.0 33/75 = 44.0 35/75 = 46.7
Ulmus (class 3) 4/75 = 5.3 32/75 = 42.7 32/75 = 42.7 36/75 = 48.0 39/75 = 52.0
Quercus robur (class 4) 5/75 = 6.7 3/75 = 4.0 3/75 = 4.0 17/75 = 22.7 17/75 = 22.7
Alnus incana (class 5) 10/75 = 13.3 28/75 = 37.3 28/75 = 37.3 31/75 = 41.3 31/75 = 41.3
Tilia (class 6) 9/75 = 12.0 20/75 = 26.7 21/75 = 28.0 33/75 = 44.0 35/75 = 46.7
Salix fragilis (class 7) 0/75 = 0.0 3/75 = 4.0 3/75 = 4.0 9/75 = 12.0 9/75 = 12.0
Populus tremula (class 8) 15/75 = 20.0 10/75 = 13.3 11/75 = 14.7 13/75 = 17.3 13/75 = 17.3
Corylus avellana (class 9) 3/75 = 4.0 20/75 = 26.7 25/75 = 33.3 26/75 = 34.7 32/75 = 42.7
Sorbus aucuparia (class 10) 9/75 = 12.0 32/75 = 42.7 32/75 = 42.7 40/75 = 53.3 43/75 = 57.3
Prunus padus (class 11) 2/75 = 2.7 31/75 = 41.3 31/75 = 41.3 49/75 = 65.3 49/75 = 65.3
Tilia 2 (class 12) 18/75 = 24.0 28/75 = 37.3 28/75 = 37.3 35/75 = 46.7 35/75 = 46.7
Populus (class 13) 10/75 = 13.3 30/75 = 40.0 31/75 = 41.3 35/75 = 46.7 35/75 = 46.7
Sorbus hybrida (class 14) 5/75 = 6.7 21/75 = 28.0 22/75 = 29.3 35/75 = 46.7 37/75 = 49.3
Fagus silvatica (class 15) 3/75 = 4.0 17/75 = 22.7 17/75 = 22.7 22/75 = 29.3 23/75 = 30.7
Average 116/1125=10.3 322/1125=28.6 332/1125=29.5 435/1125=38.7 452/1125=40.2
(Standard Deviation) (7.6) (13.2) (13.3) (14.4) (15.1).

The use of RANSAC and image filters improves the detection rate (Figure 7).

Fig. 16. Left: Cobb angle estimation by taking a derivative of the detected curved axis, Right: Curved axis straightening

Fig. 17. Curved axis straightening on (a) Swedish leaves and (b) Scoliosis
spines.

slices in 3D space instead of polynomial curve fitting in 2D
to find a curved glide-reflection surface. All slices are stacked
along the Z-axis. We select one of the two 2D planes (X-Z
and Y-Z planes) by taking the plane having higher variance of
point locations projected onto each plane ((xi, zi) or (yi, zi)).
Let us assume that the X-Z plane has a higher variance, as
is the case in Figure 18 (b), then the curved surface function
that we are fitting on the center points can be represented as
yi = f(xi, zi), where i ∈ [1,K] and K is the # of center points
from all slices. The X-Z plane is now divided into multiple
grids uniformly and a spline-based surface fitting method [73]
is applied. We do a bilinear interpolation and gradient-based
smoothing at each point to get a curved surface.

We have applied our method to two types of volumetric
data with approximate bilateral symmetry plane. The zebrafish
atlas [74] (Figure 18 (a)) is a set of 3D scan slice images
of a zebrafish. Figure 18 (c) is the surface fitting result
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Fig. 18. Curved reflection surface detection on 3D CT images of zebrafish:
(a)A set of 2D slices of a 3D Zebrafish (b)Detected center points (blue dots)
of glide-reflection symmetries in data space (c)3D Surface fitting

of a zebrafish. Figure 19 show mid-sagittal surfaces of the
human brain, detected from MR image stacks. The mid-sagittal
surface of a brain with tumor is also correctly detected based
on the overall bilateral structure of the brain.

For a general extension of the proposed method to 3D
curved glide-reflection axis detection rather than the extension
of 2D algorithm to curved reflection surface detection in
3D images, the SIFT keypoint detector would have to be
replaced by a robust 3D feature point detector and 3D feature
orientation estimator, and the dimensions of the axis parameter
space would have to be extended.

VIII. CONCLUSION

We generalize the concept of reflection symmetry to curved
glide-reflection symmetries that are common in the real world,
especially in biomedical image data. The main contribution
of this work is a formalization of curved glide reflection
symmetry and its six sub-cases. The most popular straight
reflection symmetry in computer and human vision applica-
tions thus far becomes one of its six cases. We also propose a
feasible algorithm to detect a curved glide-reflection symmetry
axis based on local feature extraction and parameter subspace
matching. Our analysis provides both theoretical completeness
of the formalization and practical guidance for our proposed
algorithm. The proposed algorithm can deal with globally and
locally skewed curved glide-reflection symmetries as long as
the extracted features are affine or perspective invariant. We
have evaluated our algorithm using a diverse image test set
(64 images) of curved and straight reflection axes (Tables

II and III), achieving an average 80% success rate (Table
II). Furthermore, a quantitative comparison study on more
than 1,000 leaf images shows superior performance of our
proposed algorithm over a state of the art straight reflection
symmetry axis detection algorithm [15] (Table IV). The pro-
posed algorithm has an O(N2

f ) complexity where Nf is the
number of feature points extracted. Our proposed algorithm
is also applied to 3-dimensional data to detect a curved glide-
reflection symmetry surface such as the mid-sagittal surface of
a human brain (normal or with tumor) or of the whole body
micro-CT image of a zebrafish.

Though the proposed algorithm shows promise, there is
plenty of room for improvement. First of all, like all feature-
based methods, the performance of our algorithm suffers if
the feature point extraction step fails to generate sufficient
number of relevant feature points. For example, input im-
ages with smooth, clean contours and no texture (roughly
speaking, images containing purely shape information with
no appearance information) may not yield good results due
to a lack of SIFT-like features. A quantitative evaluation of
the difference between (SIFT) feature-based and region-based
symmetry detection methods can be found in [75]. Since we
have observed a detection rate increase (41.3%→ 65.3% with
class 11) in Table IV given an increase in filter diversity, we
believe an even more versatile interest-point extractor may
prove to be effective. Second, the grouping method in our 3D
axis parameter space (APS) favors bigger and longer curved
axes supported by more feature point pairs (e.g. Figure 12 (k)).
This strategy occasionally eliminates small, weak, but true
curved reflection symmetries. It is possible that a hierarchical
approach can be adopted to address this problem. Finally, a
better regression method like spline curve fitting can improve
the curve fitting performance for real images containing com-
plicated curved axes in cluttered backgrounds, like the snake
example in Figure 14 (b). We can also further extend the curve
fitting procedure to closed-contour for circle or ellipse fitting.
For computer vision applications, the outcome of our proposed
algorithm can be used for saliency detection, curvature or
abnormality quantification and ultimately for object detection
and recognition in unsegmented real world images.
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