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Abstract—We generalize the concept of bilateral reflection symmetry to curved glide-reflection symmetry in 2D euclidean space, such

that classic reflection symmetry becomes one of its six special cases. We propose a local feature-based approach for curved glide-

reflection symmetry detection from real, unsegmented 2D images. Furthermore, we apply curved glide-reflection axis detection for

curved reflection surface detection in 3D images. Our method discovers, groups, and connects statistically dominant local glide-

reflection axes in an Axis-Parameter-Space (APS) without preassumptions on the types of reflection symmetries. Quantitative

evaluations and comparisons against state-of-the-art algorithms on a diverse 64-test-image set and 1,125 Swedish leaf-data images

show a promising average detection rate of the proposed algorithm at 80 and 40 percent, respectively, and superior performance over

existing reflection symmetry detection algorithms. Potential applications in computer vision, particularly biomedical imaging, include

saliency detection from unsegmented images and quantification of deviations from normality. We make our 64-test-image set publicly

available.

Index Terms—Symmetry, glide reflection, curved axis, curved surface.

Ç

1 INTRODUCTION

SYMMETRY or approximate symmetry is ubiquitous in the
world around us and plays an important role in human

and animal perception [1], [2], [3], [4] (Fig. 1). Likewise,
symmetry should play an important role for object descrip-
tion and recognition in computer vision [5]. An accurate
automatic symmetry detection algorithm can aid many
computer vision methods that perform pattern perception,
object recognition, and scene understanding. Among the
four primitive symmetry types in 2D euclidean geometry
[6] (Fig. 1), reflection, rotation, translation, and glide
reflection, reflection symmetry (Fig. 2 III, V, VI, VII) is one
of the most commonly observed, analyzed, and computa-
tionally treated primitive symmetries [6], [7], [5] (Table 1).
Reflection symmetry detection has been used in various
applications, including face analysis [8], vehicle detection
[9], [10], and medical image analysis [11], [12], [13].

Many real-world symmetrical objects/patterns do not

present a formally defined, rigid reflection symmetry that is

associated with a straight reflection axis (e.g., Fig. 2 VI)).

Instead, they often follow either a curved reflection axis or a

glide-reflection axis (Fig. 2 right, Fig. 1 bottom). A glide-

reflection symmetry (Fig. 2 II, V) is a primitive symmetry

composed of a reflection and a translation along the direction

of the reflection axis [6]. Except for the algorithm proposed in

[14], which explicitly evaluates glide-reflection symmetries

for specific wallpaper/frieze symmetry group classification,

glide-reflection symmetry detection algorithms are rarely
found in the computer vision literature. Detecting glide-
reflection symmetry with a straight axis (Fig. 1d), a curved
axis (Fig. 1bottom) in 2D, or curved glide reflection surface
extraction in 3D (Figs. 18 and 19) in general settings has not
been addressed computationally. An input image that has a
curved glide-reflection axis can be straightened to corre-
spond to one of the four Frieze patterns [6], [14] that have
horizontal reflection symmetries (Types II, V, VI, and VII in
Fig. 2), and thus our proposed algorithm is also a first step
toward detecting curved Frieze patterns in real images.

The contributions of this paper include: 1) a conceptual
and theoretical generalization of reflection symmetry to
curved glide-reflection symmetries such that reflection sym-
metry, which has dominated the computer vision symmetry
detection literature for the past 40 years, becomes one of six
special cases of this generalization; 2) a novel curved glide-
reflection symmetry axis detection algorithm for 2D un-
segmented images and a direct application to curved
reflection surface detection in 3D volumetric images; 3) a
benchmark image set (available with this publication)
containing 64 real images for various types of glide-
reflection symmetries, and a quantitative evaluation and
comparison of our proposed algorithm with the algorithms
of Loy and Eklundh [15] and Peng et al. [16] on straight and
curved reflection symmetry detection, respectively.

2 RELATED WORK

Automatic detection of symmetry in natural and man-made
objects has been a lasting research interest in computer vision,
pattern recognition, and robotics. The detection of reflection
symmetry, in particular, has dominated the symmetry
detection literature in computer vision (Table 1). Since Birkoff
and Kellogg’s [17] work in 1932, there has been a large and
growing body of 2D/3D reflection symmetry detection
algorithms proposed in the computer vision and computer
graphics literature. These range from detecting euclidean
reflection symmetry [15], [20], [30], [31], [33], [37], [41], [42],
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[46] to affinely [18], [39] and perspectively distorted [22], [28],
[29], [34], [35], [38], [43], [45], [50] reflection symmetry.

In euclidean space, Marola [20] introduces a planar
reflection symmetry axis detection method. Tuzikov et al.
[31] detect reflection symmetry axes from convex polygons
based on Minkowski Addition. Sun and Si [37] detect
reflection symmetry from a segmented gray image and its
gradient information. These methods work on segmented or
clean background images. On the other hand, there also are
reflection symmetry detection methods working on un-
segmented gray images. Kiryati and Gofman [33] detect
globally maximal reflection symmetry from an unsegmen-
ted gray image based on a symmetry measure depending
on the scale, orientation, and distance of a supporting
region. Yla-Jaaski and Ade [54] detect reflection symmetry

of an object from its boundary edges. Prasad and
Yegnanarayana [41] build gradient vector flow (GVF), a
symmetry saliency map, and detect reflection symmetry.
GVF was subsequently also used for rotation symmetry
detection [55]. Yuan and Tang [42] find multiple reflection
symmetries from a dilated and eroded edge measure. These
algorithms detect symmetric objects without any skewing
deformation. The first quantitative evaluation paper on
discrete symmetry detection algorithms [56] finds a local
feature-based method by Loy and Eklundh [15] as one of
the best state-of-the-art reflection symmetry detection
algorithms from unsegmented images (detection rate on
real multiple object images is 44 percent). In this paper, we
compare our proposed algorithm with [15] on reflection
symmetry with relatively straight reflection axes.

In 1981, Kanade coined the term skewed symmetry [18] to
denote reflection symmetry of an object undergoing global
affine or perspective skewing. Ponce [22] finds skewed
reflection symmetry from object boundaries by characteriz-
ing Brooks ribbons. Algorithms developed by Carlsson [34],
Lei and Wong [38], Van Gool et al. [29], and Shen et al. [39]
detect reflection symmetry axes under perspective from
segmented objects with clean backgrounds. Marola [43]
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Fig. 1. Top: Examples of four different types of primitive symmetries
[5], [6] in euclidean space: (a) reflection, (b) rotation (c) translation,
and (d) glide reflection. Bottom: The real world is full of curved
reflection and glide-reflection symmetries.

Fig. 2. Left: Seven distinct types of Frieze patterns [6]. Right: Real image
samples related to the four frieze patterns that have reflection or glide-
reflection symmetries.

TABLE 1
Reflection Symmetry Detection Algorithms in the Literature



proposes a perspective reflection symmetry axis detection
method for synthetic and real gray images. Bitsakos et al.
[50] propose a bilateral symmetry detection method from an
object silhouette under perspective. Riklin Raviv et al. [52]
propose perspective reflection and rotation symmetry
extraction and segmentation methods. Milner et al. [57]
focus on the symmetry detection of bifurcating structures
like leaves. Sato and Tamura’s [30] method detects a planar
or a curved 3D reflection symmetry from a contour shape
with clean background. Recently, algorithms have been
developed for partial or approximate euclidean reflection
symmetry detection in subsampled 3D data [46] and from
unsegmented images directly [33], [15], [53]. Mitra et al. [49]
propose a symmetrization method that straightens a curved
reflection symmetry object based on locally straight reflec-
tion symmetries.

Similar to a curved reflection symmetry axis, a medial axis
is defined to be a topological skeleton of an object shape,
usually derived from the object contour [59], [58]. The
medial axis is composed of a set of centers of maximal
inscribed disks of an object boundary. For a recent survey on
medial axis, refer to [60]. Fig. 3 illustrates the difference
between the outcome of medial axis and curved glide-
reflection axis detection. Curved reflection symmetry can
exist in a structure composed of multiple objects such that
they may not have a continuous closed contour (Fig. 3a).
Even for an object with a closed contour, the medial axis may
not always be consistent with the curved reflection sym-
metry axis of the texture pattern on an object (Fig. 3b). Peng
et al. [16] work on the curved worm backbone detection and
straightening problem, which is an application-specific,
medial axis-based approach. They detect the medial axis
from unsegmented input image based on intensity differ-
ence from the background. We compare the proposed
method with this work in our experimental results because
the method can take an unsegmented image and the authors
provide their source code. Levinshtein et al. [61] propose a
partial medial axes detection algorithm for object recogni-
tion. Though the method [61] does not require a given closed
contour, the object boundary obtained from the superpixel
segmentation and grouping is necessary for the subsequent
medial axis detection.

Mid-sagittal plane (MSP) detection from the 3D MR
image of human brain is a 3D reflection symmetry plane
detection problem. Guillemaud et al. [62] propose a MSP
detection method from a set of 3D points by fitting a plane

with minimum distance error to the points. Liu et al. [63],
[64], [13] use a set of correlation maps from 2D slices to
estimate the 3D ideal MSP of normal and pathological
brains (where brains can be severely asymmetrical).
Ardekani et al. [65] extract MSP based on cross correlation
of two intensity vectors. Minoshima et al. [66] detect
bilateral symmetry regions using stochastic sign change.
Prima et al. [67] maximize the reflection symmetry
measured by correlation for MSP detection. In all of these
MSP detection methods, MSP is considered as a 2D planar

surface. Some human brains show a clear bending along
their mid-sagittal fissure. Stegmanna et al. [68] detect the
curved mid-sagittal surface (MSS) by maximizing local
symmetry at every 2D slice of the brain. However, the cross-
correlation-based reflection symmetry detection in their
algorithm is sensitive to irregular conditions, such as a brain
tumor that pushes the MSP to form a nonplanar surface.

3 CURVED GLIDE-REFLECTION FORMALIZATION

Glide Reflection is defined in [6] as a symmetry that is

composed of a translation T along and a reflection R about

the same axis (Fig. 1d, Fig. 2 case II). A pair of image patches

Pi1 ; Pi2 has a local glide-reflection symmetry if and only if

Pi1 ¼ Ti þRiðPi2Þ (Fig. 4 (2)). When Ti ¼ 0, Pi1 ¼ RiðPi2Þ is a

pure reflection (Fig. 4 (1)). Let Ci, short for CRi;Ti , represent a

center point between image patches Pi1 ; Pi2 (Fig. 4).
We define a Curved Glide-Reflection Symmetry as a

sequential collection of local glide-reflection symmetries
½ðT1; R1Þ; . . . ðTi; RiÞ; . . . ðTn;RnÞ� with corresponding image
patch pairs ½ðP11; P12Þ; . . . ; ðPi1 ; Pi2Þ; . . . ; ðPn1

; Pn2
Þ� and asso-

ciated center points C ¼ ½C1; C2; . . . ; Ci; . . . ; Cn� such that a
smooth curve C can be found that passes through all points
in C sequentially and is tangent to each local reflection axis
of Ri at Ci. The shortest such curve Cmin is defined to be the
axis of the curved glide-reflection symmetry.

Let Ci and Cj be two adjacent, nonidentical center points
(Ci 6¼ Cj) in C. Then, a curved glide-reflection symmetry
can be categorized as follows:
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Fig. 3. Results from a standard medial axis detection method [58]
compared with those of the glide-reflection axes (yellow curves) from our
proposed algorithm: (A) Curved glide-reflection symmetry can be
extracted from a composition of multiple, disconnected objects, in this
case without a continuous closed contour. (B) Even for an object with a
closed contour, the texture pattern of the object, rather than its shape,
dictates the dominant curved reflection symmetry axis, which differs from
the output of the medial axis extraction algorithm on the same object.

Fig. 4. The six special cases of curved glide-reflection symmetry. In (2),
(3), (5), and (6), only cases where patches Pi2 ¼ Pj1

are shown, though
Pi2 6¼ Pj1

is also allowed.



. When Ri ¼ Rj (Straight reflection axis)
(1) if jTij ¼ jTjj ¼ 0, Reflection (Fig. 4 (1));
(2) if jTij ¼ jTjj 6¼ 0, Glide Reflection (Fig. 4 (2));
(3) if jTij 6¼ jTjj, Nonuniform Glide Reflection

(Fig. 4 (3));
. When Ri 6¼ Rj (Curved reflection axis)

(4) if jTij ¼ jTjj ¼ 0, Curved Reflection (Fig. 4 (4));
(5) if jTij ¼ jTjj 6¼ 0, Curved Glide Reflection

(Fig. 4 (5));
(6) if jTij 6¼ jTjj, Curved Nonuniform Glide Reflection

(Fig. 4 (6)).

4 GLIDE-REFLECTION DETECTION

We propose a local feature point-based matching method
for glide-reflection symmetry detection. Fig. 6 is a flowchart
of our proposed curved glide-reflection symmetry detection
algorithm. From a filtered input image, we collect matching
point pairs and group them in a 3D axis parameter space
(APS). A curve fitting method is applied to detect a global
curved glide-reflection axis on each detected matching
point pair group.

4.1 Feature Point Detection

Feature point-based matching [15] allows efficient corre-
spondence detection by examining local-oriented feature
points rather than the whole input image. The set of
available feature points is critical to our proposed algorithm
performance. If only a small number of feature points are
found from the input image, the cue to support a reflection
symmetry may be missing or weak. To overcome this
problem, we propose using multiple image filters (gray,
dilated edge, and gradient image) before performing key
point detection. In our experiments, we use SIFT [69] feature
point matching. Though SIFT detects distinctive points
robustly with good repeatability [15], SIFT key points are
only detected at local maxima or minima locations, which
are rare on an image with gradual change of intensity. Thus,
we also filter the image using gradient and Canny edge
detectors. These filtered images give additional SIFT key
points in local regions where key points were not detected in
the original intensity image (Fig. 7). As a result, we obtain
more potential matching pairs for symmetry detection.
Table 3 shows the effect of these image filters on glide-
reflection symmetry detection performance.

4.2 Matching Pairs Selection

A feature point Pi is represented by its location xi; yi,
orientation �i, and scale si defined on the corresponding
local patch of the feature point [69], i.e., Piðxi; yi; �i; siÞ [15].
Given a set of detected feature points, all possible pairs of
feature points are analyzed to find the reflection symmetryR
based on a set of local feature descriptors. The orientation of
each reflection axis is computed from the orientations of a pair
of matched points. The offset or translation T of a potential
glide-reflection symmetry is found from the relative locations
and orientations of matched feature point pairs (Fig. 8).

Given SIFT feature points and their local descriptor
vectors, we compare all possible pairs of orientation-
normalized feature points. If two orientation-normalized
feature points exhibit a glide-reflection symmetry (Pi ¼
T þRðPjÞ), the descriptor vector of one point matches with
the mirrored descriptor vector of the other point. Similarity

for matching is quantified by the euclidean distance
between the SIFT descriptors. After we sort the pairs by
their similarity score at each feature point, the top
N matched pairs are chosen to be the candidate set. In
our experiments, we use an empirical value of N ¼ 3. In
[15], glide-reflection pairs (Fig. 5 (2)) are penalized. In our
algorithm, we treat both glide reflection (T 6¼ 0) and
reflection (T ¼ 0) symmetries uniformly while letting the
transformation T value tell them apart.

Under our formulation, glide-reflection symmetries and
pure reflection symmetries can be distinguished in a 3D
axis parameter space of glide-reflection axes, as shown
below. Let Pi ¼ ðxi; yi; �i; siÞ and Pj ¼ ðxj; yj; �j; sjÞ be two
feature points (Fig. 8) and Cij be the center point between
them. �i, �j, and �ij are the orientation values of two key
points and the line connecting them. If the two points of a
matched pair form a glide-reflection symmetry, the orienta-
tion of its axis, �axis, is simply the average of the
orientations of the two key points:

�axis ¼
�i þ �j

2
¼ �ij þ  ij þ

�

2
; ð1Þ

where  ij is the deviation angle of the glide-reflection axis
from the perpendicular line to the line connecting the two
points (Pi and Pj). Then, the translation component Tij of a
potential glide-reflection axis can be calculated from the
following equation:

Tij ¼ dijsinð ijÞ ¼ dijsin
�i þ �j � �

2
� �ij

� �
; ð2Þ

where dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
is the distance between

the two points. We also calculate the distance rij from the
image center (xc; yc) to the glide-reflection axis:
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Fig. 5. Curved glide reflection and its special cases. Curved glide
reflection includes the nonuniform glide reflection, i.e., cases (5) and (6)
shown in Fig. 4. Detected axes by the proposed algorithm (yellow lines)
are shown. Blue dots are the center points of the supporting local
feature pairs.



rij ¼
xi þ xj

2
� xc

� �
sin�axis �

yi þ yj
2
� yc

� �
cos�axis: ð3Þ

Now, we can express our glide-reflection symmetry as

Pj ¼ Tij þRrij;�axisðPiÞ, where Rrij;�axis is the reflection map-

ping with respect to the reflection axis ðrij; �axisÞ and Tij is a

translation offset. Thus, ðTij; rij; �axisÞ form a 3D APS for

glide-reflection symmetries (Fig. 9). We construct and

analyze the distribution of the three glide-reflection axis

parameters detected in real images. Each matched pair (Pi

and Pj) point in the 3D APS is weighted by Mij, a product of

the scaling Sij ¼ e
ð�jsi�sj jsiþsj

Þ
and distance

Dij ¼ e
ð
�d2
ij

2maxðdijÞ
Þ

as follows [15]:

Mij ¼ Sij �Dij ¼ e
ð�jsi�sj jsiþsj

Þ � eð
�d2
ij

2maxðdijÞ
Þ
; ð4Þ

where dij is the distance and si and sj are the scales of Pi
and Pj.

Feature point pairs of similar size and shorter distance

are given higher weight [15]. This 3D APS distribution is

then convolved with a Gaussian kernel (we use empirical

value � ¼ 2:5) to build a 3D density map. Local maximum

points indicate dominant axes.
Fig. 9 shows votes in 3D APS space for four examples of

curved glide-reflection symmetry. If the glide-reflection axis

of the input image is straight, the voting in the 3D APS

should be centered around a point-like local maxima when

projected to (rij, �axis) (Fig. 9 (1)). Reflection symmetry is

detected near Tij ¼ 0 (red circle of Fig. 9 (1)). Glide reflection

with a straight axis has a single nonzero Tij value (red circle

of Fig. 9 (2)) while locally deformed glide reflection has

multiple (two or more) nonzero Tij values (one is positive

and the other is negative in Fig. 9 (3)). In Fig. 9 (4), three local

maximum locations on the Tij ¼ 0 plane indicate the

existence of a curved reflection axis. These special cases

form the basic building blocks for a general curved glide-

reflection symmetry detection algorithm.
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Fig. 9. Three-dimensional APS examples of the four special cases of
curved glide-reflection symmetries: Red circles show the characteristic
patterns detected in the 3D APS location.

Fig. 8. The orientation of the glide-reflection axis �axis and translation Tij.

Fig. 6. Flowchart for the proposed curved glide-reflection symmetry
detection algorithm.

Fig. 7. Feature point detection from three different filtered input images.



5 CURVED GLIDE-REFLECTION AXIS ESTIMATION

From an unsegmented image, without any previous
knowledge, we need to extract potential local feature
points that may lead to corresponding matches for glide-
reflection symmetry. When the glide-reflection axis is
curved, the axis does not appear as a single point in the
APS voting space (Fig. 9 (4)), as it does for the straight axis
case (Figs. 9 (1) and 9 (2)). A curved axis can be considered
as a sequence of straight glide-reflection axes having
different yet smoothly varying orientations with different
glides (translations) T . Therefore, a curved axis can be
estimated by fitting a curve to a set of contiguous points in
the 3D APS. Based on the detected local glide-reflection
matches, our algorithm seeks a set of local axes supporting
a curved glide-reflection symmetry.

5.1 Grouping in a 3D APS

In real-world images, multiple local straight glide-reflection
axes of different orientations and translations form a single
curved glide reflection. Fig. 10b shows seven local axes
(yellow lines) supporting a curved axis that is detected by our

algorithm (Fig. 10f). We find the seven local maximum points
on this 3D APS density (Fig. 10c). Each red circled set of
matching pairs in Fig. 10c corresponds to a local axis shown in
Fig. 10b. Note that they have two different types of translation
components (Ta and Tb), which can be clearly detected in our

3D APS (Fig. 10c). Local axes close to each other with respect
to the euclidean distance of ðrij; �axisÞ coordinate are
connected. This can be done in a 2D density plot (Fig. 10d)
obtained by accumulating points along the T -axis of the 3D
APS density. Note that the distance between 90 and�90 in the
�axis axis is considered to be zero. As a result, we find a series

of straight local axes having contiguous rij and �axis values.
Fig. 10e shows detected axes corresponding to a curved glide-
reflection axis in Fig. 10f. After a set of connected axes is
detected representing a global curved glide-reflection axis,
we eliminate them from the 3D APS and repeat the grouping
to detect the next curved glide-reflection axis.

5.2 Curve Fitting

Given all local axes detected in the 3D APS supporting a
curved glide-reflection axis, we can locate the center
points mk (blue points in Fig. 10b) of all supporting feature
point pairs of the local axes back in the spatial domain. White
points in Fig. 10b represent the feature point pairs supporting
the selected axes. By connecting all center points, we can get a

curved glide-reflection axis. However, the detected center
points are not necessarily dense enough to find the correct
glide-reflection axis. To achieve a smooth and precise curved
axis, we apply a polynomial curve fitting given the center
point setmk. Based on an assumption that a curved axis can be
approximated by a polynomial curve, we use polynomial

curvesfcðxÞ ¼ a0 þ
Pc

i¼1 aix
i. We set c range from 1 to 5 in our

experiments. Each degree of the polynomial is fit on a rotated
input image Ij to find the best fit (rotation angles are
j ¼ 0; 45; 90, and 135�, respectively). We calculate the
summation of distance SðIj; fcðxÞÞ ¼

PN
k¼1 dðkÞ, where dðkÞ

is the distance from the computed center pointsmk of an input

image Ij to the polynomial fcðxÞ. Among the total of
20 polynomial curves (5 polynomial degrees � 4 rotation
angles), the one having the lowest distance S from all center
points is selected as the final curved axis fcfitðxÞ on Ijfit , where
ððjfit; cfitÞ ¼ arg minj;cSðIj; fcðxÞÞÞ.

However, in practical applications this curve fitting
method suffers from outliers of the center pointsmk, causing

significant axis detection errors in curve fitting. In order to
remove outliers and find the best subset of center points
modeling the curved glide-reflection axis, we propose a
modified RANSAC algorithm [70]. Before we perform the
curve fitting, we randomly choose a subset of center points.
Because we do not know the exact target shape of the model of

each axis, we have multiple polynomial models of degrees 1
to 5. We compute the squared sum of euclidean distances
from all points of the subset to each polynomial. The best fit
with the shortest distance among the polynomials is selected
as a potential good model. Now, we test with points outside of
the subset to find a final good polynomial model. This step is

repeated k times and the polynomial model with the lowest
distance is chosen as the final polynomial curve fit on the axis.
Pseudocode for this step follows
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Fig. 10. An example of curved glide-reflection axis (cases (5) and (6) in
Fig. 4) detection: Blue points in (b) are center points of supporting
matched pairs for each local axis. Yellow lines are local axes. 3D APS
(c) shows each detected local axis (red circled). They have two different
types of translation components (Ta and Tb), which are shown in (b).



Pseudocode of RANSAC algorithm for Curve Fitting

n is the smallest fraction of the number of mk required

k is the number of iterations

t is the threshold used to decide whether a point fits well on

the current curve

d is the fraction of the minimum number of center points

required to be a good model ðd > nÞ

For i ¼ 1 to i ¼ k

1. Draw a sample of n center points from the data

uniformly and at random

2. Fit polynomials to the subset and find the

polynomial of the lowest distance

3. For each point outside the subset

Measure the distance to the polynomial If

the distance is less than t, the point is close

end

If there are points in the subset with d or higher

ratio, declare a good fit

and calculate the current distance

If current distance < minimum distance

minimum distance ¼ current distance

best polynomial ¼ current polynomial

end

Return best polynomial, minimum distance

Fig. 11 demonstrates a polynomial curve fitting example

with and without RANSAC. The detected curved axis in

Fig. 11a is distorted by an outlier center point outside of the

leaf at the bottom left side. RANSAC eliminates the outlier

and finds the correct axis in Fig. 11b.

6 EXPERIMENTAL RESULTS

We test our algorithm on 64 images composed of reptile,

insect, fish, human body, tiled-pattern, human face, butter-

fly, and spinal x-rays (Figs. 12, 13, 14) and 1,125 Swedish

leaf images [71] (Fig. 15). In our experiments, parameter
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Fig. 11. Curve fitting with and without RANSAC. (a) Outlier center point
at the bottom left causes incorrect axis detection result. (b) RANSAC
excludes the outlier and finds a better glide-reflection axis.

Fig. 13. Curved and straight glide-reflection axes detection comparison.

Loy and Eklundh [15] detect no curved or straight glide-reflection axis.

Several stronger glide-reflection axes in the middle of each wallpaper

image are detected by the proposed method.

Fig. 12. Experimental results on real-world images. Two separate glide-reflection axes are found in (f).



values for the RANSAC algorithm are empirically assigned
as follows: The smallest ratio of the number of center points
required n is 0.3, the threshold used to decide that a point
fits well on the current curve t is 25, the ratio of the
minimum number of center points required to be a good
model d is 0.9, and the iteration number k is 30.

Our method is coded in Matlab and runs on a
Windows XP, 3.2 GHz Pentium CPU. The processing time
of the proposed algorithm mainly depends on the number of
detected feature points, varying from hundreds to thousands.
Detailed experimental results are presented below (the
complete set of results is provided in our supplemental
materials, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.118). Potential applications of the pro-
posed algorithm are shown in Figs. 16 and 17.

6.1 Curved Glide-Reflection Symmetry Detection in
Real, Unsegmented Images

Table 2 shows the detection rates and mean processing time
of the proposed algorithm compared to the reflection
symmetry algorithm of [15] on the 64-test image set. For
quantitative evaluation, we use the standard definition of
true positive rate (sensitivity) defined as the number of
detected symmetries over the number of the ground truth
(human identified). We also record the number of false
positives. We consider it a false positive if our proposed
method, with no preassumption of reflection symmetry
types, fits a curved axis to a straight reflection axis due to a
lack of detected center points mk on the straight axis. On the

other hand, Loy and Eklundh’s algorithm [15] always tries to
find a straight reflection axis. We also compare the Current
medial axes detection approaches (e.g., Peng et al. [16]) that
are not designed to deal with the amount of clutter that is
present in real-world images; our evaluation results of [16]
shows 0 percent sensitivity on the 64-test image set and a
significantly longer time than the algorithms presented in
Table 2. Fig. 12 shows some sample results of the proposed
algorithm on real-world images. Curved reflection symme-
tries are found on leaves or branches (Figs. 12a, 12d, 12e, and
12f). Fig. 12f demonstrates that multiple curved glide-
reflection symmetry axes can be detected in an image.
Fig. 12c is a lizard with a reflection symmetry pattern on its

LEE AND LIU: CURVED GLIDE-REFLECTION SYMMETRY DETECTION 273

Fig. 14. Axis detection failure cases due to (a) background clutters,
(b) the skewed pattern in lower part, and (c) the lack of key points.

Fig. 15. Sample results of curved glide-reflection symmetry axis
detection on the Swedish leaves [71] classes 1, 7, and 13, respectively,
(Table 4). (d) Sample results of leaf axis detection failure from classes 4,
6, and 10, respectively, due to failure of outlier elimination (class 1) or
lack of enough center points detected (class 7 and 13).

Fig. 16. Left: Cobb angle estimation by taking a derivative of the detected curved axis. Right: Curved axis straightening.



back, which serves as a good example where the medial
axis (extracted from its contour) and reflection axis
(extracted from its texture pattern) differ. Fig. 12i is a
stained pathology image of a zebra fish, where a curved
reflection axis is supported by its interior features. The left
part of the detected axis in Fig. 12d is inaccurate due to a
center point outlier.

We further divide our 64-test image set into four subtypes:
straight reflection, straight glide reflection, curved reflection,
and curved glide-reflection symmetries and evaluate the
algorithms performance, respectively (Table 3). Fig. 13 shows
some sample detection results of Loy and Eklundh’s
algorithm [15] versus our proposed algorithm.

Fig. 14a is a failure case where the skewed pattern in the
lower part of the ball is not correctly detected. In Fig. 14b,
background clutter results in many outliers that could not
be completely removed by RANSAC. It also shows that
polynomial curves may not be sufficient to capture the
whole curved axis. In Fig. 14c, not enough key points are
found to support the whole curved axis.

Fig. 15 shows the detection results on the Swedish leaf
classes from [71] that contain curved glide-reflection axes.
Class 4 (Fig. 15a) has a weak texture pattern and challenging

asymmetric contour shapes. Most leaves of Class 6 (Fig. 15b)
have asymmetrical contour shapes where medial axis
detection fails to detect the correct glide-reflection symmetry
axes. Clear symmetric patterns on the leaves help our
method to detect the correct curved axes. Class 10 has more
complicated contours and patterns. Table 4 summarizes the
curved glide-reflection symmetry axis detection rate on all
15 classes of the Swedish leaf data set. The best detection rate
is 65.3 percent of class 11 and the worst detection rate is
12.0 percent of class 7. Fig. 15d shows sample results of leaf
axis detection failure. In most failure cases, lack of enough
matched key point pairs causes the failure of correct and
complete leaf axis detection.

6.2 Axis Curvature Estimation

One application of our algorithm is the detection of the
curved spine axis from 2D x-ray images. Fig. 17b shows
several curved spine axis detection results of the scoliosis
spine x-ray images. Our algorithm can detect the curvature
of the spine automatically.

The curvature of a spine is an important cue for the
diagnosis of scoliosis disease. Cobb angle [72], a measure-
ment that has been used for the evaluation of curves in
scoliosis, is an absolute angle difference of the two
perpendicular lines at the two most tilted vertebrae to the
horizontal line (Fig. 16 left). Let fðxÞ be a polynomial
function representing the detected curved axis of a spine. We
estimate the Cobb angle by taking a derivative of the
detected curved axis and finding local maxima and minima
points. Estimated Cobb angle �̂ then can be computed as
follows:

�̂ ¼
��arctan�f 0�X1

0

		
� arctan

�
f
0�
X2

0

	
Þ
��; ð5Þ

where X1
0 and X2

0 are two points where f
00 ðxÞ ¼ 0.

Fig. 16 left shows automatic Cobb angle detection results
from a spine image.

6.3 Curved Axis Straightening

Once we find the curved glide-reflection axis with the
parameterized axis model, we can calculate the curvature at
any location on the curve. Based on the curvature
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Fig. 17. Curved axis straightening on (a) Swedish leaves and
(b) scoliosis spines.

TABLE 3
Quantitative Experimental Results on Different Types of Reflection Symmetry Images on the 64-Test Image Set

TABLE 2
Quantitative Experimental Results Using Different Image Filters, with and without RANSAC on 64-Test Image Set



information at each location, we can recover a straight axis
by realigning each normal line of the curved axis vertically
(Fig. 16right).

Fig. 17 shows two examples of curved axis straightening.
Some Swedish leaves [71] (Fig. 17a) have curved reflection
axes. After automatic curved axis detection by the proposed
algorithm, we can straighten the original images. This
process is a type of normalization process along the
reflection axis for leaf image registration. Shape recognition
methods for deformable objects can benefit from this
quantification and normalization of the deformation for
further discrimination of the shape. Fig. 17b is another
example using X-ray images of spines with scoliosis disease
from the previous section.

7 CURVED GLIDE-REFLECTION SURFACE

DETECTION

Our proposed algorithm can also be applied to curved
glide-reflection surface detection based on a set of 2D slices.
Local glide-reflection symmetries in each slice are detected
and their center points are collected (Fig. 18b). We then
perform a surface fitting [73] on the center points of the set
of 2D slices in 3D space instead of polynomial curve fitting
in 2D to find a curved glide-reflection surface. All slices are
stacked along the Z-axis. We select one of the two 2D planes
(X-Z and Y-Z planes) by taking the plane having higher
variance of point locations projected onto each plane (ðxi; ziÞ
or ðyi; ziÞ). Let us assume that the X-Z plane has a higher
variance, as is the case in Fig. 18b, then the curved surface
function that we are fitting on the center points can be
represented as yi ¼ fðxi; ziÞ, where i 2 ½1; K� and K is the #
of center points from all slices. The X-Z plane is now
divided into multiple grids uniformly and a spline-based
surface fitting method [73] is applied. We do a bilinear

interpolation and gradient-based smoothing at each point to

get a curved surface.
We have applied our method to two types of volumetric

data with approximate bilateral symmetry plane. The

zebrafish atlas [74] (Fig. 18a) is a set of 3D scan slice images

of a zebrafish. Fig. 18c is the surface fitting result of a
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TABLE 4
Symmetry Axis Detection from Swedish Leaf Data [71]

The use of RANSAC and image filters improves the detection rate (Fig. 7).

Fig. 18. Curved reflection surface detection on 3D CT images of

zebrafish: (a) a set of 2D slices of a 3D Zebrafish, (b) detected center

points (blue dots) of glide-reflection symmetries in data space, (c) 3D

surface fitting.



zebrafish. Fig. 19 shows mid-sagittal surfaces of the human
brain, detected from MR image stacks. The mid-sagittal
surface of a brain with tumor is also correctly detected
based on the overall bilateral structure of the brain.

For a general extension of the proposed method to 3D
curved glide-reflection axis detection rather than the
extension of 2D algorithm to curved reflection surface
detection in 3D images, the SIFT keypoint detector would
have to be replaced by a robust 3D feature point detector
and 3D feature orientation estimator, and the dimensions of
the axis parameter space would have to be extended.

8 CONCLUSION

We generalize the concept of reflection symmetry to curved
glide-reflection symmetries that are common in the real
world, especially in biomedical image data. The main
contribution of this work is a formalization of curved glide-
reflection symmetry and its six subcases. The most popular
straight reflection symmetry in computer and human vision
applications thus far becomes one of its six cases. We also
propose a feasible algorithm to detect a curved glide-
reflection symmetry axis based on local feature extraction
and parameter subspace matching. Our analysis provides
both theoretical completeness of the formalization and
practical guidance for our proposed algorithm. The pro-
posed algorithm can deal with globally and locally skewed
curved glide-reflection symmetries as long as the extracted
features are affine or perspective invariant. We have
evaluated our algorithm using a diverse image test set
(64 images) of curved and straight reflection axes (Tables 2
and 3), achieving an average 80 percent success rate (Table 2).
Furthermore, a quantitative comparison study on more than

1,000 leaf images shows superior performance of our
proposed algorithm over a state-of-the-art straight reflection
symmetry axis detection algorithm [15] (Table 4). The
proposed algorithm has an OðN2

f Þ complexity, where Nf is
the number of feature points extracted. Our proposed
algorithm is also applied to 3D data to detect a curved
glide-reflection symmetry surface such as the mid-sagittal
surface of a human brain (normal or with tumor) or of the
whole body micro-CT image of a zebrafish.

Though the proposed algorithm shows promise, there is
plenty of room for improvement. First of all, like all feature-
based methods, the performance of our algorithm suffers if
the feature point extraction step fails to generate sufficient
number of relevant feature points. For example, input
images with smooth, clean contours and no texture (roughly
speaking, images containing purely shape information with
no appearance information) may not yield good results due
to a lack of SIFT-like features. A quantitative evaluation of
the difference between (SIFT) feature-based and region-
based symmetry detection methods can be found in [75].
Since we have observed a detection rate increase
(41:3%! 65:3% with class 11) in Table 4 given an increase
in filter diversity, we believe an even more versatile interest-
point extractor may prove to be effective. Second, the
grouping method in our 3D axis parameter space favors
bigger and longer curved axes supported by more feature
point pairs (e.g., Fig. 12k). This strategy occasionally
eliminates small, weak, but true curved reflection symme-
tries. It is possible that a hierarchical approach can be
adopted to address this problem. Finally, a better regression
method like spline curve fitting can improve the curve fitting
performance for real images containing complicated curved
axes in cluttered backgrounds, like the snake example in
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Fig. 19. Mid-sagittal surface detection on 3D human brain with (right) and without (left) tumor of significant size using proposed curved glide-
reflection symmetry detection method: (a) a set of 2D slices of a 3D brain, (b) detected center points (blue dots) of glide-reflection symmetries in data
space, (c) 3D surface fitting.



Fig. 14b. We can also further extend the curve fitting

procedure to closed contour for circle or ellipse fitting. For

computer vision applications, the outcome of our proposed

algorithm can be used for saliency detection, curvature or

abnormality quantification, and ultimately for object detec-

tion and recognition in unsegmented real-world images.
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