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Abstract

Among ensemble learning methods, stacking with a
meta-level classifier is frequently adopted to fuse the
output of multiple base-level classifiers and generate
a final score. Labeled data is usually split for base-
training and meta-training, so that the meta-level learn-
ing is not impacted by over-fitting of base level clas-
sifiers on their training data. We propose a novel
knowledge-transfer framework that reutilizes the base-
training data for learning the meta-level classifier with-
out such negative consequences. By recycling the
knowledge obtained during the base-classifier-training
stage, we make the most efficient use of all available in-
formation and achieve better fusion, thus a better over-
all performance. With extensive experiments on com-
plicated video event detection, where training data is
scarce, we demonstrate the improved performance of
our framework over other alternatives.

1. Introduction

“Stacking” is a widely used ensemble method that
first trains multiple base-level classifiers and then learns
a meta-level classifier with an additional set of train-
ing data[12]. The training data for the base-level and
meta-level classifiers are also referred to as held-in and
held-out data, respectively. Usually each base-classifier
generates a continuous (likelihood/confidence) score,
which the meta-classifier then fuses to generate a
final ranking. This framework has been success-
fully applied in various detection/ranking systems, e.g.,
TRECVID[9, 7]) and the Netflix competition[11].

Fundamental to stacking methods is a need to divide
the training data wisely, since labels used for base-level
training cannot be used for meta-training without reduc-
ing performance. This is especially problematic when
training data is limited, since subsets of the data may
not sufficiently illustrate the underlying semantic con-
cept. Our example is the TRECVID Multimedia Event
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Figure 1. Frames illustrating wide seman-
tic intra-class variation (a-c), with differ-
ent types of ‘board trick’, and inter-class
variation (d-f) between ‘feeding an animal’,
‘landing a fish’, and ‘woodworking’.

Detection (MED) dataset1, with which we detect 5 com-
plicated events from several thousand clips comprising
more than 350 hours. Each event is illustrated by about
100 video clips – severely insufficient in light of the
broad intra- and inter-class semantic variation (Fig.1).

The motivation of separating base and meta training
data is that scores on training data exhibit over-fitting,
and thus do not accurately reflect the performance of
the classifier on unseen test data. This is illustrated
in Fig.2, where the base-classifier’s output likelihood
score provides better separation of positive and negative
labels on the training data (left) than on unseen testing
data (right). A better training performance may indi-
cate over-fitting and thus worse generalization. As we
demonstrate in Sec. 3, naı̈vely using training scores to
learn the meta classifier often reduces performance, due
to this difference in score distribution.

Nevertheless, a more nuanced consideration of
scores from training clips can provide information
which will improve the fusion model. For example, the
correlation among classifiers can be inferred in spite of

1http://www.nist.gov/itl/iad/mig/med11.cfm



Figure 2. Score distributions: positive
(red) and negative (blue) samples on
training (left) and testing (right) data.

over-fitting. While cross-validation can provide similar
benefits in some cases, generating balanced partitions
of the training data is complicated when the numbers of
positive examples are very low. We are thus motivated
to re-use base-level data for meta-training, which is es-
pecially appealing in cases when the amount of labeled
data is limited. This approach allows us to use more
data for training better base-classifiers with less con-
cern about under-training of the meta classifier. Fig.3
illustrates our training data recycling model, where the
entire training data is split for base-training and meta-
training, and base-training data is ‘recycled’ for meta-
training.

The idea of re-using the base-training data can be
interpreted as a knowledge-transfer process[10], where
the scores output by the base-classifiers (a vector XS

of probabilities) on training clips, together with the
binary event label yS , constitutes the source domain
DS = {XS , yS}. The base classifier output scores
XT on unseen (meta-training) data with corresponding
labels yT define the target domain DT = {XT , yT }.
Clearly the score distributions are different P (XS) 6=
P (XT ) (Fig.2), yet DS contains valuable information
to guide the meta-classification problem defined inDT :
func(XT )→ yT . Among transfer learning approaches,
a good fit is transfer-adaboost (TrAdaBoost)[1], which
is a generalization of AdaBoost[2] that leverages source
domain data with a different distribution given limited
sampling of the target domain.

2. Our Framework

The goal of our base-training-data recycling frame-
work is to use both the meta-level training data DT =
{XT , yT } and to transfer the knowledge from base-
level training data DS = {XS , yS}. Let XS =

(x
(1)
S , . . . , x

(M)
S ) and XT = (x

(1)
T , . . . , x

(M)
T ), where

M is the number of base classifiers. We first do a his-
togram equalization to re-balance the training score dis-
tribution according to the testing score distribution on
each base classifier as in Fig.2, so that the source do-
main after marginal equalization D̂S = {X̂S , yS} has
the same marginal score-distribution on each base clas-

Figure 3. A semantic-based video retrieval
system with base-training data recycling.

sifier: P (x̂
(m)
S ) = P (x

(m)
T ), for m = 1, . . . ,M . Note

the positive and negative data are adjusted separately.
After histogram equalization, the joint score distri-

bution of X̂S and XT are still different despite their
identical marginal distribution. We therefore adopt the
TrAdaBoost algorithm to learn a meta-level fusion clas-
sifier given both D̂S and DT . We extract an M -by-1
score vector xi from each data sample i ∈ {1, . . . , NS}
indexing the balanced source domain (base-training)
data from D̂S , and i = in{nS + 1, . . . , nS + nT } in-
dexing the target domain (unseen meta-training) data;
the detailed algorithm is given in Algorithm 1.

With respect to training data recycling, the crucial
feature of TrAdaBoost is that the cost ci for data i in the
target domain DT increases when the fusion residue is
big so that the following iterations will focus on ‘tough’
data. On the other hand, ci for data i in the source do-
main D̂S decreases if the residue is big, indicating data
i in D̂S doesn’t quite fit into DT .

As to the fusion learner, let the overall data
and their fusion residue be organized in x =
[(x1, . . . , xnS+nT

)T , 1] and e = (e1, . . . , enS+nT
)T ,

respectively, where 1 is a (nS +nT )-by-1 auxiliary one
vector. With the costs organized in a diagonal matrix
Λ(i, i) = ci, we apply linear, regularized least-square
fusion and solve for a weighted MMSE solution that
minimizes mean-squared fusion residue:

W ∗ = arg min
w
{eT · Λ · e+ λ‖w‖2}, (1)

where λ controls regularization (we use λ = 0.01), and
e = x · w − y. The MMSE solution is thus given by

W ∗ = (xT Λx+ λI)−1xT Λy. (2)

Also note that in the testing stage, we combine fusion
classifiers from all iterations, which differs from tradi-
tional binary-classification-based TriAdaBoost. This is
because our pre-balanced the marginal distribution of
XS , empirically, already performs well.



Algorithm 1 TrAdaBoost for training data recycling
Input: xi ∈ <M , yi ∈ {0, 1}, i = 1, . . . , nS + nT
Initialize: cost vector ci = 1, i = 1, . . . , nS + nT
For t = 1, . . . , T

1. normalize the cost vector ci = ci/(
∑

i ci)
2. fusion learner f (t)(xi)→ [0, 1]
3. fusion residue ei = |f (t)(xi)− yi|

4. target domain error ε =

∑nS+nT

i=nS+1
ciei∑nS+nT

i=nS+1
ci

5. set βt = ε/(1− ε), β = 1/(1 +
√

2 lnnS/T )
6. update the cost

ci → ci · βei , i = 1, . . . , nS

ci → ci · β−eit , i = nS + 1, . . . , nS + nT
Output: f (t) and αt = − log βt, for t = 1, . . . , T

Testing stage: fused score s(xi) =
∑T

t=1 f
(t)(xi)αt

3 Experiments

We experiment on video event detection of 5
challenging video categories from the TRECVID2011
dataset: attempting a board trick; feeding an animal;
landing a fish; wedding ceremony and woodworking.
We conduct stacked learning with M = 4 base clas-
sifiers, each of which estimates event probability based
on a different multimedia feature:

• Motion is captured by a bag of words feature on
3D histograms of oriented gradients [4], classified
by an SVM with Histogram Intersection Kernel
(HIK).

• The relationship between events and objects is cap-
tured using the Object Bank feature [5], computed
using the reference code, and the maximum re-
sponse of each detector across the clip’s frames is
classified with an SVM using HIK.

• The relationship between events and their environ-
ments is captured using the Gist feature [8], which
is computed on a random 20 frame subset of the
video, and the 20 outputs of a per-frame linear
SVM are averaged to give a base classifier score.

• Low-level audio information is captured using
Mel-Frequency Cepstral Coefficients (MFCCs),
computed using the HTK Speech Recognition
Toolkit2, and an SVM with HIK is trained using
a bag of words quantization of the MFCC features.

The training dataset contains 2062 videos, with
around 100 positive labels per event category. We split

2http://htk.eng.cam.ac.uk/

80% of the data for training the 4 base classifiers (fixed)
and subsets of the remaining 20% are used for learn-
ing the meta-level classifier. The testing dataset con-
tains 4292 videos with on average 101 positive labels
per event category. Both the training and testing sets are
imbalanced, with negative labels heavily outnumbering
positive labels.

The overall performance of the ranking system is
evaluated using average precision (AP), defined as

AP =
1

Np

∑
i∈{y+}

Pr(i), (3)

where Np is the number of positive labels, Pr(i) is the
precision statistics based on top-ranked data with a cut-
off at the ith positive data. The AP statistics is equiv-
alent to the Area-Under-ROC-Curve (AUC) statistic or
normalized Wilcoxon-Mann-Whitney (WMW) ranking
statistics[3, 13]. We also evaluate the performance of
the system on its best operating point based on F1
statistics, defined as

F1 = 2 · precision · recall
precision+ recall

. (4)

The goals of our experiments are to understand how
our method performs compared to other stacked learn-
ing approaches, and to understand how these perfor-
mances depend on the ratio r between the number
of meta-training (held out) and base-training (held in)
clips. We bootstrap base-training data (sampling with
replacement) as DS , and sample a subset of the output
score from meta-training data as DT , thereby varying
ratio r from 1

4 down to 1
20 . We repeat this 100 times,

and evaluate the average AP and F1 performance on
all 5 events. We compare our approach with 3 others:

• Baseline 1: meta-training using only meta-
training data.

• Baseline 2: naively concatenating base-training
data with meta-training data.

• Average fusion of base-classifier likelihood
scores with no meta-training.

For all but average fusion, we use a regularized least-
square fusion classifier (Eqn. 2), which has shown to
yield to better performances at meta-level than non-
linear SVM according to [6].

Quantitative comparisons are plotted in Fig.4. Av-
erage fusion (black line) gives the worst performance,
indicating the necessity of supervised learning of meta-
level classifier. Baseline 2 (blue) performs second worst
in general, confirming the point that base-training data
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Figure 4. Quantitative comparison on 5
events. AP/F1 statistics are plotted on the
left/right.

cannot be directly applied to train the meta-level clas-
sifier. By either metric, our approach (red) clearly out-
performs the other methods on four events, and matches
the performance of baseline 1 (green) on wedding cere-
mony. It also can be seen in general that the advantage
of training-data recycling (red) over traditional methods
(blue) increases as meta-level training data decreases.

We also show, in Fig. 5, the AP/F1 performance
changes with different number of triAdaboost itera-

(AP) (F1)

Figure 5. Performance change (E1) with
the number of triAdaboost iterations.

tions, taking E1 with r = 0.25 as an example. Iteration-
1 indicates the performance after we rebalancing the
data based on histogram prior than applying triAd-
aboost. The performance gain is obvious after the 1st
iteration triAdaboost being applied and it keeps increas-
ing in general.

4 Conclusion

We propose a novel framework in stacked learn-
ing to re-used base-level training data for meta-level
learning. We address this problem as a knowledge
transfer and first apply a histogram re-balancing to
the marginal distribution of source-domain features
(base-classifier score output on held-in data) accord-
ing to target-domain features (score output on held-out
data). We then adapt the TriAdaBoost algorithm, with
a weighted least-square fusion learner, for training the
meta-level score fusion. Experiments of our framework
on detecting 5 challenging video events demonstrate ob-
vious performance gains relative to other approaches.
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