
Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow

Asad A. Butt and Robert T. Collins
The Pennsylvania State University, University Park, PA. 16802, USA

{asad,rcollins}@cse.psu.edu

Abstract

We propose a method for global multi-target tracking
that can incorporate higher-order track smoothness con-
straints such as constant velocity. Our problem formula-
tion readily lends itself to path estimation in a trellis graph,
but unlike previous methods, each node in our network rep-
resents a candidate pair of matching observations between
consecutive frames. Extra constraints on binary flow vari-
ables in the graph result in a problem that can no longer
be solved by min-cost network flow. We therefore propose
an iterative solution method that relaxes these extra con-
straints using Lagrangian relaxation, resulting in a series
of problems that ARE solvable by min-cost flow, and that
progressively improve towards a high-quality solution to
our original optimization problem. We present experimen-
tal results showing that our method outperforms the stan-
dard network-flow formulation as well as other recent algo-
rithms that attempt to incorporate higher-order smoothness
constraints.

1. Introduction
Multi-frame, multi-target tracking is a significant and

challenging problem. We work within the paradigm of
detect-then-track, where an object detector is run on each
frame to hypothesize objects of interest, followed by a data
association stage to link detections into multi-frame trajec-
tories. This second, multi-frame data association stage is
of particular interest, as it is a combinatorial optimization
problem of significant complexity. Indeed, except for lim-
ited special cost functions that factorize into purely pair-
wise terms, the multi-frame assignment problem is NP-
hard. Developing multi-frame search algorithms that yield
good quality approximate solutions in polynomial running
time has therefore become a problem of considerable re-
search interest in the field.

Early approximation methods proposed greedy bipartite
data association on a frame-by-frame basis [16] to extend
a gradually lengthening set of trajectories over time. The
two frame bipartite assignment problem, also known as the

(a) Frame 38 (b) Frame 50

(c) Frame 68 (d) Frame 78

Figure 1: Example result of our algorithm using high order mo-
tion model on the TUD sequence [1]. Track labels remain un-
changed after targets occlude each other.

linear assignment problem, can be solved exactly in poly-
nomial time by methods such as the Kuhn-Munkres (Hun-
garian) algorithm. However, these one-pass greedy algo-
rithms do not work well when there is target interaction or
occlusion in a scene [17]. The same can be said for recur-
sive filtering approaches such as the Kalman filter or parti-
cle filter, which have been well-studied in the tracking lit-
erature for single target tracking [3]. Such trackers do not
perform well in multi-target settings, having a tendency to
“jump” between similar targets that pass near each other,
resulting in identity swap errors. Another drawback is that
decisions, once made, cannot be undone when future infor-
mation shows them to be suboptimal.

More recent methods have attempted to find globally op-
timal solutions across the entire sequence by creating net-
work flow graphs [2, 13, 20] or by using iterative hierar-
chical methods to link tracklets [11, 18, 19]. Network flow
formulations, in particular, can be solved optimally and ef-
ficiently by min-cost flow algorithms. However, a network

1



graph only contains pairwise edges between observations,
thus cost information evaluating the quality of a trajectory
must be able to be factored into the product/sum of pair-
wise costs on each frame-to-frame link. This limits evalua-
tion of geometric track quality to terms based only on dis-
tance traveled between frames, e.g. shortest paths, but does
not allow for specifying local path smoothness constraints
that are functions of three or more nodes. An attempt to
capture these higher-order smoothness constraints has mo-
tivated recent work [6, 7]. It is also the motivation for our
work. In particular, we develop a graph formulation that al-
lows for encoding constant velocity constraints to evaluate
path smoothness over three adjacent frames. It is impor-
tant to understand that our use of “constant velocity” con-
straints does not imply that we constrain objects to move in
a straight line at constant speed through the image, which
of course objects like pedestrians do not do. Our approach
applies piecewise constant velocity, evaluated over adjacent
subwindows of three frames, as a type of smoothness con-
straint that penalizes hypothesized paths that locally have
high curvature or large changes in speed.

In the remaining sections we discuss related work (Sec-
tion 2), present our graph formulation and Lagrangian re-
laxation solution method (Sections 3 and 4), and provide
experimental results (Section 5). The paper concludes with
a summary and discussion of future work.

2. Related Work
Recent approaches have formulated multi-frame, multi-

target data association as a network flow problem [2, 13,
20]. Candidate object matches in consecutive frames form
nodes and edges in a graph G, with edge costs based on
pairwise appearance and distance relations. The number
and best set of trajectories through the graph can be solved
efficiently using min-cost flow to yield the globally opti-
mal solution. Zhang et al. [20] create a network where
two nodes are assigned to each detection and the link be-
tween these nodes is weighted by the probability that the
detection is part of the solution. Links between nodes rep-
resenting detections from consecutive frames are weighted
by the cost of both detections being part of the same trajec-
tory. Each link has a maximum capacity of 1, so the flow
conservation constraint ensures no two trajectories share an
observation. Min-cost flow is solved using a push-relabel
method [10]. Pirsiavash et al. [13] and Berclaz et al. [2]
propose using the more efficient successive shortest path
algorithm to solve the min-cost flow problem, resulting in
faster run times with the same globally optimal results, and
also propose to use dynamic programming to yield approx-
imate solutions very quickly. Although all these algorithms
have polynomial time complexity, they do so by restricting
the cost functions to products or sums of unary and pair-
wise edge weights. Hence, these methods can use informa-

tion such as distance between corresponding observations
in adjacent frames, but are unable to leverage higher order
smoothness constraints such as constant velocity.

Brendel et al. [5] formulate data association as a max-
imum weight independent set (MWIS) problem. Their al-
gorithm solves for two-frame tracklets independently, and
then links these into complete tracks by using a learned dis-
tance measure. Long term occlusions are handled by using
the MWIS solution method hierarchically to merge small
tracklets into longer ones based on similarity of appearance
and motion.

Li et al. [11] propose to progressively associate tracklets
to obtain final trajectories. They use a ranking and classi-
fication algorithm (HybridBoost) to learn cost parameters
for the tracklet affinity function. Yang et al. [18] create
a CRF from the set of tracklets to remove the assumption
of independence between them. The features for evaluat-
ing cost are selected using the RankBoost algorithm. Both
of these algorithms require offline training, which may be
infeasible for many one-off problems. In a more recent pa-
per, Yang and Nevatia [19] propose an online CRF model
to learn the parameters for tracklet association. To avoid ID
switches, they learn appearance features that discriminate
between targets that are close to each other.

In terms of representing higher-order constraints, Ochs
and Brox [12] propose a method to project a hyper-graph
onto its primal graph, allowing higher-order motion mod-
els to be represented by the edges of a normal graph. Their
method is targeted towards motion segmentation of images
but can readily be adapted to multi-target tracking as a
way to project higher order motion constraints onto pair-
wise constraints in a regular flow network. Collins [7]
presents an ICM-like approximate algorithm that iteratively
improves an initial feasible multi-frame solution. The al-
gorithm is capable of handling arbitrary higher-order cost
functions defined over entire trajectories, however it is un-
clear whether the approach can be simplified to efficiently
take advantage of cost functions with bounded order, such
as constant velocity computed over temporal windows of
three frames. Another recent paper by Butt and Collins
[6] attempts to incorporate constant velocity constraints by
solving a series of independent multi-dimensional assign-
ment problems over frame triplets, which are then merged
into longer trajectories and optionally sent to a network flow
algorithm to span long temporal gaps due to occlusion. The
approach does not have the ability to revisit and correct a
trajectory.

An early pair of papers by Poore [14, 15] use Lagrangian
relaxation to address the NP-hard multi-dimensional assign-
ment problem at the heart of multi-frame tracking. Poore
and Rijavec [14] use Lagrangian relaxation recursively to
reduce a K-frame assignment problem to a K − 1 dimen-
sional one, and so on, until a two-frame assignment prob-



lem is reached and solved using the Hungarian algorithm.
Instead of relaxing one frame of constraints at a time, Poore
and Robertson III [15] relax constraints over K − 2 frames
simultaneously to get to the simplified bipartite assignment
problem, again solved optimally. Feasible approximate so-
lutions over longer and longer subsequences are then re-
covered recursively (in the first paper) or iteratively (in the
second).

Our algorithm also employs Lagrangian relaxation to
solve the multi-frame tracking problem, however our graph
formulation and use of Lagrangian relaxation is totally dif-
ferent from Poore’s early work. In particular, our relaxation
reduces to a global network flow problem, solved optimally
by min-cost flow, rather than reducing to a local two-frame
assignment problem solved by the Hungarian algorithm. By
making better use of global information over the entire se-
quence during each iteration, our approach is potentially ca-
pable of finding better solutions.

3. Our Approach
We propose an algorithm that can incorporate piecewise

constant-velocity path smoothness constraints while main-
taining a manageable computational complexity. Unlike
[6], which builds up a solution from short tracks determined
independently over small subsets of frames, our process op-
timizes globally over the entire sequence. We apply the
principle of Lagrangian relaxation to develop an iterative
solution method where, at each step, higher-order smooth-
ness constraints are relaxed to form a modified-cost network
flow problem that can be solved optimally and efficiently.
This sequence of solutions gradually approaches a solution
in which the higher-order constraints are satisfied, yield-
ing a high-quality approximate solution to the original hard
problem. An illustrative overview of our graph represen-
tation is presented in the next section, followed by a more
rigorous problem formulation in subsequent sections.

3.1. Illustrative Overview

We motivate our problem representation with a simple
example. The top graph in Figure 2 depicts a three frame
sequence with three observations (1,2,3) in the first frame,
two observations (4,5) in the second, and four observations
(6 7 8 9) in the third. Directed edges in the graph con-
nect pairs of observations from adjacent time frames that
are candidate matches. We can associate a binary variable
xij with each edge, allowing a match to be turned on or
off, subject to constraints that the sum of variables on edges
coming into a node must be equal to the sum of variables
on edges leaving the node. With the addition of source and
sink nodes connected to all the observations, unit capacities
on all edges, and costs on each edge representing the cost of
making a match, this would become a typical min-cost net-
work flow formulation of multi-target, multi-frame match-

ing. Note that costs, being associated with pairwise edges,
are functions only of the candidate pair of observations con-
nected by that edge, and thus limited to quantities that can
be computed from two detections in adjacent frames.

Figure 2: (Top) Graph depicting a three frame sequence with
three observations in the first frame, two in the second, and four in
the third. (Bottom) A new graph where candidate match pairs in
the top graph have become nodes, thin black edges are added be-
tween match pairs that share an observation in frame 2, and thick
colored hyperedges represent additional constraints that must be
enforced so that each observation is used only once in the match-
ing solution.

Now consider the bottom graph in Figure 2. Here, each
square node represents an edge in the original graph, or
equivalently, a candidate pair of matching observations,
e.g. node e14 represents a candidate match between obser-
vation 1 in the first frame and 4 in the second. Thin black
directed edges in this graph connect two nodes that share
an observation in the second frame, that is, they connect a
pair of candidate match pairs having the middle observa-
tion in common. As such, each of these edges represents
a three-frame trajectory composed of one observation from
each frame. For example, the edge between nodes e14 and
e46 represents the path formed by observations 1-4-6. As



before, we can now add binary variables on these edges,
source and sink nodes, unit capacities, and flow costs. In
particular, note that costs on these edges now can encode
higher-order motion information computed over three ob-
servations, such as constant velocity to evaluate whether an
object’s displacement between frame 2 and 3 is of roughly
the same magnitude and direction as it’s movement from
frame 1 to 2.

We might be tempted at this point to use min-cost net-
work flow on this new graph to find the optimal three-frame
tracking solution. However, that would not be correct, be-
cause a feasible solution must satisfy additional constraints
due to some nodes sharing observations within the same
frame, which introduces a coupling between their edge vari-
ables. These extra constraints are shown as thicker, colored
hyperedges in the graph, and they constrain either all the in-
coming edges or all outgoing edges of the set of nodes they
connect to have at most one edge selected. For example,
there is a hyperedge connecting nodes e14, e24 and e34 in
the graph, signifying that if we turn on one of the outgoing
edges of node e14, we can no longer select any outgoing
edges from nodes e24 or e34. This is so because all of these
edges represent trajectories that pass through observation 4
in the second frame. Likewise, the hyperedge connecting
nodes e46, e47, e48 and e49 means that only one of the in-
coming edges into that node set can be turned on.

Due to the introduction of these hyperedges, our problem
is no longer equivalent to min-cost network flow. However,
we will introduce an approximate solution method based on
Lagrangian relaxation that uses min-cost network flow as a
core subroutine.

3.2. Problem Formulation

Let l be the length of a video sequence, Fk be the set of
observations in frame k, and rk be the size of that set:

Fk = {obk1 , . . . , obkrk} k = 1, . . . , l . (1)

We form candidate matches between observations in con-
secutive frames. These matches are found based on appear-
ance similarity as well as spatial proximity of the observa-
tions. Then, a matchmk

i is a 2-tuplemk
i = (ob1mk

i
, ob2mk

i
)

such that ob1mk
i
∈ Fk and ob2mk

i
∈ Fk+1. The set of all

candidate matches between frames k and k + 1 is given as

Pk = {mk
1 , . . . ,m

k
nk
}, (2)

where nk is the total number of candidate matches in that
frame pair. Since there are l − 1 frame pairs, the entire
sequence contains n = n1 + n2 + · · · + nl−1 match pairs,
collected into a set M = {m1, . . . ,mn}.

We generate a graph G = (V,E) as shown in Figure 3.
For the remainder of this paper, we use the words nodes
and vertices interchangeably, and links, edges and arcs in-
terchangeably. Vertex set V contains a start node (s), a sink

node (t), and two linked nodes 2i− 1 and 2i for each match
i = 1, . . . , n

V = {s, t, 1, 2, . . . , 2n− 1, 2n} . (3)

For a match mi, all of its incoming edges are connected to
node 2i − 1 (referred to as an ‘incoming node’), and the
outgoing edges are connected to 2i (referred to as an ‘out-
going node’). The link between the incoming node and the
outgoing node ensures that by splitting each match into two
nodes, at most a flow of 1 can pass through each match. An-
other advantage is that any unary and binary constraints can
be placed on these edges, thus keeping them separate from
the constant velocity constraints.

Figure 3: Network flow graph corresponding to the example in
Figure 2. Each match (represented by a rectangle) has an incoming
and an outgoing node, and the match number is labeled on the edge
between these nodes. A link can have a flow of 0 or 1.

Links are created between nodes representing matches
from different frame pairs. Hence, matches in Pk are con-
nected to matches in Pk−1 and Pk+1. We can represent our
graph as a staged trellis where vertices representing matches
from Pk appear in stage tk and edges are directed only for-
ward in time. We create an edge

(v2i, v2j−1) ∈ E

when candidate match pairsmi ∈ Pk andmj ∈ Pk+1 share
an observation in frame k + 1. This edge represents the
continuity of a trajectory through the three observations in-
volved.

To makeG a network flow graph, we also add edges from
the source node to all the incoming nodes, as well as edges



from all outgoing nodes to the target node

(s, 2i− 1) ∈ E; i = 1, . . . , n

(2i, t) ∈ E; i = 1, . . . , n . (4)

These arcs ensure that object tracks may start or end at
any point during the sequence. Each arc (i,j) has an as-
sociated binary flow variable xi,j that takes value 1 when
the arc is part of a trajectory in the min-cost flow solution,
and 0 otherwise. Occlusion Handling can also be incor-
porated into the formulation by connecting nodes between
non-consecutive frame pairs. These links can be based on
the proximity of the observations, or some other appropriate
gap-spanning affinity measure.

3.3. Conflicts Between Matches

Similar to [2, 13, 20], graph G is a network flow graph
and each node can be used in at most one track. However,
since each node represents a pair of observations, we have
additional constraints that must be imposed. Matches from
the same pair of frames conflict when they have an obser-
vation in common, because their shared observation can be
used in only one trajectory. We must therefore ensure that
only one of those conflicting matches is used in the final
flow solution.

For each observation a ∈ Fk, consider the set of match
pairs {(a, ∗)} in Pk having a as the incoming node of the
pair. For each of these matches, edges entering node a from
match pairs in Pk−1 are in conflict: at most one of them
can be selected and the rest must be 0. We therefore form
an edge conflict constraint set EC to limit the sum of flow
variables on edges entering incoming node a to be at most 1.
Similarly, for the set of match pairs {(∗, a)} in Pk−1 having
a as the outgoing node of the pair, we form a conflict set to
limit the sum of flow variables on edges exiting outgoing
node a. Let the total number of conflict sets created in this
way be q, and the set of all conflict sets be {EC1, . . . ,ECq}.

Our multi-frame, multi-target tracking problem can now
be written as the following binary linear program

min f(x) =
∑

(i,j)∈E

cijxij (5)

s.t. xij ∈ {0, 1} ∀(i, j) ∈ E (6)∑
(i,j)∈E

xij =
∑

(j,k)∈E

xjk ∀j ∈ V − {s, t} (7)

∑
(i,j)∈ECs

xij ≤ 1 s = 1, . . . , q (8)

Similar to previous works, each edge (i, j) is assigned
a cost cij based on the cost of linking match pairs, tak-
ing into account appearance similarity and path smoothness
constraints. Unlike previous network flow approaches, our
costs can take into account three-node smoothness measures

such as constant velocity, because they are defined between
pairs of match pairs, not pairs of observations. The linear
objective function (5) is minimized with respect to three sets
of constraints. The first constraint set (6) tells us that this is
a binary optimization problem where edges are either se-
lected or not, 1 or 0. The second constraint set (7) con-
tains the standard flow conservation equations, saying that
the flow entering a node is equal to the flow exiting it, ensur-
ing continuous paths from s to t. Taken together, equations
(5–7) specify a min-cost network flow problem that can be
solved using standard algorithms. However, the third set of
constraints (8) are needed to ensure that for each edge con-
flict set, at most one edge is selected, or in other words, that
an observation shared by multiple match pairs can be used
only once. This set of constraints cannot be directly han-
dled in a network flow framework, and motivates our use of
Lagrangian relaxation in the next section.

4. Lagrangian Relaxation

The key idea of Lagrangian relaxation is to take a con-
strained problem that is difficult and to generate a simpler
approximation by converting some of the hard constraints
into soft constraints. This is done by incorporating them
into the cost function using Lagrange multipliers [4].

For example, consider the problem of minimizing a lin-
ear objective function f(x) = w′x with respect to two sets
of linear constraints, Ax = b and Cx = d. Furthermore,
suppose that it is easy to minimize f(x) with respect to
the Ax = b constraints, but difficult when the additional
Cx = d constraints are included. In this case, we define
a vector of Lagrange multipliers λ, one multiplier for each
constraint in the Cx = d set, and form a new objective
function L(x, λ) = w′x + λ′(Cx − d), leading to a La-
grangian relaxed problem of minimizing L(x, λ) with re-
spect to Ax = b, which by assumption is easy to solve for
any fixed values of the multipliers λ. Note that instead of
enforcing the hard constraints Cx = d, we now allow those
constraints to be violated, but penalize those violations by
an amount controlled by λ. We can penalize any c′ix > di
by setting λi > 0, thus increasing the value of the objec-
tive function. Likewise, c′ix < di is penalized by setting
λi < 0. If all constraints Cx = d are satisfied exactly, that
is, if (Cx− d) = 0, the x that minimizes objective function
L(x, λ) is also the solution to the original objective function
f(x) with respect to the full set of constraints (in the case
of equality constraints).

Looking back at our binary linear program, it is clear
that without the set of conflict constraints (8) this would be
a min-cost network flow problem, which we know how to
solve efficiently. Hence, we define q Lagrange multipliers
λ = {λ1, . . . , λq} and relax these constraints by incorporat-
ing them into the objective function. The new optimization



problem becomes:

min L(x, λ) =
∑

(i,j)∈E

cijxij +

q∑
s=1

λs(
∑

(i,j)∈ECs

xij − 1)

s.t. xij ∈ {0, 1} ∀(i, j) ∈ E∑
(i,j)∈E

xij =
∑

(j,k)∈E

xjk ∀j ∈ V − {s, t}

(9)

For a fixed value of the variables λ, the new cost function is
just

∑
c′x−α for some constant α and new costs c′ that are

functions of the old costs c and the current values of λ. The
relaxed problem in (9) is a standard min-cost network flow
problem, and can be solved efficiently by previous methods
in the tracking literature [2, 13, 20].

Note that for each conflict constraint set ECs, we now
have a soft constraint term λs(

∑
xij − 1) in the objective

function. The factor in parentheses measures how many
more edges than 1 are turned on at the same time (recall that
no more than one of them should be on). Setting a positive
value of λs penalizes this excess by increasing the objective
function value. Diving deeper into the details, each edge
in such a violating conflict set will have its cost increased
by λs, thus encouraging the min-cost flow solution to route
flow elsewhere in the graph.

The network flow algorithm is now run iteratively, up-
dating λs in each iteration. Because the relaxed objective
function L(x, λ) provides a lower bound to the original
objective function f(x), we seek a tighter lower bound at
each iteration by choosing λ to increase L(x, λ). Although
L(x, λ) is convex [4], it is not differentiable at all points,
and thus we use a subgradient method for finding the next
value of λ at each iteration. For each λs, the subgradient gs
is (

∑
(i,j)∈ECs

xij−1). If gs > 0, λs increases, making it less

likely for the edges in conflict to be selected.

4.1. Stopping Criteria

The iterative algorithm may not converge to satisfy all
the Lagrangian constraints within a reasonable amount of
time. Therefore, we need additional stopping criteria test-
ing for a maximum number of iterations or an insignificant
change in the value of λ. In cases where some soft con-
straints remain unsatisfied, we will have conflicting matches
in the final trajectories, allowing an observation to be part
of two or more different tracks. To remove these violations,
we use the following greedy resolution phase:

1. Create tracks from the selected observation pairs.

2. For all observations in each frame, check if the obser-
vation is used in more than one track, and add those
tracks to a ‘competing tracks’ list.

3. Compare the total cost of the competing tracks.
Choose the track with the lowest total edge cost.

4. For all other tracks in the list, remove the conflicting
observation. If the track has observations in the fol-
lowing frames, create a new track with these observa-
tions.

In our experiments, our algorithm either converged to the
optimal solution, or else had very few conflicting matches
as part of the final trajectories. For those examples where
the algorithm halted with a non-feasible solution, the above
greedy method of resolving the conflicts to reach feasibility
provided us with good final trajectories.

5. Experiments
We divide our experimental results into two sections.

Section 5.1 uses the publicly available data association
dataset1 of [7]. Section 5.2 compares with state of the art
multi-target tracking methods on common video sequences
from the literature2 3

5.1. Benchmark Comparison

A block-ICM approach using a snake energy cost func-
tion to incorporate higher order motion information is pro-
posed in [7]. They use two datasets, which have been made
public, of trajectories from pedestrians walking through a
building. One sequence has an average of 5 observations per
frame (known as “sparse” sequence), and the other has an
average of 20 observations per frame (known as “dense” se-
quence). Each sequence is 15 minutes long, and the ground
truth is hand-labeled. Each sequence is subsampled to form
datasets of 1 frame per second, 2 frames per second, and 3
frames per second. To compare against our results, we eval-
uate three other algorithms. The first algorithm (Projection)
is based on [12], where the hypergraph with edges connect-
ing observations in three frames (to obtain constant veloc-
ity measure) is projected onto a simple graph. The costs on
the edges of the simple graph are chosen as the best value
of constant velocity between the two connected nodes and a
node in the future. Essentially, this is a way to be able to use
higher order cost functions in a regular network flow prob-
lem. The other algorithms are a greedy sequential filtering
method (Greedy) and the ICM like method (Block-ICM) of
[7], for which we use the numbers reported by the authors.

We use the same error measure as in [7], which is the to-
tal mismatch error percentage. The mismatch error (mme)
is the number of times an identity swap occurs within the es-
timated trajectories. The mismatch error percentage is then
calculated as 100×(

∑
t
mme(t)/

∑
t
g(t)), where g(t) is the

1http://vision.cse.psu.edu/data/data.shtml
2https://www.d2.mpi-inf.mpg.de/node/382
3http://www.vision.ee.ethz.ch/~aess/dataset/.



Sparse Trajectories Dense Trajectories
Algorithm 3fps 2fps 1fps 3fps 2fps 1fps
Projection 0.05 0.12 1.40 0.30 0.53 14.87

Greedy 0.00 0.06 1.36 0.12 0.34 6.83
Block-ICM 0.00 0.12 0.80 0.13 0.25 4.13

Ours 0.00 0.00 0.41 0.10 0.17 1.46

Table 1: The algorithms are compared on different sample rates
for the sparse and dense sequences. The numbers reported are the
mismatch error percentages, and lower numbers are better. The
results clearly show the advantage of using our method.

Figure 4: Comparison of the projection method adapted from
[12] (left), block-ICM method from [7] (center), and our method
(right). Each row shows the results of the three algorithms on a
sequence from the dataset. Nodes are color coded according to the
ground truth; correct trajectories should appear in the same color.
For the top row, projection, block-ICM and our method had 33, 10
and 0 ID swaps respectively. For the bottom row, there were 112,
16 and 1 ID swaps respectively.

number of ground truth observations in frame t. A lower
error percentage means that there are fewer ID switches be-
tween observations in different tracks.

Table 1 shows the tracking performance comparison.
Our algorithm easily outperforms the competing algorithms
regardless of the target density or frame subsampling. Fig-
ure 4 shows that our algorithm maintains ID labels in tough
sequences where targets move close to each other.

5.2. Tracking in Video

We compare our algorithm with state of the art ap-
proaches on the popular TUD sequence [1], and ETHMS
dataset [8]. We use the pre-trained pedestrian tracker of [9],
which was also used in [13]. The quantitative metric that
we use is the number of mismatches or ID switches. We

Algorithm TUD ETHMS ETHMS (GT)
DP 32/768 37/1387 25/1648

Ours 14/819 23/1514 14/1783
MCNF 9/433 11/1057 5/922

Table 2: We compare our algorithm with the dynamic pro-
gramming (DP) algorithm of [13] and the min-cost network flow
(MCNF) algorithm of [20] for the TUD and ETHMS (first 350
frames) sequences. The entries in the table are (number of mis-
matches)/(total number of observations used in the trajectories).
Columns 1 and 2 use the pre-trained detector of [9]. Column 3
shows the results when ground truth detections are used. We allow
occlusion handling of up to 8 frames for all algorithms.

also note the total number of (correct) observations used
in the final trajectories by the algorithms. Table 2 shows
the number of mismatches and the total number of detec-
tions for the TUD sequence, and the first 350 frames of the
ETHMS sequence. We also show the tracking results on the
ground truth detections in the ETHMS sequence. Our al-
gorithm provides better results in all cases when compared
with the dynamic programming (DP) algorithm of [13]. For
the min-cost network flow algorithm of [20] the total num-
ber of observations that are part of the trajectories should
be noted. Specifically, while their number of mismatches
appears to be fewer, it is due to a much larger number of
false negatives. Figure 5 illustrates the superiority of our
algorithm.

5.3. Computational Time

Our code is implemented in MATLAB, and can be fur-
ther optimized. For the TUD sequence with 200 frames,
our algorithm obtained the solution in 1.43 seconds. For
the ETHMS sequence with 1000 frames, our algorithm took
59.04 seconds. An advantage of our iterative solution ap-
proach is that each relaxed network flow subproblem has a
special structure that can be leveraged to achieve substantial
speed increase over general integer programming solvers,
while still yielding high-quality results.

6. Conclusion
We have proposed a framework that uses higher-order

constraints for multi-target tracking. Instead of observa-
tions, candidate match pairs of observations are used as
nodes in the graph, allowing each graph edge to encode a
cost based on observations in three frames. However, this
higher order information comes with additional constraints,
which must be relaxed to yield a min-cost flow network.
We use Lagrangian relaxation to form a series of min-cost
flow problems that yield solutions that gradually improve to
approximate the solution to our original problem.

While the algorithm nearly always converged in our ex-
periments, convergence is not guaranteed, and we have pro-



Figure 5: Rows 1 and 2 compare results of the dynamic program-
ming (DP) algorithm of [13] and our algorithm respectively on
the ETH sequence (frames 50, 90 and 106 shown). A pre-trained
pedestrian tracker is used, and no occlusion handling is done for
either algorithm. Rows 3 and 4 show tracking results using ground
truth detections (frames 274, 304 and 319 shown). Row 3 shows
the results from the DP algorithm, and row 4 shows our results. In
this experiment, we allowed occlusion handling of up to 8 frames
for both methods. The results show that our algorithm maintains
ID labels more reliably.

posed stopping criteria and a greedy algorithm to enforce
feasibility in such cases. We have shown our algorithm to
be superior to competing methods, including other methods
that attempt to use higher order information [7, 12].
Acknowledgments. This work was partially funded by
NSF grant IIS-1218729.

References
[1] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-

detection and people-detection-by-tracking. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2008. 1, 7

[2] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple
object tracking using k-shortest paths optimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 33(9):1806 –1819, September 2011. 1, 2, 5, 6

[3] S. Blackman and R. Popoli. Design and Analysis of Modern
Tracking Sys. Artech House, Norwood, MA, 1999. 1

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004. 5, 6

[5] W. Brendel, M. Amer, and S. Todorovic. Multiobject track-
ing as maximum weight independent set. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
pages 1273 –1280, June 2011. 2

[6] A. Butt and R. Collins. Multiple target tracking using frame
triplets. In Asian Conference on Computer Vision (ACCV),
November 2012. 2, 3

[7] R. Collins. Multitarget data association with higher-order
motion models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2012. 2, 6, 7, 8

[8] A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mo-
bile vision system for robust multi-person tracking. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2008. 7

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627 –1645, September 2010. 7

[10] A. V. Goldberg. An efficient implementation of a scaling
minimum-cost flow algorithm. Journal of Algorithms, 22:1–
29, 1992. 2

[11] Y. Li, C. Huang, and R. Nevatia. Learning to associate:
Hybridboosted multi-target tracker for crowded scene. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2953 –2960, June 2009. 1, 2

[12] P. Ochs and T. Brox. Higher order motion models and spec-
tral clustering. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2012. 2, 6, 7, 8

[13] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-
optimal greedy algorithms for tracking a variable number of
objects. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2011. 1, 2, 5, 6, 7, 8

[14] A. Poore and N. Rijavec. A lagrangian relaxation algorithm
for multidimensional assignment problems arising from mul-
titarget tracking. SIAM Journal on Optimization, 3(3):544–
563, 1993. 2

[15] A. B. Poore and A. J. Robertson III. A new lagrangian re-
laxation based algorithm for a class of multidimensional as-
signment problems. Computational Optimization and Appli-
cations, 8:129–150, 1997. 2, 3

[16] C. J. Veenman, M. J. T. Reinders, and E. Backer. Resolv-
ing motion correspondence for densely moving points. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 23(1):54 –72, January 2001. 1

[17] B. Wu and R. Nevatia. Tracking of multiple, partially oc-
cluded humans based on static body part detection. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 951 – 958, June 2006. 1

[18] B. Yang, C. Huang, and R. Nevatia. Learning affinities and
dependencies for multi-target tracking using a crf model. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1233 –1240, June 2011. 1, 2

[19] B. Yang and R. Nevatia. An online learned crf model for
multi-target tracking. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2012. 1, 2

[20] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1 –8, June 2008. 1, 2, 5, 6, 7


