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Abstract

We propose a novel regularity-driven framework for fa-
cade detection from aerial images of urban scenes. Gini-
index is used in our work to form an edge-based regularity
metric relating regularity and distribution sparsity. Facade
regions are chosen so that these local regularities are max-
imized. We apply a greedy adaptive region expansion pro-
cedure for facade region detection and growing, followed
by integer quadratic programming for removing overlap-
ping facades to optimize facade coverage. Our algorithm
can handle images that have wide viewing angles and con-
tain more than 200 facades per image. The experimental
results on images from three different cities (NYC, Rome,
San-Francisco) demonstrate superior performance on fa-
cade detection in both accuracy and speed over state of the
art methods. We also show an application of our facade
detection for effective cross-view facade matching.

1. Introduction
With the increasing popularity of Google maps and Mi-

crosoft Bing Maps, high resolution aerial image analysis
has become an important yet challenging area of computer
vision research. Facades are one of the most essential defin-
ing features of buildings. Automatic facade identification
from large scale raw imagery becomes increasingly more
desirable for city-scale computer modeling and end-user-
initiated navigation. Most existing work on semantic facade
parsing [7, 3, 22, 21, 13, 16, 17] assumes that the frontal
facade views are given, while existing facade detection al-
gorithms ([20, 4, 12, 18, 11, 15]) either require multiple
views/depth information or else focus on street view im-
ages and segment at most a handful of facades per image.
Typical airborne aerial images of urban areas can contain
100+ building facades (Figure 1). None of the published
work deals with mass-produced wide-baseline aerial image
facade detection at this throughput level, even though it has
become an industry standard nowadays.

(a) An aerial view of New York City with detected facades

(b) An aerial view of San Francisco with detected facades

Figure 1. Our sample facade detection results from (a) NYC (top
200 candidates), and (b) San Francisco (top 100 candidates).

Near-regularity is common in many real world data sets
(especially in urban scenes) while quantification of such
near-regularities is computationally challenging. For facade
detection from aerial imagery, we seek a regularity metric
that is local, discriminative, efficient to compute and robust
to noise. Some of our key observations are:
(1) Localness: due to the large scope each aerial image cov-
ers, a meaningful regularity measure for facades has to be
sufficiently local without requiring any type of global ho-
mogeneity.
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(A) Input aerial image and an edge-image from top-left corner (B) Edge-pixel (C) Edge-distance

Figure 2. (A): an input aerial image and its Canny-edge extraction from top-left corner. (B) vertical edge-pixel distribution, calculated
by projecting edge pixels along the vertical vanishing point direction; (C) vertical edge-distance distribution, calculated by extracting the
distance between two non-vertical edge pixels that are along the vertical vanishing point direction.

(2) Image abstraction and robustness to noise: the extracted
edge image (Fig. 2 (A)) seems to be a proper level of ab-
straction of the raw data in terms of regularity preservation.
Furthermore, statistical distributions of the edge points may
provide robustness against lighting variations and geomet-
ric deformations.
(3) Sparsity and regularity: there is a direct, well-defined
relation between regularity captured in an image patch and
the sparsity of its corresponding edge feature distributions
when projected along specific orientations (Fig. 2 (B) (C)).
(4) Sparsity and discriminative-ness: Intuitively, peakier
(sparser) edge distributions correspond to higher probabil-
ity of a facade region, while edges of non-facade regions
(e.g. bushes, rivers, roofs) are more randomly distributed.
Formally, there exists a set of distribution sparsity measures
[5], of which Gini-index is adapted in this work.
(5) Computational feasibility: The (re)projection of mas-
sive local edge distributions can be tedious, while in urban
scenes there are only two primary directions of interest –
vertical and horizontal. The unique vertical vanishing point
is determined from calibration. The most plausible hori-
zontal direction can be obtained by finding the direction of
maximum sparsity of local edge distributions (Fig. 3).

Therefore, we formulate the facade detection problem
into a regularity or sparsity optimization problem, where
the vertical regularity of local image regions is well-defined
and serves as an effective facade indicator. The horizontal
regularity is at its maximum when its corresponding spar-
sity is optimized. We apply a greedy adaptive region expan-
sion procedure for facade detection and growing, and finally
use integer quadratic programming (IQP) to remove over-
lapping facades and achieve an optimal facade coverage.

2. Related Work
Automatic, fast and accurate extraction of facade regions

from city-scale wide-baseline aerial images remains a chal-
lenging problem [14]. Zhao et al., [20], Delmerico et al.,[4],
Recky et al., [12], B. Micusik and J. Kosecka[8] extract fa-

cades from ground-level imagery. These works either as-
sume a 3D point cloud is given or depth information at each
pixel can be estimated from multiple views. While it is rea-
sonable to assume that street-view image databases are usu-
ally captured from a car-mounted camera system, range sen-
sors may be less accurate/available for aerial images where
the camera is located far away from the buildings. Fur-
thermore, feature/pixel-based wide baseline stereo is chal-
lenged by the repetitive structure of building facades and
thus prone to fail in precisely the regions we are most inter-
ested in. Bansal et al. [1] register satellite images with aerial
images to detect roof contours, and then recognize facade
regions using the ground plane homography between the
satellite image and the aerial image. Wendel et al. [18], Park
et al. [11], Schindler et al. [15] locate facade regions and
recover their frontal views by detecting repetitive (lattice)
patterns. These methods mainly work with large, highly
repetitive building facades. The state-of-the-art lattice de-
tection approach in [10] is computationally expensive for
dense aerial images. Ceylan et al. [2] achieve facade acqui-
sition by exploring the symmetries in a set of line segments.
However in aerial views, due to the large distance between
camera and facades, image resolution of each facade is lim-
ited for accurate line-segment extraction from edge pixels
(Fig. 2).

The authors of TILT [19, 9] propose a low-rank seeking
method to rectify a near-regular texture to its frontal-view
under global affine/perspective transformations. Our work
differs from TILT in at least two aspects: (1) detection vs
rectification: Our algorithm detects facades from aerial im-
ages with massive background clutter while TILT requires
good initialization of a facade region to recover its frontal
view; (2) distribution sparsity vs matrix sparsity: we aim
at a statistical interpretation of sparsity in relation to regu-
larity where randomness leads to uniform distribution of lo-
cal features while high regularity leads to peaky/sparse dis-
tributions. On the other hand, the maximization of sparsity
of a matrix is the computational basis for TILT.



3. Our Approach
Our approach is primarily regularity-driven with the fol-

lowing assumptions: Since the camera is far enough from
the scene in aerial urban images, we assume affine defor-
mations on the building facades and approximate each fa-
cade as a parallelogram. In general, all facades in the same
image share the same vertical direction determined by the
vertical vanishing point, while the horizontal orientation of
each facade differs and is unknown in advance. Therefore,
the basic steps in our computational framework are:
(1) using a sliding window, we define a pair of vertical reg-
ularity measures along the direction of the vertical vanish-
ing point to compute a likelihood estimation function for
potential facade region evaluation; (2) we search for a po-
tential horizontal direction of a local facade by maximizing
horizontal regularity as evidenced by its edge-distribution
sparsity; (3) we detect, grow and group local facade patches
with consistent horizontal orientations, and maximize the
facade regularity score; (4) we use integer quadratic pro-
gramming (IQP) to remove overlapping facades, achieving
an optimal facade coverage over the entire image.

3.1. Gini-Index for Regularity Evaluation

Gini-index is a measure of statistical dispersion or the in-
equality within a distribution. We adopt Gini-index in this
work since it is invariant to scaling and cloning of the dis-
tribution and shown to be the best among six sparsity mea-
sures compared in [5].

Given a distribution with histogram bins c =
(c1, . . . , cK) in sorted order c1 ≤ c2 ≤ . . . ≤ cK , the
Gini-index is defined as

G(c) = 1− 2

K∑
k=1

ck
‖c‖1

(
K − k + 1

2

K
), (1)

where ‖c‖1 is a normalization (scaling) term, K is the total
number of bins. G(c)ranges from 0 (uniform distribution)
to 1 (single peak). Since the histogram coefficients ck di-
rectly measure the recurrence, with a higher value indicat-
ing stronger ‘regularity’, we define a regularity likelihood
metric as the un-normalized Gini-index:

Gr(c) = G(c) · ‖c‖1 (2)

3.2. Vertical Regularity

The vertical vanishing point direction is known at ev-
ery point in the image from calibration data. Having high
regularity along this unique direction is a necessary condi-
tion for a local region to be part of a facade, since most
building facades are upright (Fig. 1). We propose two
types of vertical regularity scores: vertical-edge distribu-
tion regularity and vertical-distance regularity, as illus-
trated in Fig. 2(B)(C). Vertical-edge distribution c(1) is ob-

Figure 3. Horizontal regularity (Gini-index) measured along dif-
ferent horizontal directions. The black axis on the left indicates
the local vertical direction and the hypothesized horizontal direc-
tion of projection. The histogram of projected edges are shown
as red bars. The Gini-index score is shown below each subplot.
The projection direction in (c) yields the highest regularity with
the most sparse distribution, thus it is closest to the “correct”
horizontal direction of the facade.

tained by projecting local edge pixels along the vertical van-
ishing point direction; vertical distance distribution c(2) is
a histogram of distance between two non-vertical edge pix-
els that are along the vertical vanishing point direction (the
two non-vertical edge pixels and the vertical vanishing point
are on the same line) (Fig. 2(B)(C)). Image edge-pixels on
vertical edges contribute to c(1) and edge pixels on parallel
horizontal lines contribute to c(2).

For a local image patch centered at pixel (x, y), we de-
fine its overall vertical regularity as the product of edge dis-
tribution regularity and distance regularity.

s(x, y) = Gr(c
(1)) ·Gr(c

(2)). (3)

To balance computation and accuracy considerations we
evaluate vertical regularity on a spatially sub-sampled grid
(on a 16-pixel interval in all our experiments).

3.3. Horizontal Regularity

A key insight that guides our search for plausible hori-
zontal direction of a local facade patch is the direct mapping
between distribution sparsity and distribution regularity, as
established conceptually in Fig. 2(B,C) and computation-
ally by the Gini-index (Section 3.1). Instead of projecting
local edge-pixels to the single vertical direction to calculate
vertical regularities (Section 3.2), we project edge pixels to
different potential horizontal directions and compare their
quantified relative horizontal distribution regularities mea-
sured by the Gini-index. The highest Gini-index leads to the
maximum regularity and thus the “correct” horizontal direc-
tion for the local facade patch. This is found through an ef-
ficient coarse-to-fine 1D search within the angular range of
(−π/2, π/2). Fig. 3 illustrates one example where the cor-
rect horizontal direction yields the highest Gini-index spar-
sity value, and thus maximum regularity. Fig. 4 illustrates
the top two directions of projection measured by the Gini-
index, corresponding to the correct horizontal direction of
the facade as desired.



Figure 4. The first (red) and second (green) dominant local hori-
zontal orientations are indicated.

3.4. Facade Detection via Greedy Region Expansion

As a result of the local regularity analysis above,
we obtain, at each down-sampled grid point (x, y),
the vertical regularity score s(x, y), the vertical van-
ishing point direction θv(x, y) and potential horizon-
tal direction θh(x, y). Since each facade region
can be represented as a parallelogram bounded by
XMin, XMax, YMin, YMax (Fig. 5), we can define a facade
as: f .

= (XMin, XMax, YMin, YMax, θ̇h, θ̇v). We can now
treat facade region detection (maximization) as a regional
regularity/sparsity maximization problem with the follow-
ing objective function:

f∗ = argmax
f

I∑
i=1

J∑
j=1

s(xij , yij) · aij (4)

where xij ∈ [XMin, XMax], yij ∈ [YMin, YMax]
satisfying:∑

j

s(xij , yij)aij > τr ·max
k
{
∑
j

s(xkj , ykj)akj}

∀i = 1, . . . I (5)∑
i

s(xij , yij)aij > τr ·max
k
{
∑
i

s(xik, yik)aik}

∀j = 1, . . . J (6)

where we introduce a binary indicator aij ∈ {0, 1} to in-
dicate whether the local dominant horizontal orientation is
consistent with the global horizontal orientation within the
entire facade, i.e.

aij = H(τa − ∠(θh(xij , yij)− θ̇h)), (7)

where ∠() denotes the absolute angular distance, H() is the
Heaviside step function, and the threshold is set as τa =
10◦. We also adopt a relative threshold τr in the constraint
of equation (5) and (6) in order to stop the expansion of
facade f when the regularity score accumulated along any
row/column drops below τr = 70% of the peak value. To

Figure 5. Illustration of facade expansion with moves that add a
row or column, where the parallelogram point grid specifies the
facade region.

solve this optimization problem computationally, we use a
greedy adaptive region expansion strategy. Starting with a
randomly chosen facade containing a single point (x, y), we
set θ̇h = θh(x, y), θ̇v = θv(x, y) and iteratively expand
the facade boundary (parallelogram grid) horizontally and
vertically as illustrated in Fig. 5.

During each attempt of an expansion (add a row/column
to the parallelogram grid), the constraints of equation (5),
(6) are examined and one of the following occurs: (1) the
regularity score of the new row/column is lower than the
adaptive threshold and the expansion is rejected; (2) the
regularity score of the new row/column becomes the new
maximum which causes existing facade region to dis-satisfy
the constraints retrospectively, the facade then re-initializes
at the new row/column leading to a facade-shift; (3) the ex-
pansion is accepted and the iteration continues until no valid
expansion exists.

3.5. Multiple Facade Detection via Integer
Quadratic Programming (IQP)

Via greedy adaptive expansion we can obtain a facade re-
gion from any initialization within the image. We can thus
repeatedly initialize new facades within the regions not yet
covered by existing facades and end up with multiple, pos-
sibly overlapping, facades {fi, i = 1, . . . , N}. IQP is used
to select a subset of facades that have maximum regularity
score and facade coverage, with minimum overlap.

Let the subset of facades be denoted as a binary indicator
vector x, where xi = 1 indicates the ith facade is selected.
We specify a cost matrix CN×N , where the diagonal entry
cii is the regularity score of the ith facade, and the non-
diagonal entry cij penalizes the overlapping area between
facades i and j:

cij = −r ·
∑

(x,y)∈fi∩fj

s(x, y), (8)

where r adjusts the tolerance of overlapping (r =∞means
strictly no overlapping is allowed). In our experiments we



use r = 2, which tolerates small, partial overlapping. This
also guarantees CN×N to be positive-definite as long as
there exists no image region being covered by more than
two facades simultaneously.

The final solution is given by

x∗ = argmax
x
{xTCx}, (9)

and is solved by a spectral method [6] that first calculates
then binarizes the principal eigenvector of C.

4. Experiments
We evaluate our algorithm on aerial image datasets col-

lected from 3 different cities, New York City (NYC), San-
Francisco (SF) and Rome, with different camera viewing
angles, facade areas and densities. The image resolution is
3744× 5616. Independent human raters manually label fa-
cade regions on 5 images of NYC, 2 images of Rome and 10
images of SF, yielding more than 3000 facades. NYC and
Rome have relatively small and dense facades ( 241 facades
per image on average), while the SF dataset contains larger
facades with an average of 142 facades per image (Fig. 9).
We illustrate some sample output of our algorithm below;
please refer to more results in our supplemental material1.

4.1. Regularity-based Per-pixel Facade Likelihood
Validation

We first validate the effectiveness of the vertical regular-
ity scores proposed (Section 3.2) as a facade likelihood in-
dicator, i.e., higher regularity (Gini-index) indicates higher
likelihood of a facade region. We rank image pixels accord-
ing to their vertical regularity score together with the per-
pixel binary (facade/non-facade) labels, and obtain the pre-
cision/recall curves of per-pixel classification performance
as shown in Fig. 6. The quantitative results show that the
combination of two types of vertical regularities achieves
the best performance.

4.2. Facade Detection Evaluation and Comparison

data Park et al. ours vertical horizontal
set overall overall regularity regularity

NYC 114.3 6.0 0.8 4.8
SF 179.0 6.4 0.8 5.3

Table 1. computation time per image (minutes)

A. Comparison to state-of-the-art lattice detection algo-
rithm [11]: Based on region-based (pixel-level) evaluation,
we carry out a quantitative comparison with [11] (Fig. 7).
The lattice detection approach (in blue) has good precision
but a much lower recall rate, especially on the NYC/Rome

1http://vision.cse.psu.edu/research/facade/index.shtml

Figure 6. Precision-recall curve comparison of facade region clas-
sifications from an SF image. The black curve is a baseline ap-
proach that estimates likelihood based on local edge density. The
distribution regularity score and distance regularity score perfor-
mances are plotted in green and blue, respectively. The fused fa-
cade likelihood score from equation (3), plotted in red, outper-
forms the individual regularity score, confirming the synergetic
nature of the regularity scores we propose.

(a) New York City (b) San Francisco
Figure 7. Qualitative and quantitative comparison of our approach
with lattice detection ([10]). Top: Our results in red; Middle: Lat-
tice detection results in blue; Bottom: Quantitative comparison of
precision-recall curve.

datasets where the buildings are relatively small. Our algo-
rithm performs consistently across datasets with different
building densities and facade sizes under a fixed set of pa-
rameters. Our approach demonstrates an obvious advantage
in speed over [11] (Table 1). Both algorithms are imple-
mented in C++/OpenCV and run on the same machine with
a 2.7GHz i7 CPU and a 64-bit OS.

http://vision.cse.psu.edu/research/facade/index.shtml


(A) (B)
Figure 8. Sample results (green) using TILT [9], initialized from
(A) a predefined grid in red; (B) the detection output from our
algorithm in red.

B. Comparison against TILT [9]
The TILT algorithm [9] has been shown to effectively

rectify a near-regular texture into its frontal-view when a
rectangular bounding box in the image is given for ini-
tialization. We simulate such input by (1) segmenting
each aerial image into equal grid-cells (Fig. 8(A) red) and
(2) outlining facade locations discovered by our algorithm
(Fig. 8(B) red), then evaluate the output of TILT respec-
tively (Fig. 8 green). Such input contains background clut-
ter (e.g., roofs, streets) and geometric deformation which
seem to have considerably hindered the performance of
TILT.
C. Qualitative and quantitative results of our algorithm
Some sample qualitative results of our facade detection are
given in Fig. 9. The precision/recall plots can be viewed in
Fig. 7 and the computation time in Table 1. Our algorithm
detects facades in city-scale aerial test images with above
80% accuracy and close to 80% recall rates in minutes on
average.

4.3. Application: Cross-view Matching

Given the facades detected from each single view and
the calibration information, we are able to determine the
3D orientation of the facade (with a depth ambiguity) and
the frontal view of the facade in each aerial image. This
information simplifies facade matching across views: (1)
via epipolar constraints and facade orientation consistency,
we are able to remove a large proportion of false-positive
matches; (2) when evaluating the matching score of two fa-
cades from different views, we can resolve the depth ambi-
guity. Thus the recovered frontal view facades from differ-
ent images have a consistent orientation and scaling. There-
fore, the appearance matching can be achieved via straight-
forward template matching or normalized cross-correlation
(NCC). Fig. 10 shows the top-10 facade matching results
from two different cities and the automatically rectified
frontal view facades using our algorithm.

5. Conclusion
Urban scene data sets used in this research have provided

a testbed for us to explicitly explore and validate the rela-

tionship between local regularity in an image and sparsity
as statistical distributions of low level features (edges, edge
lengths). This offers an alternative perspective of compu-
tational regularity in general and the effectiveness of lo-
cal regularity in urban scene applications in particular. Our
work on automated extraction of facade regions from high-
resolution aerial views is a timely effort for urban scene
analysis and a concrete step forward. We have presented a
novel, local-regularity-driven method that differs from and
complements existing work on facade rectification, anal-
ysis and synthesis. Our approach leverages properties of
regularity of building facades, namely vertical and hori-
zontal alignment of edge features. Vertical regularities are
used as a likelihood indicator of the presence of a facade
region. Search for an appropriate local horizontal direc-
tion is also guided by exploring the horizontal regularities.
The optimization of facade regions is performed using a
greedy adaptive expansion that maximizes regularity within
parallelogram-shaped image regions. A final set of facade
regions is found by suppressing excessively-overlapping fa-
cade hypotheses using binary quadratic programming. We
have compared experimentally and quantitatively with state
of the art algorithms for facade extraction and show superior
performance in both speed and accuracy.

We hypothesize that frontal view building facade patches
will prove to be an effective intermediate-level representa-
tion of urban scenes, suitable for many tasks such as fly-
through visualization, geolocation, and wide baseline stereo
reconstruction. As a preliminary result we have demon-
strated an example of cross-view matching of extracted fa-
cades from different images (Fig. 10).
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