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a b s t r a c t

Millions of smart phones and GPS-equipped digital cameras sold each year, as well as photo-sharing
websites such as Picasa and Panoramio have enabled personal photos to be associated with geographic
information. It has been shown by recent research results that the additional global positioning system
(GPS) information helps visual recognition for geotagged photos by providing valuable location context.
However, the current GPS data only identifies the camera location, leaving the camera viewing direction
uncertain within the possible scope of 3601. To produce more precise photo location information, i.e. the
viewing direction for geotagged photos, we utilize both Google Street View and Google Earth satellite
images. Our proposed system is two-pronged: (1) visual matching between a user photo and any
available street views in the vicinity can determine the viewing direction, and (2) near-orthogonal view
matching between a user photo taken on the ground and the overhead satellite view at the user geo-
location can compute the viewing direction when only the satellite view is available. Experimental
results have shown the effectiveness of the proposed framework.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the explosion of photos and videos on the Internet, dealing
with the large amount of unorganized visual data has become
immensely challenging. To address this problem, one fast-emerging
phenomenon in digital photography and community photo sharing
is geo-tagging. The presence of geographically relevant metadata
with photos and videos has opened up interesting research avenues
in the multimedia research community for visual recognition of
objects, scenes and events. For example, significant performance
improvement in event recognition from photos can be achieved
through the fusion of user photos and satellite images obtained
using the global positioning system (GPS) information [1,2], while
image annotation and image exploration can be enhanced using
geotagged photos on the Internet [3,4].

However, the current GPS data only identifies the camera
location while the interesting scene in the photo may not be at
the specified geo-location; in fact it is often in the distance along an

arbitrary viewing direction. Viewing direction data provided by
a mobile device with a digital compass is typically unavailable,
or otherwise error prone because the digital compass is sensitive to
motion and magnetic disturbances. The importance of camera
location and viewing direction has been recognized by many
portable device manufacturers, such as Apple, Nikon, Nokia,1 Ricoh,
and Samsung, who have introduced (prototype) digital cameras and
mobile phones that come with a GPS receiver and a digital compass.

GPS data associated with the photos taken by mobile devices are
usually noisy also because GPS signals are weak in the proximity of tall
buildings. These difficulties are further recognized by The 2009 and
2010 ACM Multimedia Grand Challenge [5] posed by Nokia where the
primary goal is to derive the exact location and direction of a given
photo with the aid of reference images. We note that there was no
response to this particular challenge at the two past conferences.

In addition, the use of reference images has its own challenges
because (1) reference images are not evenly distributed throughout
the world, and (2) GPS data associated with the reference images
found in the digital photo communities may be inaccurate and
inconsistent (due to manual inputs). For example, some photos are
associated with the GPS data at the interesting objects, some photos
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are associated with GPS data at the user camera locations, and most
tagged geo-locations are noisy. Indeed, estimating both geo-location
and viewing direction simultaneously is an extreme problem.

In this study, the deficiency of the current GPS data and the
scarcity of reference images are addressed by utilizing Google
Street Views (covering major cities) when available and Google
Earth satellite views (covering the entire globe) otherwise. Our
goals are (1) to estimate the 2D viewing direction given GPS
coordinates, and (2) to provide a general framework that can cover
the entire world. Fig. 1 illustrates our goals with actual examples
(with camera viewing directions estimated by the proposed
algorithms) taken in both urban and suburban environments.

2. Related work

Snavely et al. [6,7] developed the Photo Tourism system for
browsing large collections of photographs in 3D. Their system
takes as input large collections of images from either personal
photo collections or photo sharing web sites, and automatically

computes each photo's viewpoint and a sparse 3D model of the
scene. Their photo explorer interface then enables the viewer to
interactively move about the 3D scene by seamlessly transitioning
between photographs.

Later, Snavely et al. [8] also proposed a system where the goal
is finding paths through the world's photos. When a scene is
photographed many times by different people, the viewpoints
often cluster along certain paths. These paths are largely specific to
the scene being photographed, and traverse interesting regions
and viewpoints. This work seeks to discover a range of such paths
and turn them into control points for image-based rendering.
Their approach again takes as input a large set of community or
personal photos, reconstructs camera viewpoints, and automati-
cally computes orbits, panoramas, canonical views, and optimal
paths between views. The scene can then be interactively browsed
in 3D using these controls or with five degree-of-freedom free-
viewpoint control. However, the works introduced so far have not
dealt with mapping of data back to actual maps. To address this
problem automatically, Kaminsky et al. [9] proposed a method for
aligning 3D point clouds with overhead images. They address the

Fig. 1. The objective is to estimate the camera viewing directions. (a) and (c) Geotagged urban photo. (b) and (d) Geotagged suburban photo (green FOV triangle – ground
truth, red FOV triangle – estimate). All figures are best viewed at 200% zoom on screen. Note that the red triangles for the estimated FOV can be covered by the green
triangles for the ground truth FOV when the estimates are near perfect. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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problem of automatically aligning structure-from-motion recon-
structions to overhead images, such as satellite images, maps and
floor plans, generated from an orthographic camera. They compute
the optimal alignment using an objective function that matches 3D
points to image edges while imposing free space constraints based
on the visibility of points in each camera. However, their method
is not suitable for estimating the viewing direction of a single
arbitrary user photo because the method requires hundreds of
images related to the photo.

Lalonde et al. [10,11] analyzed two sources of information avail-
able within the visible portion of the sky region: the sun position, and
sky appearance. By fitting a model of the predicted sun position to an
image sequence, they estimated camera parameters and geo-location
including how to extract camera parameters such as the focal length,
and the zenith and azimuth angles. Although their solution requires
visibility of sun or sky in a user photo and a database, they generated
impressive results on such images.

Schindler et al. [12] proposed a method for automatically geo-
tagging photographs taken in man-made environments via detec-
tion and matching of repeated patterns on building facades. They
exploit the highly repetitive nature of urban environments, detect-
ing multiple perspectively distorted periodic 2D patterns in an
image and matching them to a 3D database of textured facades by
reasoning about the underlying canonical forms of each pattern.
Although they show very accurate results on a few image sets,
their driving cue for the estimation is repeating patterns and thus
the algorithm requires a database for such building facades.

Luo et al. [4] proposed a system called View Focus where they
retrieve geo-tagged photos sharing similar viewing directions
using community photos. The system depends on bundle adjust-
ment [13] that requires significant overlap in scene content
between photos. However, with the exceptions of popular land-
mark spots for which there is a concentration of community
photos, this requirement is often not satisfied in practice.

In contrast, our proposed method [14] is a general framework
that can estimate the 2D viewing direction of geotagged photos in
more realistic settings. Beyond our previous work [14], we (1) add
more reference images to make the estimation of viewing direc-
tion more robust, (2) propose robust matching that provides more
number of reliable matching, (3) remove approximation and some
assumptions made in our previous work [14], and (4) propose an

optimization algorithm for estimating viewing direction. Our
proposed method only requires one input query image that is
geotagged, regardless of the picture-taking environment.

3. The proposed framework

Our proposed method consists of two parts, where PART 1
(Section 4) handles a case when Google Street View is available
and PART 2 (Section 5) handles a case when Google Street View is
not available (Fig. 2). Geo-location tagged in a user photo U is used
to automatically check the availability of the reference images
on the Internet. If Google Street View near the geo-location
of U is available, we download all of Street View images
Sall ¼ fSij1r irNg within a certain peripheral boundary (Fig. 3)
where N is the total number of Street View images around the geo-
location of U and Si is an ith Street View image in the set Sall. The
matching Street View image, Sj, that contains the same scene as U
is retrieved using RANSAC based homography matching algorithm
frequently used by many researchers (Fig. 4a and d). All of the
matching Street View images, SjASall, are used to estimate the
viewing direction of the user photo U.

PART 2 (Section 5) handles a case when Google Street View is
not available. In that case, we employ a novel matching algorithm
designed for two near orthogonal views, namely, the ground-level
view of the camera and the overhead view provided by satellite.

4. PART 1 – when Google Street View exists

When Google Street View exists, the estimation of viewing
direction is less ill-posed than otherwise. Advantages of using
Google Street View are the following: (1) Google Street View
contains accurate GPS information, and (2) Google Street View can
generate a view in a given viewing direction through its applica-
tion procedure interface.

4.1. Reference image retrieval

Since Google Street View provides linked nodes where each node
indicates its view center and pointers to neighboring nodes, we first

Fig. 2. Overview of the proposed approach: (a) GPS information tagged in a user photo is used to check the availability of reference images from the Internet. (b) If Google
Street View is available, surrounding views at that location are downloaded and homography-based matching is performed. If Google Street View is not available, a satellite
aerial view at the location is downloaded from Google Earth, and a novel matching between the two near-orthogonal views is performed to estimate the viewing direction.
(c) The estimated viewing direction is displayed on the satellite view. Note that satellite views are not used together in PART 1 because they are not helpful in an urban
environment (largely showing building roofs and indistinct pavements).
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identify the Street View node that is closest to the location of a given
user photo and download all Street View images that are within a
certain peripheral area by traversing the linked nodes (Fig. 3).

To download views at each view center, we generate API calls that
simulate viewing angle rotations at every 301 and download the
simulated views. Therefore, each view contains information about
both the location and viewing direction. These are the references we
use to estimate the viewing direction of the user photo.

4.2. Matching

For all of the downloaded reference images, SIFT descriptors are
extracted and matched. As shown in Fig. 4, initial SIFT matching
can be erroneous (e.g., yellow lines). Since rigid objects such as
buildings and traffic signs are everywhere whenever Street Views
are available, we can remove false matches using homography
constraints between the views. We use RANSAC [15] to compute
a homography between candidate views (note that this is a
simplified version of the approach by Brown and Lowe [16]). First,
we select 4 correspondences randomly from the SIFT matches,
ðM1 : x1; y1;u1; v1Þ � ðMn : xn; yn;un; vnÞ (n is the number of match-
ing points) (yellow lines in Fig. 4a and d), compute the 3�3
projective transform Pi ¼ ½r1; r2; r3� where ri is a 1�3 row vector,

and transform all the remaining points to count the inliers. Inlier
set IS is given by

IS ¼ fMiji¼ 1;…;n and diotg ð1Þ
where the error distance di is given by

di ¼
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where t is an empirical threshold to declare inlier points (red lines
in Fig. 4a and d) and K is a normalizing factor that can be
computed as

K¼ 1=ðr3 � ½xi; yi;1�tÞ ð3Þ
The RANSAC procedure ends when it reaches the maximum

number of iterations and proposes the best projective transforma-
tion with the most number of inliers. Next, we run least squares
using all the inliers to refine the computed mapping and produce
projective mapping Pbest.

In addition, we warp the reference image to a coordinate of the
user image U using the P�1

best to produce a warped reference image
Swarped, then we extract a “good features to track” [17] (KLT) in U
and track the KLT points from U to Swarped to produce more number

Fig. 3. Google Street View provides a network of linked nodes where each node indicates a view center and there are pointers to its neighboring nodes. We download all
Street View images that are within a certain periphery by traversing the linked nodes.

Fig. 4. RANSAC-based matching (a) and (d): the yellow lines indicate initial SIFT matching pairs. The red lines indicate matching pairs after RANSAC-based homography
matching. Projective warping (b) and (e): warping from the reference image to the user image. Improved matching (c) and (f): there are more number of reliable matching
than (a) and (c). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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of matching pairs using simple normalized cross correlation (NCC).
To track KLT points, we extract 11�11 image patch around each
KLT point from U then evaluate the NCC by sliding the extracted
image patch on Swarped. The matching pair is set by 2D point on the
Swarped that maximizes NCC score. Finally, aforementioned RANSAC
procedure is performed on these tracked points ðu0

i; v
0
iÞ again.

The final set of matching pair is given as fMi : xKLTi ; yKLTi ;

un

i ; v
n

i j1rkrnf g where un

i and vni are computed as

un

i

vni
1

2
64

3
75¼KPbest

u0
i

v0i
1

2
64

3
75 ð4Þ

and nf is the final number of matching inliers. Fig. 4 shows the
results of the described matching procedure. Finally, we rank the
retrieved images with respect to the number of inliers.

4.3. Viewing direction estimation

Once all the relevant images (Si for i¼ 1–N) are collected, we
have N viewing directions associated with Si and N sets of
matching correspondences M between the user photo U and Si.
Given the set of relevant images Si, the most well-known method
for estimating viewing direction is structure from motion. Struc-
ture from motion (SfM) refers to the process of finding 3D
structure of the common scene seen by multiple images [18].
The process involves in computing camera extrinsic parameters
such as camera rotations and relative locations of multiple
cameras and viewing direction and camera intrinsic parameters
such as principal point and focal length [18]. The standard SfM is
discussed below and used as a base algorithm to compare it with
our proposed algorithm since the standard SfM can estimate the
viewing direction.

4.3.1. Standard structure-from-motion (SfM) algorithms
Given the set of relevant images, we can use standard structure

from motion algorithm to estimate the viewing direction of U.
However, the stumbling blocks of the standard SfM algorithm in
the estimation of a viewing direction using a single user photo and
the Google Street views are (1) all of the Street Views are
synthesized through panoramic stitching, causing artificial appear-
ance changes and discontinuities at the stitching boundaries,
which in turn make structure from motion error prone, (2) even
our improved RANSAC-based homography matching algorithm
provides only a few point correspondences (i.e., 10–200 matches)
due to possible piece-wise warping within a single view, and
(3) we have only a few matching images. These violate general
requirements of SfM algorithms. To verify this, we use Vincent's
SfM toolbox [19]. However, as predicted, any of the standard SfM
algorithms in the toolbox could not find correct viewing direction.
Therefore, as an alternative method, we propose a new method
to overcome erroneous behavior of standard SfM by taking
advantages of available information such as locations of the each
cameras on Google Map and focal length recorded in the
user photo.

4.3.2. Our proposed algorithm
We formulate a problem of estimating viewing direction as

a constrained optimization problem where a location of U (Cu),
locations of Si (Csi ), viewing angle of the Street View images (Rs),
and the focal length of the user camera (fu) are known while a
focal length of Street View S (fs), pitch (α), yaw (β), and roll (γ) of U
are unknown. We should design an objective function f ðxÞ that is
maximized only when the estimated x¼ ½α;β; γ; f s�t is correct. The

problem is formally given as

xn ¼ arg max
x

f ðxÞ ð5Þ

Suppose that the good objective function f ðxÞ is given, all of the
possible x can be enumerated and the one that maximizes the f ðxÞ
can be selected to estimate the viewing direction. However,
enumerating all possible choices of x on a high-dimensional
continuous space is prohibitive. Therefore, inspired by recent
efforts on optimization on high-dimensional space, we use
smoothing-based optimization (SBO) [20] to estimate the viewing
direction. In this section, we will briefly review the SBO, introduce
the objective function f ðxÞ, then explain our method on estimating
the viewing direction using SBO.

Smoothing-based optimization (SBO): Consider smoothing a
nonnegative function f ðxÞ by convolving with a Gaussian kernel
Nðx;0;sÞ with zero mean and covariance matrix s2I, where bold
characters denote either an n� 1 vector or n� n matrix. The value
of this smoothed function, evaluated at location μ, is defined
as Fðμ;sÞ ¼ R N ðu�x;0;sÞf ðxÞ dx¼ R N ðx;μ;sÞf ðxÞ dx where
N ðx;μ;sÞ is a Gaussian with mean μ and covariance s2I. Leor-
deanu and Hebert [20] define a sequence of mean and standard
deviation pairs ðμðtÞ;sðtÞÞ by the following update equations:

μðtþ1Þ ¼
R
xxN ðx;μðtÞ;sðtÞÞf ðxÞ dxR
xN ðx;μðtÞ;sðtÞÞf ðxÞ dx ð6Þ

sðtþ1Þ ¼ 1
n

∑
n

i ¼ 1

R
xðxi�μðtÞ

i Þ2N ðx;μðtÞ;sðtÞÞf ðxÞ dxR
xN ðx;μðtÞ;sðtÞÞf ðxÞ dx

" #1=2
ð7Þ

and prove that the following inequalities hold:

Fðμðtþ1Þ;sðtÞÞZFðμðtÞ;sðtÞÞ ð8Þ

FðμðtÞ;sðtþ1ÞÞZFðμðtÞ;sðtÞÞ ð9Þ

where μi and xi are the ith entries of vectors μ and x, respectively.
As shown in [20], scale-space function F has the same global

optimum as the original function f, achieved when s¼0. Further-
more, F has fewer local optima than f when s40, due to the
smoothing properties of scale-space. Starting with a sufficiently
large s, iteration of Eqs. (6) and (7) performs gradient ascent in
scale space, until the procedure converges to a pair ðμn;snÞwith sn

close to zero. The value μn at the final iteration will be, if not the
global optimum of f, at least a significant local optimum.

Viewing direction estimation using SBO: Now we use SBO to
estimate the best viewing direction. We need to find an unknown
variable x¼ ½α;β; γ; f s�t that maximizes our objective function f ðxÞ
where fs is a focal length of Si and α, β, and γ are pitch, yaw, and
roll angles of U, respectively. The objective function f ðxÞ should be
designed in a way that it produces high value on correct estima-
tion of x and low value on incorrect estimation of x. Fortunately,
there are two cues that can measure accuracy of estimation.
The first one is Sampson distance of fundamental matrix and
the second one is re-projection error of 3D points back to 2D
image space.

Sampson distance of fundamental matrix refers to first-order
geometric error in the estimation of fundamental matrix F. If the
two image views contain the same scene structure, point corre-
spondences between the two views define a fundamental matrix F.
The point correspondences Mi define a fundamental matrix F.
In addition, knowledge of user camera internal parameter Ku, the
user image location Cu, 3D rotation matrix of user camera viewing
direction Ru, Street View camera internal parameter Ks, 3D rotation
matrix of Street View camera viewing direction Rs, and the Street
View image location Cs can define the fundamental matrix F where

M. Park et al. / Pattern Recognition 47 (2014) 2880–28932884



Ku, Cu, Ru, Ks, Rs, and Cs are given as

Ku ¼
f u 0 cxu
0 f u cyu
0 0 1

2
64

3
75; Cu ¼

xu
yu
0

2
64

3
75; ð10Þ

Ru ¼
cos γ sin γ 0
� sin γ cos γ 0

0 0 1

2
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3
75

1 0 0
0 cos α � sin α
0 sin α cos α

2
64

3
75

�
cos β 0 sin β
0 1 0
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2
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3
75; ð11Þ

Ks ¼
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0 f s �cys
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2
64

3
75; Rs ¼

cos βs 0 sin βs

0 1 0
� sin βs 0 cos βs

2
64

3
75;

Cs ¼
xs
ys
0

2
64

3
75; ð12Þ

respectively, where fu is known focal length of U recorded in the
camera EXIF, ðcxu; cyuÞ is a known center of the user image U, βs is
a known viewing direction associated to the Street View image S,
ðcxs; cysÞ is a known center of the Street View image S, Cu is the
known user image location recorded in EXIF, Cs is the known Street
View image location given by Google Street View, fs is a focal
length of S, and α, β, and γ are pitch, yaw, and roll angles of U,
respectively.

Therefore the correct estimation of x¼ ½α;β; γ; f s�t should
minimize the Sampson distance error and we define the objective
function f ðxÞ using Sampson distance as

f SampsonðxÞ ¼ ∑
n

i

ðxn

i tFxiÞ2
ðFxiÞ21þðFxiÞ22þðFtxn

i Þ21þðFtxn

i Þ22

 !�1

ð13Þ

where ðFxiÞj represents the square of the jth entry of the 3�1
vector Fxi, xn

i ¼ ½un

i ; v
n

i ;1�t , xi ¼ ½xKLTi ; yKLTi ;1�t , and the fundamental
matrix F is given as

F ¼ K � t
s EK �1

u ; E¼ ½�ðRsCu�RsCsÞ��RsR
t
u ð14Þ

where ½�� is 3�3 skew-symmetric matrix. If a¼ ½a1; a2; a3�t then
½a�� is given as

½a�� ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
64

3
75: ð15Þ

The second cue is the re-projection error of 3D points back to
image space of U and S. If the estimation of x is correct then we
should be able to compute 3D points from Mi, Ru, Rs, Cu, Cs, Ku, and
Ks then re-projection of the 3D points ðXi;Yi; ZiÞ back to image
space U and S should be the same as Mi. Therefore we define the
objective function f ðxÞ as

f ReprojðxÞ ¼ ∑
n

i

xprojtoUi
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where ½xprojtoUi ; yprojtoUi �t and ½xprojtoSi ; yprojtoSi �t are computed as
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where Xi, Yi, and Zi are recovered 3D point. The function f ReprojðxÞ
can be evaluated using reprojection error of the 3D point (Xi;Yi; ZiÞ
to the image coordinate of U and S for given x¼ ½α;β; γ; f s�t . This is
possible since the 3D point (Xi;Yi; ZiÞ can be triangulated when
Mi ¼ fxKLTi ; yKLTi ;un

i ; v
n

i j1r irnf g, Ku, Ks, Rs, Ru, Cu, and Cs are given
[18].

Now, the unknown variable x¼ ½α;β; γ; f s�t that maximizes f ðxÞ
is estimated using SBO starting from initial guess. How to make
good initial guess will be introduced later. Algorithm 4.1 sum-
marizes our proposed method to estimate the viewing direction of
U using SBO. We first set a current estimate of x, μðtÞ to initial guess
xð0Þ and set variance of estimation x, rðtÞ to rð0Þ where t¼1 (line
1 of Algorithm 4.1), 200 samples are drawn from the Gaussian
distribution (line 2 of Algorithm 4.1), weight of each sample is
evaluated (line 3 of Algorithm 4.1), new weighted mean and
variance for each sample and weight are computed using x and
f ðxÞ, respectively, given by Eq. (13) or (16) (line 4 of Algorithm 4.1),
then new weighted mean and variance are updated (line 5 of
Algorithm 4.1), finally this procedure repeats until there is not
much change in weighted mean and variance. The converged
mean contains the estimated viewing direction of the user image
U. In Section 6, we compare accuracy of estimation using
f SampsonðxÞ and f ReprojðxÞ.

Algorithm 4.1. VIEWESTIMATION ðKu;Cu;Cs;Rs; xð0Þ;rð0ÞÞ.
t’1
μðtÞ’xð0Þ;rðtÞ’rð0Þ; eμ’1; es’1 ð1Þ
while eμ410�5jjes410�5

do

comment : Sampling N samples from
Gaussian distribution
using mean of μðtÞ and variance of rðtÞ

S’GaussianðμðtÞ;rðtÞ;nSÞ ð2Þ
comment : Compute weight for each sample xi

for each xiAS
do wi’f ðxiÞ ð3Þ

comment : Compute new weighted
mean and variance

μ0’avgðxi;wiÞ;r0’varðxi;wiÞ ð4Þ
comment : Compute movement
eμ’‖μ0 �μðtÞ‖2; es’‖r0 �rðtÞ‖2
t’tþ1;μðtÞ ¼ μ0;sðtÞ ¼r0 ð5Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

return μðtÞ

Robust initial guess: We also aim to make robust initial guess of
x as follows. To estimate an initial rough viewing direction, we
examine each FOV (field of view) at every Street View center. We
seek to find overlapping regions seen by all Street Views. Each
region is given a relevance weight proportional to the number of
inliers found in Section 4.2, as can be seen in Fig. 5a. Then we use
Parzen window estimation to find the highest mode of the 2D
location of interesting region and obtain an initial estimate of user

viewing direction βð0Þ as a ray coming from the center of user
location to the highest mode, as can be seen in Fig. 5b. We set

xð0Þ ¼ ½0;βð0Þ
;0; 401

1801 π�t and we set rð0Þ ¼ ½0:005;0:05;0:005;0:01�t .
We set the variance of the first element and the third element
small since there is prior knowledge that pitch and roll angles are
likely to be close to 0.
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Fig. 5. Initial estimate of yaw angle. The red circles in (a) and (b) indicate the user location and blue circle in (b) indicates 2D location of interesting object. (a) FOV at every
Street View center. Each region covered by FOV is given a relevance weight proportional to the number of inliers found in matching. (b) Parzen window estimation of
interesting area seen by Street View. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 6. When only a satellite view exists: (a) user photo, (b) detected ground plane from the user photo using horizon detection, (c) extraction of the ground plane at
a specific user photo location, viewing direction, and FOV, (d) simulated ground level view using the result of (c), (e) dynamic time warping and disparity score for (b) and (d).
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5. PART 2 – when only a satellite view exists

When Google Street View is not available for an area, we
download a satellite image from Google Earth according to the GPS
coordinates extracted from the geotagged user photo. Since the
user photo is usually a ground-level view and the satellite view is
top-down from above, computing a match between them is
extremely challenging because two views are near orthogonal
and furthermore the appearance of common objects can vary
significantly due to the different imaging conditions. That said, the
ground plane and fixture objects on the ground are visible from
both the aerial view and ground view (Fig. 6b and d). This is the
basis for matching the two near orthogonal views in order to
determine the camera viewing direction.

Fig. 7. Horizon detection: (a) input image, (b) segmented image, (c) the segmented image colored with an average color within the segmented region, (d) edge magnitude on (c).
Red horizontal line is a maximum likelihood solution and green is a minimummean squared solution. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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Fig. 8. Likelihood curve for PART 2 DTW: there are multiple modes (indicated by
red stars) with comparable likelihood score. The modes are extracted using mean-
shift clustering algorithm [22]. We take all the modes of the likelihood function as
the estimation of viewing direction. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Table 1
Average and standard deviation of estimation error using PART 1 algorithm.

Dataset Reprojection Sampson

DC/Baltimore 13.37179.81 13.94179.54
NYC/NJ 13.691711.97 15.061711.94
SC, PA 5.05175.33 10.51178.13
All 68 images 11.491710.21 13.401710.00
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5.1. Alignment of a user photo and a satellite view

The goal of this section is to align the two planes in a way that the
effect of alignment error is minimal, provided that there are structures

visible from both views (albeit from perpendicular view points). Since
we can extract the FOV of the user camera, we can simulate a ground-
level view in a certain viewing direction by rotating the FOV on the
co-located satellite image, extracting image patch covered by the FOV,
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Fig. 9. Estimation error for each user photo using PART 1. Estimation of viewing direction for each user photo in big cities is less accurate than in a small college town due to
inaccurate GPS information. The results show that the estimation using f ReprojðxÞ is more accurate than using f SampsonðxÞ.

Fig. 10. Example results using Street Views. Left: user photos. Right: estimated viewing directions (red triangles) compared with ground truth (green triangles). Viewing
directions are overlaid on normal maps (default 2D tiles of Google Maps) when Google satellite images are not available (Fig. 10f) at the finest zoom level as in other
examples (note that Google Street View is available to enable the Part 1 algorithm for all the examples here including Fig. 10f). Note that the red triangles for the estimated
FOV can be covered by the green triangles for the ground truth FOV when the estimates are near perfect. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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and warping to the ground-level view (Fig. 6c and d). Then we detect
the horizon of the user image and pick only the ground plane region
for the matching (Fig. 6b) because the ground plane is most likely to
be seen by both the two near orthogonal views.

5.1.1. Horizon detection
We first segment a user photo image using [21]. Then we set

RGB value of each segmented region by an mean RGB value
computed by averaging over original RGB value of the user photo
within each segmented region (see Fig. 7c). Thenwe compute edge
magnitude and sum all the edge magnitude along the x-axis. This
yields a vector with length equal to the height of the image. Since
we do not expect the image to be perfectly normal to the ground
plane, we use a box filter and convolve the computed vector with
the filter. For a possible large tilt change, we can increase the size
of the box filter so that we can also detect a rotated horizon.
Formally, the solution is given as follows:

IrðyÞ ¼ ∑
width

x ¼ 1
Imðy; xÞ ð19Þ

where Imðy; xÞ is the edge magnitude at pixel (x, y) on a segmented
image and Ir(y) is an edge response at vertical axis y

IrðyÞ ¼ IrðyÞ ∑
height

y ¼ 1
IrðyÞ:

,
ð20Þ

yML ¼ arg max
y

ðIrnBOXÞðyÞ

yMMSE ¼ ∑
height

y ¼ 1
y� ðIrnBOXÞðyÞ ð21Þ

where BOX is a box filter and n is a convolution operator. Since
everything is a linear computation, detection takes less than
a second. Some sample results are shown in Fig. 7.

5.1.2. Alignment
We resize both the user image and the satellite image into

small patches, which we call CodeU and CodeS, to normalize the
horizontal axis and vertical axis (Fig. 6b and d). Since we use the
same FOV when simulating a ground-level view from the satellite
image, this normalization makes the horizontal axes of the CodeU
and CodeS approximately correspond to each other. However, the
y-axes that relate to distances from a camera center may not
correspond to each other because we do not know the tilt angle of
the camera (Fig. 6a and b). This will be taken care of in the next
section.

5.2. Intensity-based matching through dynamic time warping

If we regard the vertical axis as a time axis, there is a
conceptual similarity between our matching problem and time
series analysis where two signals have different speed and accel-
eration (e.g., speech). The similarity score of the two 3�w
matrices ðmi;mjÞ extracted from both CodeU and CodeS at distance
ði; jÞ where w is the width of the CodeU and CodeS is used to
evaluate similarity between two time series at a given time (i, j)
(see Fig. 6b and d).

Having converted our matching problem to time-series analy-
sis, we can use normalized cross correlation (NCC) to generate
a 2D disparity map between the codes and use dynamic program-
ming to find the minimum shortest path, as can be seen in Fig. 6.
Although we can use any types of appearance similarity scores and
features such as the earth-mover's distance [23] and color

Fig. 11. Example results using Street Views. Left: user photos. Right: estimated viewing directions (red triangles) compared with ground truth (green triangles). Viewing
directions are overlaid on normal maps when Google satellite images are not available at the finest zoom level as in other examples. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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histogram for dynamic time warping (DTW), NCC and texture help
overcome the differences in terms of optics, weather, lighting, sun
position, shading, shadow variations, and other factors originated
from two extremely different imaging conditions (by a camera on
a satellite vs. a consumer-level camera on the ground). However,
the mentioned variations may be an issue in matching. This is so

Table 2
Average and standard deviation of estimation error using PART 2 algorithm.

Dataset NCC DTW

Ontario Beach (31 images) 33.001727.85 20.941715.63
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Fig. 12. Error of viewing direction estimation for each user image using PART 2. The results show that the proposed DTW matching is better than NCC.

Fig. 13. Example results using satellite views. Left: user photos. Right: estimated viewing directions (red triangles) compared with the ground truth (green triangles). The
transparent red triangles are candidate viewing direction by computing modes Li. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)
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because there is only one single reference image for a given user
photo and if the user photo is dominated by such variations there
is no way to reliably match the user photo to the single reference
image. Therefore, instead of estimating one single viewing direc-
tion as in PART 1, PART 2 aims to provide a few viewing direction
candidates. Fig. 8 shows likelihood Li with respect to viewing
direction i where the likelihood Li is given as

Li ¼ �DTWiþ max
n

i ¼ 1
ð�DTWiÞ

� �
∑
n

i ¼ 1
ð�DTWiÞ

,
ð22Þ

where DTWi is the minimum cost of dynamic time warping for a
given viewing direction i. As can be seen in Fig. 8, there are
multiple competing modes (red stars) in the likelihood. Since PART
2 is ill-posed, we choose all of the locations of modes on Li to be
candidates viewing directions and measure the minimum error
between the groundtruth and the estimations. In Section 6, we
also compare results by the DTW and simple normalized cross

correlation to show that DTW has better performance than simple
direct NCC matching of CodeU and CodeS.

6. Experimental results

Ground-truth data set: Obtaining accurate ground truth is
required to measure performance of the method. However, the
best way for accurate ground truth generation is to use traditional
surveying methods that require intensive labors and expertises [5].
Instead, we have used iPhone 3GSs to collect ground truth data
since a manual verification of GPS and viewing direction on the
spot is possible using Google Map application right on the iPhone
3GSs. In an attempt to increase the accuracy as well as the
number of ground truth images, we have tried Nikon D5000s

with Solmeta Geotagger Pros. However, the state-of-the-art GPS
module with 3D compass also requires a manual verification for
viewing direction, which prevented efficient data gathering.

Fig. 14. PART1 – the green triangles show the ground truth viewing directions and the red triangles show estimated viewing directions. The number at the center of the
camera shows the sequence of moving trajectory of a person collecting the data. Note that the examples are in cities where street view is available. (a) D.C Downtown, (b) NJ
and (c) State College, PA. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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As a result, we built a dataset of 99 images using iPhone 3GSs and
Nikon D5000 with ground truth viewing directions in Washington
D.C. (36 images using iPhone 3GSs), New York City (16 images
using iPhone 3GSs), Ontario Beach, NY (31 images using iPhone
3GSs), and State College, PA (16 images using D5000) areas for our
experiments (we will make the dataset public). The dataset is
small given the effort needed to obtain and verify the ground
truth, but it is larger than the one used in [12]). More importantly,
it covers significantly more diverse cities of various sizes (two
major metropolitan cities, a mid-size city, and a college town).

PART 1 results: As can be seen in Table 1, our experiments
show an average error of 11:491710:21 using f ReprojðxÞ and an
average error of 13:401710 using f SampsonðxÞ. The speed of opti-
mization takes about 1 s and 8 s using f SampsonðxÞ and f ReprojðxÞ,
respectively. The estimation error of viewing direction of each user
photo can be seen in Fig. 9. Figs. 10 and 11 show examples in the
urban environments using the PART 1 algorithm. Note that our
algorithms can handle cases with foreground objects (Figs. 1a and
10e and g) as long as they do not overwhelm the scene. Finally,
Fig. 14 shows the trajectories of a person collecting data in various
cities and the corresponding viewing direction estimates.

PART 2 results: As can be seen in Table 2, our experiments show
an average error of 20:941715:36 using DTW and an average error
of 33:001727:85 using NCC. The estimation error of viewing
direction for each user photo can be seen in Fig. 12. Fig. 13 shows
examples in the suburban or park environments using the PART 2
algorithm. Note that due to matching ambiguity originated from
lack of information, several viewing direction candidates are
identified by PART 2 algorithm instead of suggesting only one
estimate as PART 1. Other candidate viewing direction estimates
are shown in light red color in Fig. 13. The number of modes in Li is
2–6 and the range of expected error of randomly chosen viewing
direction is 60–261 when the number of drawing is 2–6. Finally,
Fig. 15 shows the trajectories of a person collecting data in Ontario
Beach Park and the corresponding viewing direction estimates.

7. Discussion

We discuss some of the possible and actual failure modes of the
proposed method and suggest future direction of the work.
Generally, sun position, shading, shadow, and capture date differ-
ence can affect the matching of individual pairs. However, sift
feature and RANSAC-based matching approach used in PART 1
tolerate some of the mentioned variations. Moreover, since there

are many relevant Street View images for a given user photo, it is
less likely that PART 1 cannot find any of proper matching Street
View images.

In addition, we found that the detection of horizon in PART 2 is
quite robust against such variations as well. E.g., although middle
row in Fig. 7 contains several shadows around horizon and grass
area, it did not affect detection of horizon.

However, the variations may be an issue in matching method
proposed in PART 2. This is so because there is only one single
reference image for a given user photo and if the user photo is
dominated by such variations, there is no way to reliably match
the user photo to the single reference image. The problem
becomes even more challenging if the ground plane is not visible
in the user photo, or the structures on the ground plane are either
distinctive or confusing since it is not possible to estimate the
viewing direction with the use of satellite images. As discussed in
Section 5.2, the PART 2 problem is in general far more ill-posed
than PART 1 and perhaps multiple co-located web photos can be
helpful. We plan to use multiple co-located web photos to improve
the performance of the PART 2 algorithm. Finally, we notice that
the GPS device used for collecting the ground truth was inaccurate
at the center of big cities such as D.C. and New York City (in the
middle of the concrete jungle with maximum signal interference).
This suggests a future research direction where we want to
estimate both the viewing direction and (more accurate) GPS
coordinates. We will pursue further in these directions to address
these problems.

8. Conclusions

We propose a general framework to estimate the camera
viewing direction of a single geotagged photo in any environment
and have demonstrated its promises. The main contributions are
the exploitation of Google Street View and Google Earth satellite
images as references, and the solutions designed to overcome
various technical challenges inherent within each ill-posed sce-
nario. Our methods perform the best when the recorded GPS
coordinates are accurate. In the future work, we hope to evaluate
the proposed algorithms on a larger scale and further diversified
dataset and refine potentially noisy GPS coordinates while esti-
mating the associated viewing directions within the same frame-
work. We also hope to exploit web photos to help resolve the cases
where no street view is available.

Fig. 15. PART 2 – the green triangles show the ground truth viewing directions and the red triangles show the estimated viewing directions. The number at the center of the
camera shows the sequence of moving trajectory of a person collecting the data. Note that the example is in a beach park where no street view is available. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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