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Abstract

Aggregates in a colloidal suspension of silver chloride

in an aqueous hydrogen peroxide solution present behavior

of formation and explosion. In an effort to understand this

behavior, a novel method for automatic explosion detection

on a single frame is developed in this paper. We formulate

this problem as a blob-based classification problem. An ex-

plosion occurs when large blobs break into smaller blobs

and expand outward from a central point. Blob detection

is used to locate regions of interest, and binary classifica-

tion is performed on local features extracted from those re-

gions. To validate the proposed method, our experimen-

tal results on nearly 16,000 blobs extracted from real im-

ages show high performance rates (classification, sensitiv-

ity, and specificity) during cross-validation as well as on

image frames from a completely new aggregation video.

1. Introduction

A colloidal suspension of silver chloride in water

displays a cyclical process of aggregation and expan-

sion/explosion. In terms of the underlying nonlinear het-

erogeneous chemical reaction dynamics, this behavior is not

well understood. Questions remain about the motion of ag-

gregates, as well as the timing and cause of aggregate explo-

sions. A useful piece of information that can shed light on

this process is correlation between exploding blobs based

on relative time and spatial separation. Aggregates must

be identified within the video frame, along with their cen-

ter, radius and relevant features, and classified as exploded

or intact. Detection of explosions is inefficient when per-

formed manually, as it is difficult to accurately determine

the frame at which the blob begins to expand, as well as to

quantify the precise blob center and radius.

In an effort to streamline the detection of explosions

for high throughput performance, an automatic method has

been developed. We propose a novel formalization of this

problem as a blob-based binary classification problem. The

goal of this work is to determine an good classifier which

produces a high rate of correct explosion detection and a

low false negative rate. In addition, the effect of training

class distribution on the sensitivity and specificity of the

classifier is explored.

The data used for this work is a video of a colloidal sus-

pension of silver chloride in an aqueous hydrogen perox-

ide solution consisting of 752 frames captured at 30 frames

per second. The first row Figure 1 shows an example of

several consecutive video frames. The second row of Fig-

ure 1 shows these same frames with aggregates identified.

Blue circles represent an exploded aggregate and red circles

represent an intact aggregate. Blob detection is used to lo-

cate interest regions containing aggregates. Once interest

regions are located, local features are extracted. Previous

work using blobs to determine interest regions has shown

positive results for brain tumor detection [1, 2], a similar

concept is applied in this work.

Figure 1: Input output pairs of video frames. The top

row shows the original frames, and the bottom row shows

frames with labeled blobs.

Blobs have been used in other computer vision applica-

tions, including tracking. Statistical models for multi-blob

tracking have been developed [3]. Collins [4] showed that

blobs could be tracked through scale space using the mean

shift algorithm. Blobs have also been used to track multi-
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ple humans in a crowded environment [5]. The relevance

to blob tracking motivates the development of new ideas for

working with blobs.

This work is important to the physics and materials com-

munity, as it will enable a study of correlations between an

exploding aggregate and its neighbors. In addition, eval-

uation of extracted features can lead to insights into what

physically constitutes an explosion. What we learn from

here may also provide methods for better crowd track-

ing algorithms. This work provides a method that can be

extended to identifying grouping and group dispersion in

crowds.

The remaining sections of this paper present a method

for automatic detection of exploding aggregates. Section 2

presents a formulation of the classification problem. Sec-

tion 3 describes the classification techniques and motivates

studying the effect of class distribution on classifier perfor-

mance. Results are presented in Section 4, and in Section 5

their implications are discussed, along with future work to

improve performance.

2. Problem Formulation

In order to classify blobs as exploded or intact, the inter-

est points must be first located, and then features must be

extracted from those interest points. Section 2.1 describes

the blob detection process, and Section 2.2 describes and

characterizes the features used for classification.

2.1. Blob Formation

Interest regions are areas containing aggregates, which

are detected by employing multi-scale Laplacian of Gaus-

sian (LoG) filters to locate blobs of different scales [4, 6].

The blob extraction algorithm is set to capture dark blobs

on a light background. Figure 2 shows the blobs found by

this algorithm [6].

This algorithm detects a significant number of overlap-

ping blobs. Features should be only be extracted from one

blob in a given neighborhood, in order to have a consistent

feature set for each local region. To overcome the problem

of blob overlaps, the following method of non-maximum

suppression is applied to the inverse image of light blobs on

a dark background. One blob Bs is selected from overlap-

ping regions by evaluating

Bs = argmax
Ci

(Bint(Ci)) (1)

where Bint is the peak intensity of the blob, and Ci repre-

sent the blob locations s.t.

‖Ci − Ck‖ < Ri/α (2)

for i 6= j. Here, Ri is blob radius for the blob located at Ci,

and α is a parameter controlling neighborhood size. The

challenge posed to performance is tuning the α parameter.

If the neighborhood size is selected so that ‖Ci − Ck‖ <
2Ri, then all overlapping blobs that have radii less than or

equal to Ri are removed, leaving only the highest intensity

blob. Thus, α is set to be 0.5. Figure 3 shows the remain-

ing aggregate interest regions after overlapping blobs are

removed and the strongest intensity scale is chosen.

2.2. Feature Extraction

Upon detection of blob interest points blob-based fea-

tures are assigned. Feature vectors are composed of the fol-

lowing:

• Blob radius

• Blob σ LoG parameter

• Blob peak magnitude

• 8 bin histogram of blob pixel intensities

• Mean of blob pixel intensities

• Variance of blob pixel intensities

• 2 bin histogram of left half blob pixel intensities

• 2 bin histogram of right half blob pixel intensities

• 2 bin histogram of top half blob pixel intensities

• 2 bin histogram of bottom half blob pixel intensities

The last eight feature values are represent simple asymme-

try information to determine if the explosion occurs in a

specific direction.

Of the features, it is found that the highest bin of pixel in-

tensities, containing values from 224-255, is always zero, so

this feature is removed. The remaining features are used to

form feature vectors of length 20. With 752 frames of video,

and an average of 21 detected blobs per frame, the data set

is composed of 16,000 blob-based feature vectors. Each

of these blobs is hand labeled as either exploded (Class 1)

or intact (Class 0). Figure 4 shows eight example frames

with hand labeled data. From these frames it is apparent

that the number of exploded blobs is much less than the

number of blobs that are intact. An evaluation of the data

set reveals that the probability of a blob being exploded is

P (1) = 0.1323 and the probability that the blob is intact is

P (0) = 0.8677 among the extracted blobs.

Figure 5 shows close up examples of each class. Intact

blobs display a higher concentration of darker pixels and

smaller blob radii than exploded blobs.

Fisher’s criterion [7] is used to rank the top discrimina-

tive features for classification. Fisher’s criterion is used

to evaluate the signal-to-interference ratio between two

classes. This criterion is defined by

J(w) =
|m1 − m2|

2

s2

1
+ s2

2

(3)



Figure 2: Video frames with blobs detected.

Figure 3: Video frames with overlapping blobs removed.

Figure 5: Close up examples of intact and exploded classes.

where m1 and m2 are the means of the two classes, and s2

1

and s2

2
are the their variances. The higher the value found

by this function for a given feature, the higher the separation

between the classes with respect to the feature. Using this

criterion, the top three single features most important for

classification are found to be the blob radius, the mean of

pixel intensities, and the pixel intensity bin with values 32-

63. Table 1 shows the Fisher criterion results normalized by

the highest value.

The data distributions for the two classes on these top

three features can be seen in Figure 6. These distributions

show that data is not linearly separable in one dimension

for any of the top-three features. Thus, a higher dimen-

sional feature space is needed. Data can visualized in the

Feature Rank Normalized Fisher

Blob Radius 1 1.0

Mean Intensity 2 0.58

Intensity Bin 32-63 3 0.36

Table 1: Top three features ranked using Fisher’s criterion

top-three feature space to get a better understanding of class

separation. Figure 7 shows data points plotted in the top

three feature space. It is clear that the intact data points are

clustered together in this space, with a few outliers. The

outliers arise from data points that are intact but have very

large radii. This cluster relates directly to a period of the

video in which a large aggregate forms before exploding. It

is apparent that most, but not all, exploded blobs have larger

radii than intact blobs.
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Figure 6: Distributions for top three features.

3. Classification

Three explosion detection classifiers are trained on train-

ing sets with two different class distributions. Section 3.1

provides a brief explanation of each classification method.

Section 3.2 describes the motivation of balancing class dis-

tributions for classification.
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Figure 4: Video frame with blobs labeled as Class 0 (intact) or Class 1 (exploded).
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Figure 7: Visualization of all blobs in the feature space

spanned by the top three features ranked by Fisher’s Cri-

terion.

3.1. Classification Methods

The simplest method applied for classification is the Lin-

ear Least Squares (LLS) classifier. The goal of this method

is to generate an optimal weight vector w
∗ to provide the

best classification boundary using ordinary least square fit

for N sample points. This method is expected well only

when the data is linearly separable [8].

A second method considered for classification is Max-

imum Likelihood Estimation (MLE). In MLE, rather than

learning a decision boundary, a predictive distribution is

formed from the training data. The optimal parameter µ̂
is found as the value maximizing the joint likelihood of N
training samples [8].

The final method used for classification is Random

Forests [9, 10]. A random forest is a collection of classi-

fiers that have a tree structure where each tree votes for a

class on the input x. The class that has the most votes at the

end of this procedure is chosen as the ’winner’, and selected

as the class for the data. This collection of tree classifiers

can be described as{h(x, Θk), k = 1, 2, 3, ...} where {Θk}
are assumed to be independent, identically distributed ran-

dom vectors [11]. Breiman [11] showed that random forests

always converge, and that the accuracy of the classifier can

be improved by increasing the number of decision trees.

3.2. Class Distribution

Correctly detecting an explosion and avoiding false neg-

atives are primary goals of this work. Weiss and Provost

[12] studied the effect of class distribution on tree induction

and found that in some cases the naturally occurring class

distribution performs best, and in other cases the balanced

class distribution is optimal. This motivates our study of

the effect of class distribution on correct detection of explo-

sions and false negative rate. In an attempt to study these

goals, training and testing data sets are generated according

to two class distributions:

1. Naturally occurring class distribution P (1) = 0.1323
and P (0) = 0.8677

2. Balanced class distribution P (1) = 0.5 and P (0) =
0.5

4. Results

4.1. Original Data Set

Several metrics are chosen to quantitatively validate the

performance of the classifiers used in this work. The most

obvious metric is classification rate. The rate accuracy is

defined as the ratio of correctly classified data points to the



total number of data points. However, since the naturally

occurring class distribution shows only a 13.23% chance

of a blob being exploded, the classification rates must be

higher than 86.77% to be non-trivial.

Other performance metrics afford more specific evalua-

tions of classifier performance. The performance metrics

which are most meaningful to the goals of this work are

sensitivity and specificity. Sensitivity is defined as

Sensitivity =
Correctly classified as exploded

Actual number exploded
(4)

and represents the correct detection rate for exploded blobs.

Specificity is defined as

Specificity =
Correctly classified as intact

Actual number intact
(5)

and represents the complement of the false negative rate. As

the goal of this work is to provide a high correct detection

rate and a low false negative rate, both the sensitivity and

specificity should be high for the optimal classifier.

Cross validation is performed 100 times on randomly

split training-testing sets for statistically significant results.

For the naturally occurring class distribution, data is split

randomly so that 95% of the data is used for training, cor-

responding to 15800 data points, and 5% of the data is used

for testing. For the balanced distribution, significantly less

data is used for training, only 4000 data points. The categor-

ical distribution is used for MLE, and 500 decision trees are

used for the random forest algorithm to provide a balance

between accuracy and computational time.

Table 2 shows the classification accuracy results for the

naturally occurring class distribution and the balanced dis-

tribution when used by the three classification methods. The

LLS and MLE methods do not perform well, since the clas-

sification rate is below 87%. The random forest method

performs well on both class distributions.

Class Linear Least Maximum Random

Rate Squares Likelihood Forest

Training
77.1 ±24.4% 75.5 ± 0.2% 99.6 ± 0.1%

(Natural)

Testing
77.9 ±21.8% 75.0 ± 3.2% 97.9 ± 0.4%

(Natural)

Training
67.4 ±14.8% 74.5 ± 0.4% 99.8 ± 0.1%

(Balanced)

Testing
71.7 ±24.7% 75 ± 3.2% 94.1 ± 1.5%

(Balanced)

Table 2: Classification accuracy results, defined as the per-

centage of correctly classified aggregates.

Table 3 shows the sensitivity and specificity results of

the Random Forest classification method. It is important to

note that a balanced data distribution increases the correct

detection rate for explosions by 6%. However, there are

more false negatives for a balanced data set, reflected by a

lower specificity.

Random Forest Sensitivity Specificity

Training
97.8 ± 0.1% 99.9 ± 0.1%

(Natural)

Testing
88.6 ± 3.3% 99.3 ± 0.3%

(Natural)

Training
99.8 ± 0.1% 99.8 ± 1.0%

(Balanced)

Testing
94.7 ± 4.3% 94.0 ± 1.7%

(Balanced)

Table 3: Sensitivity and specificity results for the Random

Forest classification method.

4.2. Application to New Data

To verify the generalizability of the explosion detection

algorithm, we apply the Random Forest classification model

learned on the natural distribution and balanced distribu-

tion from the original data to features extracted from a new

video. The classification rate, sensitivity, and specificity are

tabulated in Table 4. These results validate that the learned

Random Classification Sensitivity Specificity

Forest Rate

Natural 98.4% 90.4 % 99.4%

Balanced 96.5% 83.1 % 98.9%

Table 4: Performance metrics for new data set

classifier is generalizable.

A supplementary video included with this work show the

results of classification for a sequence of video frames, even

though temporal information is not used.

5. Discussion

The results in the previous section show that balancing

the class distribution for the random forest classification

method provides the benefit of increased sensitivity. This

means that an explosion is more likely to be correctly de-

tected in this formulation. However, this comes at the cost

of more false negatives, as the specificity is decreased. Bal-

ancing the class distributions and reducing the number of

training points by an approximate factor of 4 also has the

benefit of decreasing computational time for training. Ta-

ble 5 displays the reduction in computational time for train-

ing that is afforded by balancing the class distribution and

reducing the number of data points. With these factors



in mind, we feel that the increase in computational effi-

ciency and correct explosion detection rate provided by the

balanced approach provide a viable method for collecting

meaningful data about explosion correlation and the behav-

ior of aggregates in colloidal suspensions.

Distribution Time [s]

Natural 17.8

Balanced 3.6

Table 5: Computation training time for two class distribu-

tions

Several possibilities exist to explain why some blobs are

misclassified. Figure 8 shows two blobs misclassified as

exploded when they are actually intact. Figure 9 shows two

blobs misclassified as intact, when they are in fact exploded.

These figures show that for some blobs, the image shows

artifacts or distortion. This distortion can lead to the varied

contrast or intensity differences, making the blob appear in-

correctly exploded or intact to the classifier. Another possi-

ble source of error is blob radius. In general it is observed

that exploded blobs have a larger radius than intact blobs.

However, there exist very large aggregates with large radii,

as observed earlier in the top-three feature space in Figure

7. These large aggregates are outliers, and could be identi-

fied as exploded in error. A third possible source of error is

blob intensity. If exploded blobs contain a majority of very

dark pixels, they may be incorrectly classified as intact.

Figure 8: Blobs misclassified as exploded.

Figure 9: Blobs misclassified as intact.

There may be additional features which can help to im-

prove correct explosion detection and reduce false negative

rates. Features under investigation include temporal infor-

mation about the interest regions and the introduction of a

correspondence factor from one frame to the next. Note that

these additional temporal features are particularly promis-

ing in that an explosion is intrinsically a temporal phe-

nomenon. Also of interest is the use of texture features

within blobs. Exploded blobs show a varied pattern com-

posed of many small spots, while intact blobs have a much

more uniform texture. Upon the addition of further features,

it will be necessary to perform feature selection and evaluate

the features which are most important for effective classifi-

cation. Evaluating these features will provide insight into

the physical information indicating an explosion.

That fact that our proposed method tested on the origi-

nal data set, as well as directly applied to a new video data

set gives us confidence in its generality. The resulting per-

formance shows similar classification rate, sensitivity, and

specificity to the original data set. This verifies the poten-

tial for applying the novel explosion detection method pre-

sented in this paper to other videos of similar problem tasks.
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