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ABSTRACT 
The Distant Human Identification (DHID) system is a master-
slave, real-time surveillance system designed to acquire biometric 
imagery of humans at distance. A stationary wide field of view 
master camera is used to monitor an environment at distance. 
When the master camera detects a moving person, a narrow field 
of view slave camera is commanded to turn to that direction, 
acquire the target human, and track them while recording 
zoomed-in images.  These zoomed-in views provide meaningful 
biometric imagery of the distant humans, who are not 
recognizable in the master view.  Based on the lenses we 
currently use, the system can detect and track moving people at 
distances up to 50 meters, within a 60o field of regard.  
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1. INTRODUCTION 
Video surveillance is already prevalent in our daily life. We can 
see surveillance cameras in banks, airports, stores and parking 
lots. Most commercial surveillance systems only provide recorded 
video for review after crimes or accidents happen. Therefore, 
there is growing interest in developing real-time systems with 
automated video understanding algorithms that provide prompt 
alert of events while they are happening.  

Extensive research has been conducted in automated surveillance, 
especially in moving object detection and tracking [1], [2], [3], 
[5], [6]. The Video Surveillance and Monitoring (VSAM) system 
[1] is a multi-camera system that allows a single operator to 
monitor activities in a cluttered environment using a distributed 
network. W4 [2] is a real-time system for detecting and tracking 
people and their body parts in video imagery. Pfinder [3] is a real-
time system for tracking a person, using a multi-class statistical 
model of color and shape to obtain a 2D representation of head 
and hands over a wide range of viewing conditions.  

We are developing a testbed system and algorithms for acquiring 
biometric imagery of non-cooperative subjects (neither actively 

cooperating nor trying to deceive) in an outdoor environment. A 
typical scenario is monitoring a parking lot, or building perimeter, 
to acquire identifiable imagery of all the people passing through 
that area. The biometric imagery consists of short gait sequences 
and relatively high resolution views of each person’s face, 
suitable for use by gait and face recognition algorithms developed 
separately.  

The goals of wide area monitoring and biometric image 
acquisition are in conflict with each other. To identify people at a 
distance, we need to use a highly zoomed camera. But, with the 
zoom increase comes a decrease in overall field of view, so we 
can only monitor a smaller scene. The main challenge in 
acquiring biometric data at a distance is not optics, but camera 
control.  We cannot just point a static sensor at the scene and hope 
to obtain focused, high-resolution imagery of a person.  Instead, 
we must actively control the pointing angle and zoom of the 
camera. 

To solve the dilemma above, this paper proposes a Distant Human 
Identification (DHID) system based on a master-slave camera 
architecture. A static, wide field of view master camera is used to 
monitor a wide area at a distance. When the master camera 
detects a moving human, an active narrow field of view slave 
camera is commanded to turn to that direction, acquire the human 
target, and track them while taking high resolution biometric 
imagery.  Unlike traditional master-slave systems where the 
master camera completely controls the slave pointing angle (e.g. 
[1]), keeping a highly zoomed camera pointing at a moving 
person requires a level of pointing accuracy that is not achievable 
from calibration alone.  That is, we cannot simply use scene 
coordinates estimated from the master camera to control the pan 
and tilt of the slave camera when it is zoomed in to view a 
person’s face.  We instead use control signals from the master 
camera only initially, to get the person within the slave camera’s 
field of view, and then perform real-time processing on the slave 
camera video to keep the active camera centered on the moving 
target. 

This hybrid master-slave camera system uses a combination of 
motion detection algorithms to acquire and track moving people. 
Conventional approaches to moving object detection and tracking 
include background subtraction [1], [2], [3], [4], temporal 
differencing [7], optical flow [8], and color-based blob tracking 
[15][16]. Our approach uses a combination of all of the above. 
The static master camera uses adaptive background subtraction to 
detect all moving objects in the scene, and determines whether 
they are people or vehicles. After the master detects a new person, 
the moving slave camera uses a combination of optical flow 
stabilization and temporal differencing to acquire the human 
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target.  After detection is achieved in the slave camera view, the 
slave switches into an active tracking mode. The tracking is based 
on color blob tracking using the mean-shift algorithm. 

The following sections will give a detail description of the DHID 
system. In Section 2, we will give an overview of the architecture 
of the system. We will address how master and slave camera 
coordinate with each other. In Section 3 and Section 4, we will 
describe in detail the algorithms used in master camera processing 
and slave camera processing. In Section 5, we will show some 
implementation results and discuss possible future work.  

2. SYSTEM OVERVIEW 
The DHID system consists of three parts: a stationary wide field 
of view Master Camera, a moving narrow field of view Slave 
Camera and a hardware Pan-Tilt-Unit (PTU) to which the slave 
camera is mounted. Each of these three components is controlled 
by a separate computer, connected to the others through a 
standard TCP/IP network, as shown in Figure 1. 

 
Figure 1: Logical layout of DHID system 

Mirroring the hardware, the software of the system consists of 
three standalone processes on the three computers: Master 
Camera Process, Slave Camera Process and Pan-Tilt-Zoom 
Process. These three processes communicate with each other 
through a three-tiered architecture, as shown in Figure 2. 

 
Figure 2: Three-Tier architecture of DHID system 

The Master Camera Process is the starting tier of the system. It 
continuously grabs RGB video from the master camera, detects 
moving objects, and determines which of them are people. The 
system is currently designed to detect and track a single moving 
person instead of a group. If there are multiple candidates on the 
screen, one of them is selected for tracking based on criteria 
described in Section 3. After detecting a person, the Master 
Camera Process computes their dimension, speed, and position, 
and passes these parameters to the Slave Camera Process.  

The Slave Camera Process is the middle tier of the system. It is a 
two-thread process. One thread listens to the Master Camera 
Process for parameters alerting it to a detected person. The other 
main thread grabs and processes video from the slave camera to 
independently detect and track this person.  The Slave Camera 
Process determines parameters (e.g. Pan, Tilt, Speed of PTU and 
Zoom, Focus of Slave Camera) and passes them to the Pan-Tilt-
Zoom Process. During the detection phase, these parameters are 
sent from the Master Camera Process, allowing the master camera 
to take control of the Pan-Tilt angle. During the active tracking 
phase, these parameters are computed by real-time slave camera 
tracking, allowing the slave camera to servo on the moving target.  

The Pan-Tilt-Zoom Process is the end tier of the system. It resides 
on a real-time operating system (we use VXWorks) and controls 
the PTU and Slave Camera. This process accepts command 
parameters from the Slave Camera Process to move the PTU and 
set the zoom, focus and iris of the Slave Camera. 

3. MASTER CAMERA PROCESS 
The main task of the Master Camera Process is to monitor a wide 
area, detect moving humans automatically, and compute Pan-Tilt 
positions for the Slave Camera to “look at”. This section provides 
an overview of our algorithm to detect moving objects, 
distinguish humans from other objects, and calibrate the 
geometric master-slave relationship. 

3.1 Motion Detection at Pixel Level 
Detecting moving objects in a video stream is a traditional 
research problem in computer vision. Our approach is adaptive 
background subtraction. The basic idea is to maintain a statistical 
background model at every pixel. When the intensity of a pixel in 
the current frame differs above a threshold from the background 
model, it is labeled as foreground. Foreground pixels are then 
grouped together to indicate potential moving objects.  

One intuitive approach is to get a weighted average of all the 
pixel values in the past frames as in the following equation (1).  
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Where B(t) is the background model value at time t, I(t) is the 
image pixel value at time t, and ω is a weight parameter between 
0 and 1.  

The difficulty and the trick are how to choose the weight ω. If the 
weight is small, the background model detects well but adapts too 
slowly to properly “absorb” an object that has stopped in the 
scene. The extreme of this case is no update at all when ω = 0. If 
the weight is too large, the background adapts promptly but can 
be easily corrupted by moving objects. There will be either a long 
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trail following a moving object, or a hole within the moving 
object. The extreme of this case is two-frame differencing when ω 
= 1. 

Inspired by the Wallflower Algorithm [4], we use two background 
models, but instead of a predicted history and actual history as 
used in Wallflower, we use a combination of the weighted 
background models above. Model One uses a small weight for 
updating. Model Two use a large weight in updating, but only 
updates those pixels whose locations are determined to be 
background by Model One.  The pixels that are considered to be 
background in Model One will not belong to any moving object, 
and therefore they will not corrupt the background in the quickly 
updating Model Two. To detect motion, each pixel in the current 
frame is checked against both background models. If the pixel is 
foreground in both models, we declare that it is foreground.  

Since our background model is adaptive with time, we also have 
built an additional mechanism in our background model to adapt 
to sharp changes in the overall scene (e.g., the sun comes out from 
cloud cover). When the number of moving foreground pixels 
exceeds a certain threshold, both background models are reset to 
the current frame.  

3.2 Human Classification at Region Level 
After classifying foreground change at the pixel level, we perform 
a median filter to reduce “salt and pepper” noise. We then group 
pixels into blob regions and determine a class label (human vs. 
other) for each foreground blob [5], [6]. For efficiency, we use a 
very simple model of the expected appearance of a human, 
consisting of a center-surround rectangular kernel (see Figure 3). 
The rectangle is chosen to have a size and aspect ratio consistent 
with known dimensions of upright humans in the scene.  A central 
rectangle of positive weights is surrounded by an outer ring of 
negative weights. This is to enforce that a cluster of foreground 
pixels of the right shape must be surrounded by a ring of non-
foreground (i.e. background) pixels.     

 
Figure 3: Template matching cases. (Left) High score (Middle 

and right) Low score. 

We convolve the shape kernel over the foreground image and 
threshold the convolved results. After flood fill with 8-connect, 
we get a set of candidate blobs classified as moving, upright 
humans. As shown in Figure 3, it is clear that we can distinguish 
human from cars easily because of the penalty imposed by the 
negative weights in the outer ring of the shape kernel. Meanwhile, 
the kernel does a good job of locating the human upper body, and 
ignoring shadows below the feet.    

After locating all the possible human blob candidates, we need to 
choose one for passing to the slave camera. First of all, the 
operator can manually click on one subject, which will always 

take priority. Otherwise, the system is in an automatic choosing 
mode. At the first frame, we place the target focus of attention 
cursor at the center of screen. In the following frame, if there is no 
detected person, the cursor stays. When a person appears, the 
focus of attention cursor switches to that person. If there are 
multiple people found, the cursor will go to the nearest one. In the 
case of a moving human, the cursor will follow that person since 
the target human will always appear to be the closest object from 
the cursor position in the last frame due to minor movement in 
consecutive frames.  

Future work on multiple people tracking will explore how to 
multitask between multiple candidates to ensure that views of 
each person are tracked accordingly, and that the appropriate 
target is selected among multiple candidates.  

3.3 Calibration of Master-Slave Correlation 
After getting the coordinate of the target human in the master 
camera image, we need to move the slave camera to point at and 
further track the person. The purpose of master-slave calibration 
is to determine the geometric relationship between the master 
camera image pixel coordinates M(X,Y) and the Pan-Tilt angles of 
the slave camera S(P, T).  

First, we collect a series of sample master pixel locations Mi (Xi, 

Yi) ),...3,2,1( ni = . For each pixel Mi, which is related to an 
actual point Pi in the surveillance scene, we manually move the 
slave camera to center the slave image at Pi and record the 
corresponding slave pan-tilt angles Si (Pi, Ti). After this process, 
we can get n pairs of master-slave correlations 
(Mi,Si) ),...3,2,1( ni = .  

Then, for every other pixel point Mj in the master image, we 
calculate the related slave angles Sj as a linear interpolation of the 
slave angles (S1,S2) of the closest two sample points (M1,M2) 
according to equation (2).  

12

1
121 *)(

MM
MM

SSSS j
j −

−
−+=  (2) 

Due to the errors of approximating a nonlinear mapping with 
linear interpolation, and the mechanical bias of the PTU, this 
process just gives us a coarse registration between the master and 
slave camera coordinate systems. However, this is accurate 
enough to bring the target object within the slave camera field of 
view, which is sufficient since further image processing on the 
slave camera can detect and center the target.  

In the implementation of the calibration, we adopt an aggressive 
approach. After the first two points, we can predict the pan-tilt 
angles of the remaining points in the scene. If the calculated 
angles of a newly marked point match with the actual angles 
within a certain threshold, the calibration is finished. If not, this 
point is used as another sample point, and the calibration process 
continues. 

4. SLAVE CAMERA PROCESSSING 
The Slave Camera Process is responsible for detecting, tracking 
and acquiring biometric imagery of the person for later 
identification. Since the slave camera has a narrower field of view 
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than the master camera, it will have a higher-resolution view of 
the target human, so tracking should be easier.  On the other hand, 
the slave camera is also continuously moving, which actually 
makes the tracking more difficult. This section will describe in 
detail the algorithms for detection and tracking from the moving 
slave camera. A hybrid approach to detection and tracking is 
used.  For detection, sparse optic flow is used to register adjacent 
frames for frame differencing and motion history accumulation.  
This serves to find the moving person within the moving image.  
At this point, a color histogram-based appearance model is 
formed and a mean-shift tracker is used from then on to track the 
moving person while actively servoing the PTU to keep that 
person centered within the field of view. 

4.1 Target Detection Phase 
As mentioned in the last section, our coarse calibration procedure 
is only precise enough to bring the target human within the field 
of view, but not accurate enough to place them at the center point 
of the slave camera image Therefore, we need to detect the target 
object in the slave camera based on the person’s motion as well as 
the blob dimension and speed information passed from the Master 
Camera Process. Since the slave camera is a moving camera, we 
cannot use a background model to detect motion anymore. 
Instead, we use a combination of Frame Differencing and Motion 
History [12], [13]. First, we register every two consecutive frames 
through sparse optic flow. Then, any pixel that differs above a 
certain threshold between the two registered frames is determined 
to be a foreground pixel. After that, we add several consecutive 
foreground images to form a Motion History Image (MHI). 
Finally, we convolve the MHI with a shape kernel (as described 
previously) to detect the target person. 

4.1.1 Frame Registration 
We use sparse optic flow computed by the KLT (Kanade-Lucas-
Tomasi) Tracker [9], [10], [11] to register two consecutive frames 
(f1, f2). N features P(i) (i=1,2,3,…N) in f1 are selected as 7 by 7 
patches with high intensity variation in both X and Y directions 
(e.g. corners).  The KLT’s gradient ascent procedure then finds 
the corresponding positions of these N features in the second 
frame. Since the slave camera only has pan-tilt movement, over a 
small time step we can approximate it by a translation motion d = 
[dx, dy]T applied to each patch center X=(x,y): Pf1 (X)→ Pf2 
(X+d). For every patch, the problem is to find the translation d 
that minimizes the dissimilarity between Pf1 (X) and Pf2 (X+d), 
which is to solve the equation (3)(4)(5) iteratively in a Newton-
Raphson style minimization [11]. 

a
d
d

T
y

x =







*    (3) 

∫∫ 










=

W
xyx

yxx dxdyyx
ggg

ggg
T ),(2

2

ω   (4) 

dxdy
g
g

yxyxPyxPa
y

x

W ff 







−= ∫∫ ),()],(),([ 22 ω  (5) 

 

Where gx, gy is the gradient value, W is the given feature window, 
and ω(x) is a Gaussian weighting function to emphasize the 
central area of the window.  

From the steps above, we can get n (0<n<N due to lost features) 
pairs of corresponding features and their translations 

id (i=1,2,…,n). As shown in the example in Figure 4(c) (d), 
there are two major clusters of translation, corresponding to 
background and foreground motion respectively. 

We use a least-median-of-squares (LMedS) algorithm [14] to find 

the largest cluster of translations: md as shown in equation 
(6)(7)(8).  
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(a)    (b) 

 
(c) (d) 

Figure 4: A frame registration example. 
(a)(b) A pair of consecutive frames. (c) The clustering results. 
(d) The correspondent patches. Blue are background and red 
are foreground. 
Since dm is the most common translation, it should correspond to 
the average translation of background patches. In Figure 4(c), 

patches whose translation differs with md within boundary 

B= lmeds*3  are labeled blue (thick) versus red patches 
(thin) that do not fall in that cluster. The statistics result shows 
that 85 percent of the n tracked patches are clustered as 
background (blue). As can be seen in the figure, this clustering 
coincides well with the distinction between the two different 
motions of the background and foreground “layers” of the scene. 



On the other hand, this clustering alone is not accurate and 
sufficient enough to delineate the whole foreground layer. First, 
patches are sparse. Second, not all the background patches are 
exactly clustered within the bounds of cluster B (e.g. the red dots 
around blue cluster in Figure 4(c)). Therefore, the next step of 
frame difference is necessary.   

4.1.2 Motion History and Template Matching 
After getting an estimate of the background translation dm, we 
translate the first frame by dm so that background pixels are 
aligned with each other in both frames. The aligned background 
pixels are then removed by simple frame subtraction and 
thresholding.  A typical problem of this approach, however, is that 
although it removes the background, it does not completely detect 
the foreground object but only the leading and trailing edges.  We 
solve this problem by adding several consecutive foreground 
frames together to form a Motion History Image (MHI) [12], [13]. 
The decay process of the Motion History representation serves to 
fill in a more complete description of the foreground object.   

Next, we convolve the MHI to segment the target human object 
with a rectangular center-surround shape template similar to the 
one used in the Master Camera Process. The advantage here is 
that we know roughly the dimensions of the target person based 
on the information of Master Camera. Once the detection process 
detects a target object within the same neighborhood for a number 
of consecutive frames, we flag it as a successful detection and 
trigger the tracking phase 

4.2 Target Tracking Phase 
Since human beings are non-rigid objects, we use the Mean-Shift 
algorithm for tracking them based on a color histogram 
appearance model [15], [16], [17]. In the first frame, we calculate 
the histogram model. In subsequent frames, we shift the blob 
object to a new location whose histogram best matches the 
template. After that, we adjust the scale of the blob object and 
continue tracking.  

4.2.1 Histogram Model 
To acquire a color histogram appearance model, the initial 
position and dimensions of the 2D target object blob obtained 
from the previous detection phase are used. For every pixel in the 
blob, we do a color space conversion from RGB into C1 = B-G, 
C2 = G-R, C3=R+B+G. We use this color space because it allows 
us to emphasize chrominance features C1, C2 more than intensity 
feature C3. Then, we sample C1, C2 into 8 bins and C3 into 4 
bins [18], [19]. Every pixel in the blob will give a vote to a bin in 
the 8*8*4 histogram. 

4.2.2 Mean Shift Tracking 
In subsequent frames, our task is to find the target location whose 
neighborhood color density function is most similar to the 
model’s density function. This is equivalent to maximizing the 
Bhattacharyya Coefficient associated with the model and 
candidate distributions, which can be achieved by mean shift 
iterations [15], [16].  

From the start position X=(x,y) of the candidate blob, we compute 
an offset X∆ as in equation (9) iteratively.  
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Where W is the blob window around the position X, Y=(x,y) is the 

coordinate of pixel (P) in W, ω(Y) = )(/)( iHiH cm is a 

sample weight at P with color i which shows the histogram 
density similarity of color i between model and candidate, and K 
is a suitable kernel function. 

It is proved that the shifting process will converge to a new 

position 'X , which corresponds to a local mode in the candidate 
position. 

After locating the matched target blob, we then adjust the tracking 
scale by %10±  and choose the scale yielding a better 
Bhattacharyya Coefficient. This will help us adapt to scale 
changes when the target object moves closer or further.  When 
calculating the Bhattacharyya Coefficient at this stage, we 
enhance the algorithm used in [14] with an approach similar to the 
shape kernel approach used in Section 3.2. We use an center-
surround difference mask to enforce that the target object 
(foreground) in the current tracking window is surrounded by a 
ring of non-target (background) pixels. First a rectangle ring 
(outer) is place around the current tracking window (inner). Then, 
the Bhattacharyya Coefficient in equation (10) is calculated over 
the inner window (Bi) and outer ring (Bo) respectively. The final 

Combined Bhattacharyya Coefficient ( 'B ) is the normalized 
difference between Bi and Bo, as shown in Equation (11) 
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where W is the image area of computation. m(u) is the model 
histogram at color u, p(u) is the target histogram at color u, u is 
the color at pixel (x, y) within area W, and Pi, Po are the target 
histograms in the inner window and outer ring. 

5. RESULTS AND DISCUSSION 
5.1.1 Implementation Results 
Our hardware implementation of the DHID system is shown in 
Figure 5. The master camera appears on the left and the slave 
camera is on the right. The slave camera is mounted on a Pan-Tilt 
Unit. The hardware profiles are listed in Table 1.  

The software is written in C++. The running speed of the system 
is shown in Table 2. It is limited by the frame rate of the NTSC 
frame grabber (30 frame/second). The Detection phase is slower 
than the tracking phase because of the feature tracking in the 
frame registration step. The image resolution used by master and 
slave camera is 640*486. In some parts of the implementation 
(such as the KLT tracker), images are down sampled to speed up 
the process. 

Based on the lenses we currently use, the system can detect and 
track moving humans at a distance of 50 meters within a 60ofield 



of regard (which is bounded by the width of the fixed master 
camera field of view). The success rate in our tracking 
experiments, performed overlooking a parking lot, has been above 
95 percent. We are currently building a second system with 
upgraded hardware that will operate at further distances.  

Table 1: Hardware Profile 

Process Camera Computer 

Master Camera 
Process 

JVC  
TK-C1380 

Pentium 2.6GHz, 1G Ram  
Windows XP 

Slave Camera 
Process 

Sony  
DXC-9000 

Pentium 2.4GHz, 1G Ram  
Windows XP 

Control 
Process 

 

 

Pentium 1GHz, 256M Ram 
VXWorks.  

 
Table 2: System Running Speed 

Process Frame Rate (f/s) 

Master Camera  24 

Slave Camera  20 (detection), 25( tracking) 

Some sample images of detection and tracking results are shown 
below. Figure 6 is a Master Detection example. The image on the 
left is the original image and image on the right shows the 
detected foreground regions. There are two detected objects, 
denoted by the red bounding boxes.  The target object is the blob 
on the right, shown with an overlaid red crosshair.   Figure 7 is 
the related example in the Slave Camera view. Again, the image 
on the left is the original image and the image on the right is the 
detected foreground. The detected target is the target object in 
Figure 6. We can see clearly that the image from the slave camera 
could be used to identify the person, even though it is 
unrecognizable from the master camera view. Figure 8 is a 
Master-Slave tracking example. The master images are shown on 
the top row and slave images are shown on the bottom row. We 
just show frames 0, 50, 100 from left to right.   

5.1.2 Future Work 
First, in the Master Camera Detection module, we use a simple 
rectangular shape kernel to detect upright humans. In the future, 
we plan to collect more experimental data to build a better Human 
Contour Template.  

Second, we plan to incorporate multiple people tracking in our 
system. We should implement the functionalities to distinguish a 
single person vs. a group of people, and to select a target among 
multiple candidates based on an intelligent strategy.   

Third, during Slave Camera Detection, we use motion-
compensated frame differencing to detect the moving target from 
a moving camera. Actually, the master camera process has much 
more information than just target position, such as the color and 
shape of the target, which the slave camera could also use during 
its detection phase. We could take advantage of this information 
by communicating between the Master Camera Process and the 
slave Camera Process, provided that the increased network traffic 
does not degrade the real-time system performance. 

Finally, while tracking target humans in the Slave Camera, we 
plan to build a database of biometric imagery from each person 
passing through the scene.  These images and video clips will be 
used by face and gait recognition algorithms to determine the 
identity of each person.   
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Figure 5: Actual DHID System

 
Figure 6: Master camera detection example.  



 
Figure 7: Slave camera detection example. 

 

 
(a). Frame 0     (b) Frame 50   (c) Frame 100 

Figure 7: Master-Slave tracking example (Frame 0, 50, 100) 
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