
A Master-Slave System to Acquire Biometric Imagery of
Humans at Distance

Xuhui Zhou, Robert T. Collins, Takeo Kanade, Peter Metes
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{xuhui, rcollins, tk, metes}@cs.cmu.edu

ABSTRACT
The Distant Human Identification (DHID) system is a master-
slave, real-time surveillance system designed to acquire biometric
imagery of humans at distance. A stationary wide field of view
master camera is used to monitor an environment at distance.
When the master camera detects a moving person, a narrow field
of view slave camera is commanded to turn to that direction,
acquire the target human, and track them while recording
zoomed-in images. These zoomed-in views provide meaningful
biometric imagery of the distant humans, who are not
recognizable in the master view. Based on the lenses we
currently use, the system can detect and track moving people at
distances up to 50 meters, within a 60o field of regard.

Keywords
Video Surveillance, Master-Slave, Motion Detection, Real-Time
Tracking, Biometric Imagery

1. INTRODUCTION
Video surveillance is already prevalent in our daily life. We can
see surveillance cameras in banks, airports, stores and parking
lots. Most commercial surveillance systems only provide recorded
video for review after crimes or accidents happen. Therefore,
there is growing interest in developing real-time systems with
automated video understanding algorithms that provide prompt
alert of events while they are happening.

Extensive research has been conducted in automated surveillance,
especially in moving object detection and tracking [1], [2], [3],
[5], [6]. The Video Surveillance and Monitoring (VSAM) system
[1] is a multi-camera system that allows a single operator to
monitor activities in a cluttered environment using a distributed
network. W4 [2] is a real-time system for detecting and tracking
people and their body parts in video imagery. Pfinder [3] is a real-
time system for tracking a person, using a multi-class statistical
model of color and shape to obtain a 2D representation of head
and hands over a wide range of viewing conditions.

We are developing a testbed system and algorithms for acquiring
biometric imagery of non-cooperative subjects (neither actively

cooperating nor trying to deceive) in an outdoor environment. A
typical scenario is monitoring a parking lot, or building perimeter,
to acquire identifiable imagery of all the people passing through
that area. The biometric imagery consists of short gait sequences
and relatively high resolution views of each person’s face,
suitable for use by gait and face recognition algorithms developed
separately.

The goals of wide area monitoring and biometric image
acquisition are in conflict with each other. To identify people at a
distance, we need to use a highly zoomed camera. But, with the
zoom increase comes a decrease in overall field of view, so we
can only monitor a smaller scene. The main challenge in
acquiring biometric data at a distance is not optics, but camera
control. We cannot just point a static sensor at the scene and hope
to obtain focused, high-resolution imagery of a person. Instead,
we must actively control the pointing angle and zoom of the
camera.

To solve the dilemma above, this paper proposes a Distant Human
Identification (DHID) system based on a master-slave camera
architecture. A static, wide field of view master camera is used to
monitor a wide area at a distance. When the master camera
detects a moving human, an active narrow field of view slave
camera is commanded to turn to that direction, acquire the human
target, and track them while taking high resolution biometric
imagery. Unlike traditional master-slave systems where the
master camera completely controls the slave pointing angle (e.g.
[1]), keeping a highly zoomed camera pointing at a moving
person requires a level of pointing accuracy that is not achievable
from calibration alone. That is, we cannot simply use scene
coordinates estimated from the master camera to control the pan
and tilt of the slave camera when it is zoomed in to view a
person’s face. We instead use control signals from the master
camera only initially, to get the person within the slave camera’s
field of view, and then perform real-time processing on the slave
camera video to keep the active camera centered on the moving
target.

This hybrid master-slave camera system uses a combination of
motion detection algorithms to acquire and track moving people.
Conventional approaches to moving object detection and tracking
include background subtraction [1], [2], [3], [4], temporal
differencing [7], optical flow [8], and color-based blob tracking
[15][16]. Our approach uses a combination of all of the above.
The static master camera uses adaptive background subtraction to
detect all moving objects in the scene, and determines whether
they are people or vehicles. After the master detects a new person,
the moving slave camera uses a combination of optical flow
stabilization and temporal differencing to acquire the human

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWVS’03, November 7, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-780-X/03/00011…$5.00.

target. After detection is achieved in the slave camera view, the
slave switches into an active tracking mode. The tracking is based
on color blob tracking using the mean-shift algorithm.

The following sections will give a detail description of the DHID
system. In Section 2, we will give an overview of the architecture
of the system. We will address how master and slave camera
coordinate with each other. In Section 3 and Section 4, we will
describe in detail the algorithms used in master camera processing
and slave camera processing. In Section 5, we will show some
implementation results and discuss possible future work.

2. SYSTEM OVERVIEW
The DHID system consists of three parts: a stationary wide field
of view Master Camera, a moving narrow field of view Slave
Camera and a hardware Pan-Tilt-Unit (PTU) to which the slave
camera is mounted. Each of these three components is controlled
by a separate computer, connected to the others through a
standard TCP/IP network, as shown in Figure 1.

Figure 1: Logical layout of DHID system

Mirroring the hardware, the software of the system consists of
three standalone processes on the three computers: Master
Camera Process, Slave Camera Process and Pan-Tilt-Zoom
Process. These three processes communicate with each other
through a three-tiered architecture, as shown in Figure 2.

Figure 2: Three-Tier architecture of DHID system

The Master Camera Process is the starting tier of the system. It
continuously grabs RGB video from the master camera, detects
moving objects, and determines which of them are people. The
system is currently designed to detect and track a single moving
person instead of a group. If there are multiple candidates on the
screen, one of them is selected for tracking based on criteria
described in Section 3. After detecting a person, the Master
Camera Process computes their dimension, speed, and position,
and passes these parameters to the Slave Camera Process.

The Slave Camera Process is the middle tier of the system. It is a
two-thread process. One thread listens to the Master Camera
Process for parameters alerting it to a detected person. The other
main thread grabs and processes video from the slave camera to
independently detect and track this person. The Slave Camera
Process determines parameters (e.g. Pan, Tilt, Speed of PTU and
Zoom, Focus of Slave Camera) and passes them to the Pan-Tilt-
Zoom Process. During the detection phase, these parameters are
sent from the Master Camera Process, allowing the master camera
to take control of the Pan-Tilt angle. During the active tracking
phase, these parameters are computed by real-time slave camera
tracking, allowing the slave camera to servo on the moving target.

The Pan-Tilt-Zoom Process is the end tier of the system. It resides
on a real-time operating system (we use VXWorks) and controls
the PTU and Slave Camera. This process accepts command
parameters from the Slave Camera Process to move the PTU and
set the zoom, focus and iris of the Slave Camera.

3. MASTER CAMERA PROCESS
The main task of the Master Camera Process is to monitor a wide
area, detect moving humans automatically, and compute Pan-Tilt
positions for the Slave Camera to “look at”. This section provides
an overview of our algorithm to detect moving objects,
distinguish humans from other objects, and calibrate the
geometric master-slave relationship.

3.1 Motion Detection at Pixel Level
Detecting moving objects in a video stream is a traditional
research problem in computer vision. Our approach is adaptive
background subtraction. The basic idea is to maintain a statistical
background model at every pixel. When the intensity of a pixel in
the current frame differs above a threshold from the background
model, it is labeled as foreground. Foreground pixels are then
grouped together to indicate potential moving objects.

One intuitive approach is to get a weighted average of all the
pixel values in the past frames as in the following equation (1).

0;)1)(1(*)(
0;)(

{)(
>−−+

=
=

ttBtI
ttI

tB
ωω

 (1)

Where B(t) is the background model value at time t, I(t) is the
image pixel value at time t, and ω is a weight parameter between
0 and 1.

The difficulty and the trick are how to choose the weight ω. If the
weight is small, the background model detects well but adapts too
slowly to properly “absorb” an object that has stopped in the
scene. The extreme of this case is no update at all when ω = 0. If
the weight is too large, the background adapts promptly but can
be easily corrupted by moving objects. There will be either a long

Pan-Tilt-Zoom Process
 Control PTU
 Control Slave Camera

Master Camera

Slave Camera

Pan-Tilt-Unit

Slave Camera Process
 Human Detection
 Human Tracking
Acquire Biometric Imagery

Master Camera Process
Motion Detection
Human Classification

PTZ Control

Master Camera

Slave Camera

trail following a moving object, or a hole within the moving
object. The extreme of this case is two-frame differencing when ω
= 1.

Inspired by the Wallflower Algorithm [4], we use two background
models, but instead of a predicted history and actual history as
used in Wallflower, we use a combination of the weighted
background models above. Model One uses a small weight for
updating. Model Two use a large weight in updating, but only
updates those pixels whose locations are determined to be
background by Model One. The pixels that are considered to be
background in Model One will not belong to any moving object,
and therefore they will not corrupt the background in the quickly
updating Model Two. To detect motion, each pixel in the current
frame is checked against both background models. If the pixel is
foreground in both models, we declare that it is foreground.

Since our background model is adaptive with time, we also have
built an additional mechanism in our background model to adapt
to sharp changes in the overall scene (e.g., the sun comes out from
cloud cover). When the number of moving foreground pixels
exceeds a certain threshold, both background models are reset to
the current frame.

3.2 Human Classification at Region Level
After classifying foreground change at the pixel level, we perform
a median filter to reduce “salt and pepper” noise. We then group
pixels into blob regions and determine a class label (human vs.
other) for each foreground blob [5], [6]. For efficiency, we use a
very simple model of the expected appearance of a human,
consisting of a center-surround rectangular kernel (see Figure 3).
The rectangle is chosen to have a size and aspect ratio consistent
with known dimensions of upright humans in the scene. A central
rectangle of positive weights is surrounded by an outer ring of
negative weights. This is to enforce that a cluster of foreground
pixels of the right shape must be surrounded by a ring of non-
foreground (i.e. background) pixels.

Figure 3: Template matching cases. (Left) High score (Middle

and right) Low score.

We convolve the shape kernel over the foreground image and
threshold the convolved results. After flood fill with 8-connect,
we get a set of candidate blobs classified as moving, upright
humans. As shown in Figure 3, it is clear that we can distinguish
human from cars easily because of the penalty imposed by the
negative weights in the outer ring of the shape kernel. Meanwhile,
the kernel does a good job of locating the human upper body, and
ignoring shadows below the feet.

After locating all the possible human blob candidates, we need to
choose one for passing to the slave camera. First of all, the
operator can manually click on one subject, which will always

take priority. Otherwise, the system is in an automatic choosing
mode. At the first frame, we place the target focus of attention
cursor at the center of screen. In the following frame, if there is no
detected person, the cursor stays. When a person appears, the
focus of attention cursor switches to that person. If there are
multiple people found, the cursor will go to the nearest one. In the
case of a moving human, the cursor will follow that person since
the target human will always appear to be the closest object from
the cursor position in the last frame due to minor movement in
consecutive frames.

Future work on multiple people tracking will explore how to
multitask between multiple candidates to ensure that views of
each person are tracked accordingly, and that the appropriate
target is selected among multiple candidates.

3.3 Calibration of Master-Slave Correlation
After getting the coordinate of the target human in the master
camera image, we need to move the slave camera to point at and
further track the person. The purpose of master-slave calibration
is to determine the geometric relationship between the master
camera image pixel coordinates M(X,Y) and the Pan-Tilt angles of
the slave camera S(P, T).

First, we collect a series of sample master pixel locations Mi (Xi,

Yi)),...3,2,1(ni = . For each pixel Mi, which is related to an
actual point Pi in the surveillance scene, we manually move the
slave camera to center the slave image at Pi and record the
corresponding slave pan-tilt angles Si (Pi, Ti). After this process,
we can get n pairs of master-slave correlations
(Mi,Si)),...3,2,1(ni = .

Then, for every other pixel point Mj in the master image, we
calculate the related slave angles Sj as a linear interpolation of the
slave angles (S1,S2) of the closest two sample points (M1,M2)
according to equation (2).

12

1
121 *)(

MM
MM

SSSS j
j −

−
−+= (2)

Due to the errors of approximating a nonlinear mapping with
linear interpolation, and the mechanical bias of the PTU, this
process just gives us a coarse registration between the master and
slave camera coordinate systems. However, this is accurate
enough to bring the target object within the slave camera field of
view, which is sufficient since further image processing on the
slave camera can detect and center the target.

In the implementation of the calibration, we adopt an aggressive
approach. After the first two points, we can predict the pan-tilt
angles of the remaining points in the scene. If the calculated
angles of a newly marked point match with the actual angles
within a certain threshold, the calibration is finished. If not, this
point is used as another sample point, and the calibration process
continues.

4. SLAVE CAMERA PROCESSSING
The Slave Camera Process is responsible for detecting, tracking
and acquiring biometric imagery of the person for later
identification. Since the slave camera has a narrower field of view

-

- -

-

- -

-

--

+ +

+

than the master camera, it will have a higher-resolution view of
the target human, so tracking should be easier. On the other hand,
the slave camera is also continuously moving, which actually
makes the tracking more difficult. This section will describe in
detail the algorithms for detection and tracking from the moving
slave camera. A hybrid approach to detection and tracking is
used. For detection, sparse optic flow is used to register adjacent
frames for frame differencing and motion history accumulation.
This serves to find the moving person within the moving image.
At this point, a color histogram-based appearance model is
formed and a mean-shift tracker is used from then on to track the
moving person while actively servoing the PTU to keep that
person centered within the field of view.

4.1 Target Detection Phase
As mentioned in the last section, our coarse calibration procedure
is only precise enough to bring the target human within the field
of view, but not accurate enough to place them at the center point
of the slave camera image Therefore, we need to detect the target
object in the slave camera based on the person’s motion as well as
the blob dimension and speed information passed from the Master
Camera Process. Since the slave camera is a moving camera, we
cannot use a background model to detect motion anymore.
Instead, we use a combination of Frame Differencing and Motion
History [12], [13]. First, we register every two consecutive frames
through sparse optic flow. Then, any pixel that differs above a
certain threshold between the two registered frames is determined
to be a foreground pixel. After that, we add several consecutive
foreground images to form a Motion History Image (MHI).
Finally, we convolve the MHI with a shape kernel (as described
previously) to detect the target person.

4.1.1 Frame Registration
We use sparse optic flow computed by the KLT (Kanade-Lucas-
Tomasi) Tracker [9], [10], [11] to register two consecutive frames
(f1, f2). N features P(i) (i=1,2,3,…N) in f1 are selected as 7 by 7
patches with high intensity variation in both X and Y directions
(e.g. corners). The KLT’s gradient ascent procedure then finds
the corresponding positions of these N features in the second
frame. Since the slave camera only has pan-tilt movement, over a
small time step we can approximate it by a translation motion d =
[dx, dy]T applied to each patch center X=(x,y): Pf1 (X)→ Pf2
(X+d). For every patch, the problem is to find the translation d
that minimizes the dissimilarity between Pf1 (X) and Pf2 (X+d),
which is to solve the equation (3)(4)(5) iteratively in a Newton-
Raphson style minimization [11].

a
d
d

T
y

x =







* (3)

∫∫ 










=

W
xyx

yxx dxdyyx
ggg

ggg
T),(2

2

ω (4)

dxdy
g
g

yxyxPyxPa
y

x

W ff 







−= ∫∫),()],(),([22 ω (5)

Where gx, gy is the gradient value, W is the given feature window,
and ω(x) is a Gaussian weighting function to emphasize the
central area of the window.

From the steps above, we can get n (0<n<N due to lost features)
pairs of corresponding features and their translations

id (i=1,2,…,n). As shown in the example in Figure 4(c) (d),
there are two major clusters of translation, corresponding to
background and foreground motion respectively.

We use a least-median-of-squares (LMedS) algorithm [14] to find

the largest cluster of translations: md as shown in equation
(6)(7)(8).

)}(min{ 2

1 i

n

i
Rmedianlmeds

=
= (6)

),...,3,2,1(|| 2 njddR iji =−= (7)

)(arg lmedsd
d

m = (8)

(a) (b)

(c) (d)

Figure 4: A frame registration example.
(a)(b) A pair of consecutive frames. (c) The clustering results.
(d) The correspondent patches. Blue are background and red
are foreground.
Since dm is the most common translation, it should correspond to
the average translation of background patches. In Figure 4(c),

patches whose translation differs with md within boundary

B= lmeds*3 are labeled blue (thick) versus red patches
(thin) that do not fall in that cluster. The statistics result shows
that 85 percent of the n tracked patches are clustered as
background (blue). As can be seen in the figure, this clustering
coincides well with the distinction between the two different
motions of the background and foreground “layers” of the scene.

On the other hand, this clustering alone is not accurate and
sufficient enough to delineate the whole foreground layer. First,
patches are sparse. Second, not all the background patches are
exactly clustered within the bounds of cluster B (e.g. the red dots
around blue cluster in Figure 4(c)). Therefore, the next step of
frame difference is necessary.

4.1.2 Motion History and Template Matching
After getting an estimate of the background translation dm, we
translate the first frame by dm so that background pixels are
aligned with each other in both frames. The aligned background
pixels are then removed by simple frame subtraction and
thresholding. A typical problem of this approach, however, is that
although it removes the background, it does not completely detect
the foreground object but only the leading and trailing edges. We
solve this problem by adding several consecutive foreground
frames together to form a Motion History Image (MHI) [12], [13].
The decay process of the Motion History representation serves to
fill in a more complete description of the foreground object.

Next, we convolve the MHI to segment the target human object
with a rectangular center-surround shape template similar to the
one used in the Master Camera Process. The advantage here is
that we know roughly the dimensions of the target person based
on the information of Master Camera. Once the detection process
detects a target object within the same neighborhood for a number
of consecutive frames, we flag it as a successful detection and
trigger the tracking phase

4.2 Target Tracking Phase
Since human beings are non-rigid objects, we use the Mean-Shift
algorithm for tracking them based on a color histogram
appearance model [15], [16], [17]. In the first frame, we calculate
the histogram model. In subsequent frames, we shift the blob
object to a new location whose histogram best matches the
template. After that, we adjust the scale of the blob object and
continue tracking.

4.2.1 Histogram Model
To acquire a color histogram appearance model, the initial
position and dimensions of the 2D target object blob obtained
from the previous detection phase are used. For every pixel in the
blob, we do a color space conversion from RGB into C1 = B-G,
C2 = G-R, C3=R+B+G. We use this color space because it allows
us to emphasize chrominance features C1, C2 more than intensity
feature C3. Then, we sample C1, C2 into 8 bins and C3 into 4
bins [18], [19]. Every pixel in the blob will give a vote to a bin in
the 8*8*4 histogram.

4.2.2 Mean Shift Tracking
In subsequent frames, our task is to find the target location whose
neighborhood color density function is most similar to the
model’s density function. This is equivalent to maximizing the
Bhattacharyya Coefficient associated with the model and
candidate distributions, which can be achieved by mean shift
iterations [15], [16].

From the start position X=(x,y) of the candidate blob, we compute
an offset X∆ as in equation (9) iteratively.

∑
∑=∆

−

−−

W

W

YXYK

XYYXYKX
)()(

))(()(

ω

ω
 (9)

Where W is the blob window around the position X, Y=(x,y) is the

coordinate of pixel (P) in W, ω(Y) =)(/)(iHiH cm is a

sample weight at P with color i which shows the histogram
density similarity of color i between model and candidate, and K
is a suitable kernel function.

It is proved that the shifting process will converge to a new

position 'X , which corresponds to a local mode in the candidate
position.

After locating the matched target blob, we then adjust the tracking
scale by %10± and choose the scale yielding a better
Bhattacharyya Coefficient. This will help us adapt to scale
changes when the target object moves closer or further. When
calculating the Bhattacharyya Coefficient at this stage, we
enhance the algorithm used in [14] with an approach similar to the
shape kernel approach used in Section 3.2. We use an center-
surround difference mask to enforce that the target object
(foreground) in the current tracking window is surrounded by a
ring of non-target (background) pixels. First a rectangle ring
(outer) is place around the current tracking window (inner). Then,
the Bhattacharyya Coefficient in equation (10) is calculated over
the inner window (Bi) and outer ring (Bo) respectively. The final

Combined Bhattacharyya Coefficient ('B) is the normalized
difference between Bi and Bo, as shown in Equation (11)

),(;)()(yxcuupumB
W

=•=∑ (10)

o

o

i

i

pm
B

pm
BB

**
' −= (11)

where W is the image area of computation. m(u) is the model
histogram at color u, p(u) is the target histogram at color u, u is
the color at pixel (x, y) within area W, and Pi, Po are the target
histograms in the inner window and outer ring.

5. RESULTS AND DISCUSSION
5.1.1 Implementation Results
Our hardware implementation of the DHID system is shown in
Figure 5. The master camera appears on the left and the slave
camera is on the right. The slave camera is mounted on a Pan-Tilt
Unit. The hardware profiles are listed in Table 1.

The software is written in C++. The running speed of the system
is shown in Table 2. It is limited by the frame rate of the NTSC
frame grabber (30 frame/second). The Detection phase is slower
than the tracking phase because of the feature tracking in the
frame registration step. The image resolution used by master and
slave camera is 640*486. In some parts of the implementation
(such as the KLT tracker), images are down sampled to speed up
the process.

Based on the lenses we currently use, the system can detect and
track moving humans at a distance of 50 meters within a 60ofield

of regard (which is bounded by the width of the fixed master
camera field of view). The success rate in our tracking
experiments, performed overlooking a parking lot, has been above
95 percent. We are currently building a second system with
upgraded hardware that will operate at further distances.

Table 1: Hardware Profile

Process Camera Computer

Master Camera
Process

JVC
TK-C1380

Pentium 2.6GHz, 1G Ram
Windows XP

Slave Camera
Process

Sony
DXC-9000

Pentium 2.4GHz, 1G Ram
Windows XP

Control
Process

Pentium 1GHz, 256M Ram
VXWorks.

Table 2: System Running Speed

Process Frame Rate (f/s)

Master Camera 24

Slave Camera 20 (detection), 25(tracking)

Some sample images of detection and tracking results are shown
below. Figure 6 is a Master Detection example. The image on the
left is the original image and image on the right shows the
detected foreground regions. There are two detected objects,
denoted by the red bounding boxes. The target object is the blob
on the right, shown with an overlaid red crosshair. Figure 7 is
the related example in the Slave Camera view. Again, the image
on the left is the original image and the image on the right is the
detected foreground. The detected target is the target object in
Figure 6. We can see clearly that the image from the slave camera
could be used to identify the person, even though it is
unrecognizable from the master camera view. Figure 8 is a
Master-Slave tracking example. The master images are shown on
the top row and slave images are shown on the bottom row. We
just show frames 0, 50, 100 from left to right.

5.1.2 Future Work
First, in the Master Camera Detection module, we use a simple
rectangular shape kernel to detect upright humans. In the future,
we plan to collect more experimental data to build a better Human
Contour Template.

Second, we plan to incorporate multiple people tracking in our
system. We should implement the functionalities to distinguish a
single person vs. a group of people, and to select a target among
multiple candidates based on an intelligent strategy.

Third, during Slave Camera Detection, we use motion-
compensated frame differencing to detect the moving target from
a moving camera. Actually, the master camera process has much
more information than just target position, such as the color and
shape of the target, which the slave camera could also use during
its detection phase. We could take advantage of this information
by communicating between the Master Camera Process and the
slave Camera Process, provided that the increased network traffic
does not degrade the real-time system performance.

Finally, while tracking target humans in the Slave Camera, we
plan to build a database of biometric imagery from each person
passing through the scene. These images and video clips will be
used by face and gait recognition algorithms to determine the
identity of each person.

6. ACKNOWLEDGMENTS
This work was supported by the DARPA HumanID program
under ONR contract N00014-00-1-0915.

Figure 5: Actual DHID System

Figure 6: Master camera detection example.

Figure 7: Slave camera detection example.

(a). Frame 0 (b) Frame 50 (c) Frame 100

Figure 7: Master-Slave tracking example (Frame 0, 50, 100)

7. REFERENCES
[1] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade

Algorithms for cooperative multisensor surveillance
Proceedings of the IEEE, Vol. 89, No. 10, October, 2001,
pp. 1456 - 1477.

[2] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-
time surveillance of people and their activities,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 809–830,
Aug. 2000.

[3] C. R. Wren, A. Azarbayejani, T. J. Darrell, and A. P.
Pentland, “Pfinder: Real-time tracking of the human body,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 780–
785, July 1997.

[4] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,
“Wallflower: Principles and practice of background
maintenance,” in Proc. Int. Conf. Computer Vision, Corfu,
Greece, 1999, pp. 255–261.

[5] G. L. Foresti, “Real-time system for video surveillance of
unattended outdoor environments,” IEEE Trans. Circuits
Syst. Video Technol., vol. 8, p. 697, Oct. 1998.

[6] J. Heikkila and O. Silven, “A real-time system for
monitoring of cyclists and pedestrians,” in Proc. 2nd IEEE
Int. Workshop Visual Surveillance, Fort Collins, CO, June
1999.

[7] P.L. Rosin and T. Ellis, “Image difference threshold
strategies and shadow detection,” in Proc. British Machine
Vision Conf., 1995, pp. 347–356.

[8] J. Barron, D. Fleet, and S. Beauchemin, “Performance of
optical flow techniques,” Int. J. Comput. Vis., vol. 12, no.
1, pp. 42–77, 1994.

[9] B. D. Lucas and T. Kanade. An Iterative Image
Registration Technique with an Application to Stereo
Vision. International Joint Conference on Artificial
Intelligence, pages 674-679, 1981.

[10] C. Tomasi and T. Kanade. Detection and Tracking of Point
Features. Carnegie Mellon University Technical Report
CMU-CS-91-132, April 1991.

[11] J. Shi and C. Tomasi. Good Features to Track. IEEE
Conference on Computer Vision and Pattern Recognition,
pages 593-600, 1994.

[12] J.Davis and A.Bobick. TheRepresentation and Recognition
ofAction Using Temporal Templates. MIT Media Lab
Technical Report 402, 1997.

[13] J.Davis and G.Bradski. Real-TimeMotion Template
Gradients Using Intel Computer Vision Library. IEEE
ICCV'99 FRAME-RATE WORKSHOP, 1999.

[14] P.J. Rousseeuw and A.M. Leroy. Robust Regression and
Outlier Detection. John Wiley & Sons, New York, 1987

[15] R. Collins Mean-shift Blob Tracking through Scale Space
Computer Vision and Pattern Recognition (CVPR'03),
IEEE, June, 2003.

[16] Comaniciu, D., Ramesh, V. and Meer, P., “Real-Time
Tracking of Non-Rigid Objects using Mean Shift,” IEEE
Computer Vision and Pattern Recognition, VolII, 2000,
pp.142-149.

[17] Comaniciu, D., Ramesh, V., Meer, P., “The Variable
Bandwidth Mean Shift and Data-Driven Scale Selection,”
International Conference on Computer Vision, Vol I,
pp.438-445.

[18] S. Birchfield. Elliptical Head Tracking Using Intensity
Gradients and Color Histograms. IEEE Conference on
Computer Vision and Patten Recognition, Santa Barbara,
California, June 1998

[19] M. Swain and D. Ballard. Color Indexing. International
Journal of Computer Vision, 7(1):11-32 1991.

