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Abstract. A method is presented for identifying individuals by shape,
given a sequence of noisy silhouettes segmented from video. A spectral
partitioning framework is used to cluster similar poses and automatically
extract gait shapes. The method uses a variance-weighted similarity met-
ric to induce clusters that cover disparate stages in the gait cycle. This
technique is applied to the HumanID Gait Challenge dataset to measure
the quality of the shape model, and the efficacy of shape statistics in
human identification.

1 Introduction

Low-level video segmentation routines such as background subtraction frequently
generate mislabeled pixels. Intuitively, this follows from the absence of high level
constraints, such as a statistical shape model or a parametric appearance model.
In the case of articulated motion, such models require laborious hand training
and frequently require hand initialization. In contrast, we approach the shape
estimation problem by building a catalogue of prototypical views.

Noting that mislabeled pixels tend not to be strongly correlated over time,
we appeal to averaging to recover an estimate of the underlying shape and pro-
pose an unsupervised sample selection method for sequences of inaccurately
segmented video. Approximate shape images are estimated through a spectral
partitioning algorithm that minimizes the variation in each cluster. This results
in shape estimates that preserve pose information and mitigate pixel mislabel-
ing. In the case of human motion we must recover shape estimates that preserve
the configuration of the body, rather than blurring or distorting pose details. To
this end, we employ a spectral embedding using a similarity metric tailored to
precondition the clustering step.

The method is tested with a human identification algorithm that utilizes
shape statistics. We produce results that are competitive with current algo-
rithms, with less computational cost. Beyond testing our shape estimation pro-
cedure, this set of experiments sheds light on the quality of gait shape as a
discriminative biometric.

2 Related Work

There is a rich body of work describing vision systems for modeling and tracking
human bodies (see [6] for a review). However, the vision research community has
only recently begun to investigate gait as a biometric [7, 13,14, 16].



Recent approaches [3, 20, 21, 10,2,1, 5,11, 8, 17] rely almost exclusively on the
information contained in binary silhouettes computed by background subtrac-
tion. In [10], each silhouette is divided into seven regions, and the first and second
order moments from each region are combined into a feature vector. More di-
rect use of silhouette shape is achieved in [20] by performing a Procrustes shape
analysis for points on the silhouette boundary. This generates a set of mean
shapes that are used for nearest-neighbor classification. In [8], feature vectors
are computed from the widths between left and right edges of the silhouette
contour, and these features are clustered to form a set of temporal keyframes.
This structural information and the information about the temporal transitions
between keyframe states are encoded in an HMM.

The work of [11] projects a sequence of silhouettes along the row and column
dimensions to form spatio-temporal projection patterns. Each lattice unit from
this 1D periodic pattern forms a gait signature for comparison and classification
using nearest-neighbor. In contrast, [2] extracts lattice units from the 2D sym-
metric pattern formed by all pairwise silhouette correlations. These units are
input to PCA, followed by k-nearest neighbor classification.

Some work makes the connection between 2D silhouette and 3D body mea-
surements. In [3], four static parameters (body height, torso length, leg length
and stride length) are extracted from silhouettes representing the double sup-
port phase of the gait cycle, as seen from the side. The work of [21] also uses
side views to determining hip and knee joint angles, and fits trigonometric poly-
nomials to the periodic traces of these angles over time. The linear relationship
between between stride length and cadence (frequency) is estimated in [2] using
periodicity analysis and knowledge of relationship between the camera and the
ground plane, yielding a view-invariant classifier.

The work most related to our own uses direct comparison of silhouette shapes
to determine identity. In [5] the periodic gait cycle is analyzed to identify double
support and midstance keyframes. The silhouettes in these frames are centered
and scaled to form a gallery of templates. Incoming silhouettes are compared
using normalized correlation and classified using nearest-neighbor. The base-
line algorithm of [18] performs full volumetric correlation on sliding temporal
subsequences normalized silhouette frames. These two direct approaches, while
being very simplistic, both perform well on the Gait Challenge dataset that is
used (and described) later in this paper. We will show that our work compares
favorably to these methods, while having a much lower computational cost.

3 Shape Estimation

Given a set of noisy observations of a shape, such as those obtained from a
background subtraction algorithm, we transform the images into a normalized
coordinate frame and determine a soft label for each transformed pixel. We
seek to label pixels in the normalized coordinate frame as belonging to a shape
configuration by appealing to averages taken at each pixel conditioned on each
natural shape class.
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Fig. 1. Selective sample averaging through Spectral Partitioning: (left) illustrates the
selection procedure for each natural pose cluster. (right) shows the temporal sampling
pattern for each cluster given a periodic motion sequence.

3.1 Shape Normalization

Work on statistical shape theory has provided a set of technologies for mak-
ing shapes invariant to certain registration parameters. Mardia [12] furnishes a
thorough introduction. In our experiments translation and scale were selected as
registration parameters.

In preparation for shape clustering, the silhouette images are cropped, and
vertically scaled, so that the height is normalized out and the body is centered.
The centroid and height of the silhouette in each frame is computed using first
and second order moments of the binary silhouette. To be more resilient to noisy
silhouette extraction, the time series of moment values over the video sequence
is smoothed by averaging moment values within a sliding window that spans one
temporal period of the gait cycle, which itself is determined from the time series
using a simple periodic frequency analysis.

3.2 Spectral Partitioning

To determine which frames are similar enough to average together we choose a
spectral partitioning framework [4] using the Normalized Cuts criteria [19]. We
prefer this criteria to the familiar Minimum Cut as we wish to avoid singleton
and disproportionately small clusters. Here we construct a graph representation
of the inter-image similarity of a sequence, the spectrum of which determines the
natural clusters (similar frames) of the sequence. We briefly discuss the graph
construction and normalized cuts criteria below.



Define the undirected graph G as G = (V, E), where V is the vertex set
corresponding to frames from the sequence and F is the edge set corresponding
to the similarity between the incident frames. Given an image sequence the graph
is constructed by computing the correlation between frames and storing them in
the weight matrix W defined such that W (i, j) = sim(frame;, frame;), where
sim is defined in §3.2.1. As sim is symmetric positive semi-definite, the resulting
weight W matrix is symmetric non-negative. For efficiency we sample from the
sequence of frames such that W remains sparse.

Form the normalized Laplacian L of the graph G as

L£=D"'*(D-w)D"'/? (1)

where the diagonal mass matrix D of W is defined as D(i,4) = leﬂ W (i, j).
We can compute the spectrum of £ in matrix form as

LS =SA (2)

we then take the eigenvectors corresponding to the Ayna through Ay st smallest
eigenvalues of £ and form an embedded space in which to cluster our frames
(using k-means). The subspectrum of interest is computed in MATLAB using
the eigs function. An example of the natural cluster images determined by
k-means in the embedded space can be seen in figure 1.

Affinity Metric In constructing W we need to determine the exact form of the
affinity function sim. Given that we wish to cluster frames into typical poses in
the gait sequence we select a weight map proportional to the pixel-wise sample
variance of the training silhouettes. This weight map focuses the correlation
measure on higher variance areas of the shape, such as arms, legs, and border
pixels of the silhouette. Figure 2 depicts the weight map derived from the training
silhouettes.

Clustering Clustering into a set of k prototypical shapes is performed using an
algorithm similar to Ng et al. [15].

1. Compute the frame to frame weighted correlation matrix W
from segmented frames in the video sequence.

2. Compute the normalized Laplacian L.

. Compute the spectrum SA of L.

4. Project the k-dimensional points of D~ !'/2SA onto the unit
k-sphere.

5. Cluster using k-means on the unit k-sphere.

w

6. Compute the average frames according to cluster
membership, producing k cluster images with pixels
values between [0,1].

In step 5, we use a modification to standard k-means that substitutes geodesic
distance on the sphere for the standard Lo-norm.



Shape normalized silhouettes Determining the cluster correspondence

R
A Weight map

°

UJ

proportional to
the sample

variance of the
test population

Variance-weighted images used
in similiarity computation

Probe Clusters Gallery Clusters

(a) variance weighted silhouettes (b) Shape matching

Fig. 2. (a) The variance proportional weight map weights leg, arm, and boundary
pixels heavily, while down-weighting trunk pixels. (b) The gait shape correspondence
is computed as the maximum weighted bipartite graph match.

4 Classification

Given a collection of silhouette shapes, and identities associated with each shape,
we wish to identify a probe individual as a particular member of our database.
This is accomplished by clustering the probe sequence using the algorithm in
83.2.2, and comparing this collection of shapes to members of the shape database.

Cluster centers are compared using two distinct shape similarity measures
described in §5. The measures are positive semi-definite and finite. The match
matrix A € %Tk is constructed from all-pairs of correlations between the probe
collection clusters and database gallery.

To compare the cluster frames of two sequences we need to match the poses
in one frame to those in the other. Given a square match matrix A we seek to find
the permutation matrix P,,,; which results in the maximum total correlation.
This corresponds to the maximum weight exact bipartite graph match between
the clusters from one sequence to those of another. This can be posed as a
linear assignment problem for which the Kuhn-Munkres algorithm [9] provides
an optimal solution. As the number of clusters centers is small k ~ 8 the O(n?)
computational cost of [9] is acceptable. The final classification is performed by
nearest neighbors using the total match score.



5 Experimental Results

5.1 The HumanID Gait Challenge dataset

The HumanID Gait Challenge dataset contains 452 video sequences of 74 walking
individuals, making it the largest gait dataset currently available [18,17]. The
videos are collected outdoors under natural illumination, and consist of each
person walking around a prespecified test path. Different videos of the same
person are collected to explore variations in gait recognition performance with
respect to variation in three test factors: small changes in viewpoint, difference
in shoe types (hard vs soft heel), and differences in ground surface (concrete vs.
grass). The dataset is distributed along with a suggested testing protocol that
specifies which sequences to use as training data, and which to use for testing.
The test sequences are grouped into seven sets that span the space of covariation
between the three binary test factors.

5.2 Registered Matching with Weighted Correlation

We present results for two distinct shape silimarity measures that both use the
shape clusters derived in §3. The first measure compares probe and gallery shapes
using weighted correlation. We employ the same weight map used in the previous
clustering step. The recognition rates are computed for each probe in the Gait
Challenge dataset and are presented as SPS... in tables 1 and 2, along with
results for the CMU [5] and USF [17] gait recognition algorithms for comparison.

5.3 Matching with Median Weighted Distance

We define a new similarity measure called median weighted distance (MWD).
Probe and gallery cluster images A and B are compared using MWD as

D(f(4), f(B)) = median(w(z) min o =yl.,) 3)
where f(A) extracts a level-set contour of the cluster image A, thresholded at
a certain frequency value, e.g. A(z) = .5. The weight map w(z) is inversely
proportional to the sample variance of B taken at each pixel. Subsequently, dis-
tances in high variance areas of B, such as the boundary region of the shape,
are down-weighted. For efficiency, the weight map w and a distance transform
is precomputed for each gallery center image in the shape database. Thus com-
puting the match score with a probe image A is a largely a look-up operation.
Results for this approach are shown as SPSy;wp in tables 1 and 2.

6 Discussion

We have presented a method for the automatic extraction of frequently observed
poses in noisy silhouette data. The extracted shape clusters are applied to the



[ [  A] B] CJ] DJ] EJ F]J] G] CPU/Subject]
SPScorr || 85%| 81 %] 60%| 23%| 17%| 25%| 21 %| ¢ <26 sec
SPSmuwa|| 82%| 66 %| 54 %| 20%| 18%| 21 %| 21%| ¢ <27 sec
CMU 87%| 81 %| 66 % 21%| 19%| 27%| 23% t > 3% min
USF 73%| 66 %| 56 %| 30%| 29%| 18%| 10%| t> 3" min
Table 1. Comparison 1, the probe’s correct identity is the best match
The last column denotes the average CPU time, on an Intel Pentium II7 1.6 GHz,
per subject during classification. 1 implemented in MATLAB. f implemented in C.

[ I A] BJ] C] D] E]| F ][ G] CPU/Subject|
SPScorr 90%| 87 %| 80 %| 52%| 43 %| 48 %| 44 % t < 267 sec
SPSmwal  98% | 90 %| 81 %| 46 %| 43 %| 46 %| 43 % t < 277 sec
CMU 100%| 90 %| 83 %| 59 %| 50 %| 53 %| 43 % t > 3% min
USF 8% | 76 % 54 %| 48 %| 48 %| 41 %| 34 % t > 3% min

Table 2. Comparison 2, the probe’s correct identity occurs in the top 5

HumanID Gait Challenge dataset, with promising results. Our algorithm pro-
duces competitive classification results while reducing computational cost.

The results show rank 5 classification numbers competitive with algorithms
[5] and [17]. The rank I numbers are notably lower for tests D and F. Unfortu-
nately segmentation errors and the test covariates are conflated in this dataset,
making it difficult to determine the causal factor in classification error.

The classification time for a subject can be factored into two sources, build-
ing the shape representation and testing against the database of known subjects.
The shape modeling requires approximately 20 seconds, and is performed once
per subject. Each comparison against a member of the gallery database requires
approximately 8 milliseconds. Consequently our method scales well with addi-
tional members, as the computation cost of adding new tests is low.

The results suggest that shape is an appropriate biometric, but that it is a
tool best employed when the probe subject is viewed under conditions similar to
the gallery subjects. This suggests that local models for each camera would be
most successful in a typical surveillance environment. The rank performance of
our method indicates that gait shape is an effective winnowing feature, reducing
the number of candidates that more computationally intensive methods must
analyze.

We plan to apply our technique to human activity analysis, by defining col-
lections of key-shapes that are associated with target activities rather than an
identity. We are currently exploring bootstrap estimates of cluster statistics as
an analytical tool for determining cluster validity, a problem that is frequently
left as an engineering detail in the grouping literature.
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